[1] |
卢海凤, 张光明, 赵微.
光合细菌污水资源化技术. 北京: 中国建筑工业出版社, 2014 : 1 -12.
Lu H F, Zhang G M, Zhao W.
Photosynthetic Bacteria Wastewater Treatment Technology. Beijing: China Building Industry Press, 2014 : 1 -12.
|
|
[2] |
马楠, 刘华波, 王辉.
应用于废水处理的光合细菌混合培养条件的优化. 安徽农业科学 , 2011, 39 (15) : 9151–9153.
Ma N, Liu H B, Wang H.
Optimization of cultural conditions for mixed photosynthetic bacteria used for wastewater treatment. Journal of Anhui Agri Sci , 2011, 39 (15) : 9151–9153.
|
|
[3] |
文娅, 赵国柱, 周传斌, 等.
生态工程领域微生物菌剂研究进展. 生态学报 , 2011, 31 (20) : 6287–6294.
Wen Y, Zhao G Z, Zhou C B, et al.
Research progress of microbial agents in ecological engineering. Acta Ecologica Sinica , 2011, 31 (20) : 6287–6294.
|
|
[4] |
李春笋, 郭顺星.
微生物混合发酵的研究及应用. 微生物学通报 , 2004, 31 (3) : 156–161.
Li C S, Guo S X.
Studies and applications on microbial mixed fermentation. Microbiology China , 2004, 31 (3) : 156–161.
|
|
[5] |
王冰, 周集体, 杨宝灵, 等.
光合细菌-藻类共固定深度净化污水的研究. 大连民族学院学报 , 2014, 16 (3) : 249–252.
Wang B, Zhou J T, Yang B L, et al.
Deep treatment of wastewater by co-immobilized photosynthetic bacteria and algae. Journal of Dalian Nationalities University , 2014, 16 (3) : 249–252.
|
|
[6] |
唐婷, 陈济琛, 田燕丹, 等.
光合细菌与纳豆菌的混合培养及混合处理养殖水的研究. 福建农业学报 , 2015, 30 (4) : 367–372.
Tang T, Chen J S, Tian Y D, et al.
Study on the mixed culture of photosynthetic bacteria with Balillus natto and its effects on aquaculture water. Fujian Journal of Agriculture Sciences , 2015, 30 (4) : 367–372.
|
|
[7] |
Asada Y, Tokumoto M, Aihara Y, et al.
Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. International Journal of Hydrogen Energy , 2006, 31 (11) : 1509–1513.
DOI:10.1016/j.ijhydene.2006.06.017 |
|
[8] |
Argun H, Kargi F, Kapdan I K.
Hydrogen production by combined dark and light fermentation of ground wheat solution. International Journal of Hydrogen Energy , 2009, 34 (10) : 4305–4311.
DOI:10.1016/j.ijhydene.2009.03.033 |
|
[9] |
徐德阳, 王莉莉, 杜春梅.
微生物共培养技术的研究进展. 微生物学报 , 2015, 55 (9) : 1089–1096.
Xu D Y, Wang L L, Du C M.
Progress in microbial co-culture—— A review. Acta Microbiologica Sinica , 2015, 55 (9) : 1089–1096.
|
|
[10] |
Liu S, Zhang G, Li X, et al.
Enhancement of Rhodobacter sphaeroides growth and carotenoid production through biostimulation. Journal of Environmental Sciences , 2015, 33 : 21–28.
DOI:10.1016/j.jes.2015.01.005 |
|
[11] |
何义进.微生态制剂降解养殖水体氨氮及亚硝酸盐的研究.南京:南京农业大学, 2007.
He Y J. Study on ammonia and nitrite reducing in the pond using microorganism. Nanjing:Nanjing Agriculture University, 2007.
http://cdmd.cnki.com.cn/article/cdmd-10307-2008197449.htm
|
|
[12] |
Ozmihci S, Kargi F.
Effects of starch loading rate on performance of combined fed-batch fermentation of ground wheat for bio-hydrogen production. International Journal of Hydrogen Energy , 2010, 35 (3) : 1106–1111.
DOI:10.1016/j.ijhydene.2009.11.048 |
|
[13] |
姜海明, 杨腾腾, 冯磊, 等.
芽孢杆菌与光合细菌对乌鳢养殖水的净化作用研究. 湖北农业科学 , 2010, 49 (6) : 1428–1430.
Jiang H M, Yang T T, Feng L, et al.
The purification of Bacillus subtilis and photosynthetic bacteria on cultured snakehead water. Hubei Agricultural Sciences , 2010, 49 (6) : 1428–1430.
|
|
[14] |
王玮, 陈军, 刘晃, 等.
