中国生物工程杂志  2016, Vol. 36 Issue (6): 100-106

文章信息

郭争荣, 彭焕彦, 亢继文, 姜慧卿, 孙殿兴
GUO Zheng-rong, PENG Huan-yan, KANG Ji-wen, JIANG Hui-qing, SUN Dian-xing
细胞穿透肽:一种新型非病毒载体
Cell Penetrating Peptides: Research Progress of a Novel Non-viral Vectors
中国生物工程杂志, 2016, 36(6): 100-106
China Biotechnology, 2016, 36(6): 100-106
http://dx.doi.org/10.13523/j.cb.20160614

文章历史

收稿日期: 2015-12-29
修回日期: 2016-02-24
细胞穿透肽:一种新型非病毒载体
郭争荣1,2, 彭焕彦1, 亢继文1, 姜慧卿2 , 孙殿兴1     
1. 中国人民解放军石家庄白求恩国际和平医院全军肝病中心 石家庄 050082;
2. 河北医科大学第二医院 石家庄 050017
摘要: 细胞膜的选择通透性对维持细胞内环境的稳定起着非常重要的作用,但细胞膜的这种特性限制了一些生物大分子和药物进入细胞内,不利于对一些细胞内疾病的诊断和药物靶向治疗的应用。如何将一些具有诊断和治疗潜力的生物大分子、药物通过细胞膜进入细胞内一直是医学界研究的热点和难点。细胞穿透肽是一类能够携带多肽、蛋白质、核酸、纳米颗粒、病毒颗粒及药物等穿过细胞膜进入细胞,导致完整载物内化的短肽,为生物大分子和药物进入细胞内部提供了有力的运载工具,其作为载体具有的高转导效率和低毒性特点,已经得到了广泛关注和大量研究。目前,细胞穿透肽作为生物分子和药物细胞内化的运载体已经在荧光成像,肿瘤治疗,抗炎治疗及药物靶向治疗中发挥了潜在的诊断和治疗作用,显示出其诱人的应用前景。
关键词: 细胞穿透肽     转导机制     跨膜传递    
Cell Penetrating Peptides: Research Progress of a Novel Non-viral Vectors
GUO Zheng-rong1,2, PENG Huan-yan1, KANG Ji-wen1, JIANG Hui-qing2 , SUN Dian-xing1     
1. The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang 050082, China;
2. Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, China
Abstract: The cellular membrane as a selectively permeable barrier plays an important role to maintain a relatively stable intracellular environment. But this limits the entry of biological macromolecules and drug into cells and have a obstacle in diagnosis and treatment of some of intracellular disease and drug-target applications. How to carry biological macromolecules and drugs through the cell membrane into the interior of the cell has also been a hot and difficult medical research. Cell-penetrating peptides(CPPS) are a class of diverse peptides and can carry polypeptides, proteins, nucleic acids, nanoparticles, virus particles and drugs through the cell membrane into cells, resulting in a complete cargo internalization. CPPS as a carrier with a high transduction efficiency and low toxicity characteristics have gotten widespread concern and lots of researches. These peptides as delivery vectors have a potential diagnostic and therapeutic applications in fluorescence imaging, cancer therapy, anti-inflammatory therapy and targeted therapy drugs.
Key words: Cell-penetrating peptides     Transduction mechanisms     Transmembrane delivery    

磷脂双分子层结构的细胞膜对维持细胞的结构和功能起着非常重要的作用,选择性地让一些小分子物质进出细胞,而一些外源性物质尤其是亲水性大分子物质则不能够通过细胞膜进入细胞内部,这对运载一些诊断和治疗潜力生物活性分子、药物进入细胞内构成了障碍[1]。细胞穿透肽(cell penetrating peptides,CPPs)的一个重要特点是能特异性和非特异性地携带多种大小和性质不同的生物活性物质进入细胞,这一特性为其成为靶向药物的良好载体提供了可能。

细胞穿透肽由5~30个氨基酸组成,多数含有精氨酸和赖氨酸,可以运载不同大小的分子[2],包括多肽[3],蛋白质[4],质粒DNA和纳米颗粒[5]进入细胞。在过去的20多年,人们对具有穿透细胞膜功能的肽进行了大量探索,1988年Frankel等[6]首次发现人免疫缺陷病毒(human immunodeficiency virus,HIV)的反式转录激活(trans-activator of transcription,Tat)蛋白可以进入培养的细胞内,促进病毒基因表达。Joliot等[7]发现果蝇的同源框转录因子控制触角同源域(Antennapedia homeodomain,Antp)能够进入神经细胞,调节神经细胞形态发生。目前,越来越多的细胞穿透肽被学者发现和识别,并在细胞和动物实验证实有效,但其确切的穿膜机制尚未阐明,可能与以下几种因素有关,包括细胞穿透肽的结构、类型,靶细胞的类型和密度,以及运载的生物分子。因此,本文将对细胞穿透肽的分类,转导机制及应用前景作一综述。