中国水产养殖水体净化技术的发展概况. 上海海洋大学学报 , 2010, 19 (1) : 41–49.
Wang W, Chen J, Liu H, et al.
The overview of aquaculture water purification technology in China. Journal of Shanghai Ocean University , 2010, 19 (1) : 41–49.
|
|
[15] |
黄雪娇, 杨冲, 罗雅雪, 等.
光合细菌在水污染治理中的研究进展. 中国生物工程杂志 , 2014, 34 (11) : 119–124.
Huang X J, Yang C, Luo Y X, et al.
Research progress of photosynthetic bacteria in water pollution goverance. China Biotechnology , 2014, 34 (11) : 119–124.
|
|
[16] |
刘芳, 王敏, 杨慧, 等.
净化养殖水体紫色非硫光合细菌的筛选与鉴定. 中国生物工程杂志 , 2008, 28 (8) : 91–95.
Liu F, Wang M, Yang H, et al.
Screening and identification of purple non-sulfur photosynthetic bacteria purifying aquaculture water. China Biotechnology , 2008, 28 (8) : 91–95.
|
|
[17] |
李君华, 刘佳亮, 曹学彬, 等.
芽孢杆菌与光合细菌协同作用对养殖刺参的影响. 渔业现代化 , 2013, 40 (1) : 7–12.
Li J H, Liu J L, Cao X B, et al.
Effects of Bacillus subtilis and photosynthetic bacteria on cultured sea cucumber Apstichopus japonicas. Fishery Modernization , 2013, 40 (1) : 7–12.
|
|
[18] |
朱建新, 曲克明, 刘慧, 等.
小球藻和光合细菌在大菱鲆育苗中对水质调节作用的研究. 海洋水产研究 , 2008, 29 (6) : 116–121.
Zhu J X, Qu K M, Liu H, et al.
Study on Chlorella pyrenoidosa and photosynthetic bacteria as water quality modulator in turbot larvae culture. Marine Fisheries Research , 2008, 29 (6) : 116–121.
|
|
[19] |
Jin L Y, Zhang G M, Tian H F.
Current state of sewage treatment in China. Water Research , 2014, 66 : 85–98.
DOI:10.1016/j.watres.2014.08.014 |
|
[20] |
邹文娟, 许晓慧, 王国武, 等.
光合细菌和枯草芽孢杆菌在污水处理中的应用. 广东农业科学 , 2010, 37 (9) : 199–201.
Zou W J, Xu X H, Wang G W, et al.
Application in sewage treatment of Photosynthetic bacteria and Bacillus subtillus. Guangdong Agricultural Scienses , 2010, 37 (9) : 199–201.
|
|
[21] |
于振海, 郑玉珍, 卢红, 等.
光合细菌和枯草芽孢杆菌对养殖水质的净化作用. 淡水渔业 , 2015, 45 (3) : 109–112.
Yu Z H, Zheng Y Z, Lu H, et al.
Purification effect of photosynthetic bacteria and Bacillus subtilis on aquaculture water qualitys. Freshwater Fisheries , 2015, 45 (3) : 109–112.
|
|
[22] |
罗勇胜, 李卓佳, 杨莺莺, 等.
光合细菌与芽孢杆菌协同净化养殖水体的研究. 农业环境科学学报 , 2006, 25 (S1) : 206–210.
Luo Y S, Li Z J, Yang Y Y, et al.
Synergism of photo-synthetic bacteria (PSB) and Bacillus sp. in purification of wastewater from aquatic farm. Journal of Agro-Environment Science , 2006, 25 (S1) : 206–210.
|
|
[23] |
Laocharoen S, Reungsang A, Plangklang P.
. bulgaricus TISTR 895 to enhance bio-hydrogen production of Rhodobacter sphaeroides KKU-PS5. Biotechnology for Biofuels , 2015, 8 (1) : 1.
DOI:10.1186/s13068-014-0179-6 |
|
[24] |
Argun H, Kargi F.
Bio-hydrogen production by different operational modes of dark and photo-fermentation:an overview. International Journal of Hydrogen Energy , 2011, 36 (13) : 7443–7459.
DOI:10.1016/j.ijhydene.2011.03.116 |
|
[25] |
Liu B F, Ren N Q, Tang J, et al.
Bio-hydrogen production by mixed culture of photo-and dark-fermentation bacteria. International Journal of Hydrogen Energy , 2010, 35 (7) : 2858–2862.
DOI:10.1016/j.ijhydene.2009.05.005 |
|
[26] |
Xie G J, Feng L B, Ren N Q, et al.
Control strategies for hydrogen production through co-culture of Ethanoligenens harbinense B49 and immobilized Rhodopseudomonas faecalis RLD-53. International Journal of Hydrogen Energy , 2010, 35 (5) : 1929–1935.
DOI:10.1016/j.ijhydene.2009.12.138 |
|
[27] |
Ding J, Liu B F, Ren N Q, et al.
Hydrogen production from glucose by co-culture of Clostridium butyricum and immobilized Rhodopseudomonas faecalis RLD-53. International Journal of Hydrogen Energy , 2009, 34 (9) : 3647–3652.
DOI:10.1016/j.ijhydene.2009.02.078 |
|
[28] |
Fang H H, Zhu H, Zhang T.
Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. International Journal of Hydrogen Energy , 2006, 31 (15) : 2223–2230.
DOI:10.1016/j.ijhydene.2006.03.005 |
|
[29] |
Laurinavichene T, Tsygankov A.
Hydrogen photoproduction by co-culture Clostridium butyricum and Rhodobacter sphaeroides. International Journal of Hydrogen Energy , 2015, 40 (41) : 14116–14123.
DOI:10.1016/j.ijhydene.2015.08.086 |
|
[30] |
Lee J Y, Lee E J.
Effects of pH and carbon sources on biohydrogen production by co-culture of Clostridium butyricum and Rhodobacter sphaeroides. Journal of Microbiology and Biotechnology , 2012, 22 (3) : 400–406.
DOI:10.4014/jmb |
|
[31] |
Zagrodnik R, Laniecki M.
The role of pH control on biohydrogen production by single stage hybrid dark-and photo-fermentation. Bioresource Technology , 2015, 194 : 187–195.
DOI:10.1016/j.biortech.2015.07.028 |
|
[32] |
Laurinavichene T, Tsygankov A.
Hydrogen photoproduction by co-culture Clostridium butyricum and Rhodobacter sphaeroides. International Journal of Hydrogen Energy , 2015, 40 (41) : 14116–14123.
DOI:10.1016/j.ijhydene.2015.08.086 |
|
[33] |
Sun Q, Xiao W, Xi D, et al.
Statistical optimization of biohydrogen production from sucrose by a co-culture of Clostridium acidisoli and Rhodobacter sphaeroides. International Journal of Hydrogen Energy , 2010, 35 (9) : 4076–4084.
DOI:10.1016/j.ijhydene.2010.01.145 |
|
[34] |
Ozmihci S, Kargi F.
Comparison of different mixed cultures for bio-hydrogen production from ground wheat starch by combined dark and light fermentation. Journal of Industrial Microbiology & Biotechnology , 2010, 37 (4) : 341–347.
|
|
[35] |
Argun H, Kargi F.
Effects of light source, intensity and lighting regime on bio-hydrogen production from ground wheat starch by combined dark and photo-fermentations. International Journal of Hydrogen Energy , 2010, 35 (4) : 1604–1612.
DOI:10.1016/j.ijhydene.2009.12.033 |
|
[36] |
Argun H, Kargi F, Kapdan I K.
Effects of the substrate and cell concentration on bio-hydrogen production from ground wheat by combined dark and photo-fermentation. International Journal of Hydrogen Energy , 2009, 34 (15) : 6181–6188.
DOI:10.1016/j.ijhydene.2009.05.130 |
|
[37] |
Yokoi H, Mori S, Hirose J, et al.
H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnology Letters , 1998, 20 (9) : 895–899.
DOI:10.1023/A:1005327912678 |
|
[38] |
Kargi F, Ozmihci S.
Effects of dark/light bacteria ratio on bio-hydrogen production by combined fed-batch fermentation of ground wheat starch. Biomass and Bioenergy , 2010, 34 (6) : 869–874.
DOI:10.1016/j.biombioe.2010.01.031 |
|
[39] |
Argun H, Kargi F.
Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. International Journal of Hydrogen Energy , 2010, 35 (12) : 6170–6178.
DOI:10.1016/j.ijhydene.2010.03.132 |
|
[40] |
Sagnak R, Kargi F.
Hydrogen gas production from acid hydrolyzed wheat starch by combined dark and photo-fermentation with periodic feeding. International Journal of Hydrogen Energy , 2011, 36 (17) : 10683–10689.
DOI:10.1016/j.ijhydene.2011.05.167 |
|
[41] |
Laurinavichene T V, Laurinavichius K S, Tsygankov A A.
Integration of purple non-sulfur bacteria into the starch-hydrolyzing consortium. International Journal of Hydrogen Energy , 2014, 39 (15) : 7713–7720.
DOI:10.1016/j.ijhydene.2014.03.088 |
|
[42] |
Morsy F M.
CO2-free biohydrogen production by mixed dark and photofermentation bacteria from sorghum starch using a modified simple purification and collection system. Energy , 2015, 87 : 594–604.
DOI:10.1016/j.energy.2015.05.044 |
|
[43] |
Lu H, Lee P K.
Effects of cellulose concentrations on the syntrophic interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in coculture fermentation for biohydrogen production. International Journal of Hydrogen Energy , 2015, 40 (35) : 11800–11808.
DOI:10.1016/j.ijhydene.2015.05.135 |
|
[44] |
Sargsyan H, Trchounian K, Gabrielyan L, et al.
Novel approach of ethanol waste utilization:Biohydrogen production by mixed cultures of dark-and photo-fermentative bacteria using distillers grains. International Journal of Hydrogen Energy , 2016, 41 (4) : 2377–2382.
DOI:10.1016/j.ijhydene.2015.11.082 |
|
[45] |
Chandra R, Nikhil G N, Mohan S V.
Single-stage operation of hybrid dark-photo fermentation to enhance biohydrogen production through regulation of system redox condition:Evaluation with real-field wastewater. International Journal of Molecular Sciences , 2015, 16 (5) : 9540–9556.
DOI:10.3390/ijms16059540 |
|
[46] |
郭子瑞, 黄龙, 陈志强, 等.
活性污泥合成聚羟基脂肪酸酯工艺过程研究进展. 哈尔滨工业大学学报 , 2016, 48 (2) : 1–8.
Guo Z R, Huang L, Chen Z Q, et al.
Advances in polyhydroxyalkanoates synthesis by activated sludge. Journal of Harbin Institute of Technology , 2016, 48 (2) : 1–8.
|
|
[47] |
Fradinho J C, Domingos J M, Carvalho G, et al.
Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresource Technology , 2013, 132 : 146–153.
DOI:10.1016/j.biortech.2013.01.050 |
|
[48] |
Fradinho J C, Oehmen A, Reis M A.
Effect of dark/light periods on the polyhydroxyalkanoate production of a photosynthetic mixed culture. Bioresource Technology , 2013, 148 : 474–479.
DOI:10.1016/j.biortech.2013.09.010 |
|
[49] |
Serafim L S, Lemos P C, Oliveira R, et al.
Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding condition. Biotechnology and Bioengineering , 2004, 87 (2) : 145–160.
DOI:10.1002/(ISSN)1097-0290 |
|
[50] |
Fradinho J C, Oehmen A, Reis M A.
Photosynthetic mixed culture polyhydroxyalkanoate (PHA) production from individual and mixed volatile fatty acids (VFAs):Substrate preferences and co-substrate uptake. Journal of Biotechnology , 2014, 185 : 19–27.
DOI:10.1016/j.jbiotec.2014.05.035 |
|
[51] |
赵微, 张光明.
光合细菌处理废水过程中生物产氢技术研究进展. 中国生物工程杂志 , 2012, 32 (12) : 130–135.
Zhao W, Zhang G M.
Progress of biological hydrogen production in photosynthetic bacteria wastewater treatment. China Biotechnology , 2012, 32 (12) : 130–135.
|
|
[52] |
廖强, 王永忠, 朱恂, 等.
初始底物浓度对序批式培养光合细菌产氢动力学影响. 中国生物工程杂志 , 2007, 27 (11) : 51–56.
Liao Q, Wang Y Z, Zhu X, et al.
Effect of initial substrate concentration on kinetics of hydrogen production by photosynthetic bacteria in batch culture. China Biotecnology , 2007, 27 (11) : 51–56.
|
|
[53] |
赵微, 张光明.
微量元素对废水中光合细菌生长的影响. 哈尔滨工业大学学报 , 2012, 44 (2) : 52–55.
Zhao W, Zhang G M.
Effects of trace elements on photosynthetic bacteria growth in wastewater. Journal of Harbin Institute of Technology , 2012, 44 (2) : 52–55.
|
|
[54] |
李扬, 李茹莹, 季民.
固定化技术在促进光合细菌产氢中的应用. 中国生物工程杂志 , 2014, 34 (7) : 96–101.
Li Y, Li R Y, Ji M.
Application of immobilization technology on enhancing hydrogen production by photosynthetic bacteria. China Biotechnology , 2014, 34 (7) : 96–101.
|
|