1 细胞穿透肽的分类

细胞穿透肽分为组织特异性和非组织特异性肽,非组织特异肽又分为阳离子肽,疏水肽和两性肽三种类型(表 1)。阳离子肽长度约6~12个氨基酸,除了天然的肽序列外,还包括有精氨酸[8],赖氨酸[9],和疱疹单纯病毒-1 DNA结合蛋白VP22[10]均聚物。关于对精氨酸均聚物的研究表明,细胞吸收所需的最小必须序列为6个精氨酸,转导效率随着精氨酸残基的增加而提高,聚赖氨酸能够降低细胞的吸收。然而,精氨酸和赖氨酸均聚物序列超过12个氨基酸则降低转导效率[11]。两性细胞穿透肽是一种嵌合肽,是通过共价连接疏水肽至核定位信号获得,MPG[12](GLAFLGFLGAAGSTMGAWSQPKKKRKV)和PEP-1[13](KETWWETWWTEWSQPKKRVK)这两个两性肽均基于SV40核定位信号PKKRKV。疏水性细胞穿透肽类似于分泌生长因子和细胞因子的前导序列,通过噬菌体展示、质粒展示、微生物表面呈现技术、核蛋白展示等多肽库筛查得到,已经明确的疏水细胞穿透肽包括KGF和FGF前导序列[14]。阳离子和疏水性细胞穿透肽由于缺乏组织特异性、不良反应严重而限制了其运用。

表 1 细胞穿透肽的分类和序列 Table 1 CPPs classifications and sequences
分类名称序列参考文献
阳离子细胞穿透肽TatGRKKRRQRRRPPQ[6]
AntpRQIKIWFQNRRMKWKK[7]
8-ArginineRRRRRRRR[8]
两性细胞穿透肽MPGGLAFLGFLGAAGSTMGAWSQPKKKRKV[12]
PEP-1KETWWETWWTEWSQPKKRVK[13]
疏水性细胞穿透肽TransportanGWTLNSAGYLLGKINLKALAALAKKIL[14]
特异性细胞穿透肽CTDAPWHLSSQYSRT[20]

组织特异性细胞穿透肽能够携带分子物质特异地进入靶细胞,通过噬菌体展示技术筛选获得,噬菌体展示是将包膜蛋白修饰后,携带不同长度肽的噬菌体暴露于靶向组织和细胞[15],通过淘洗和扩增得到能够结合或内化到目标细胞的噬菌体,一般通过4~5轮筛查可以获得少数能够结合或进入靶细胞的完整噬菌体。根据文献报道,一些学者通过噬菌体展示技术筛查到了能够穿透一些组织和细胞的特异性细胞穿透肽,如血管内皮细胞[16],滑膜组织[17],树突状细胞[18],胰岛细胞[19]和心肌细胞[20]。Zahid[20]等应用M13噬菌体展示库在一个小鼠心肌细胞系H9C2细胞筛查细胞穿透肽,筛查一轮后收集噬菌体,然后在小鼠体内进行淘洗,经过5轮淘洗后,得到了一个能穿透心肌细胞的肽,称之为心脏靶向肽(cardiac targeting peptide,CTP)。CTP能够快速穿透心肌组织,经静脉给小鼠注射CTP后,约30分钟后在心肌组织达到峰值,而在其它脏器则很少检测到CTP,如骨骼肌组织,肝脏,脾脏及肺组织。后来,Avula等[21]将CTP通过光动力疗法应用到心肌细胞,Chien等[22]应用CTP成功地将Cre重组酶蛋白转运至小鼠心脏组织内。

阳离子和疏水性细胞穿透肽均为非组织特异性穿透肽,目前已有很多的非组织特异性穿透肽被发现和合成,并在细胞实验证实了其强大的运载能力和高效的转导效率。但是缺乏组织特异性将会导致到达靶组织的药物浓度减低,而对非靶组织出现一些不良反应,这些缺点限制了其进一步的体内应用。因此筛查组织特异性细胞穿透肽有非常广泛的应用前景,因其具有可携带目的基因至特定组织,保持较高的药物浓度,并把不良反应降到最低的能力。

2 细胞穿透肽的转导机制

自首个细胞穿透肽报道以来,其转导机制一直是研究热点,尽管其中确切的机制目前仍不明确[23]。一般来说,细胞穿透肽可通过以下三种方式进入细胞:(1)直接穿膜进入细胞,此种方式是非能量和温度依赖性的,Veach等[24]研究发现Tat蛋白在4℃和37℃具有同样的内化效率,并且在ATP删除的细胞中,内化过程没有被阻止。(2)内吞介导的内化模式,此种方式是能量依赖性的,内吞通路主要包括网格蛋白介导、胞膜窖介导、以及巨吞饮介导的内吞[25],但CPP究竟是哪一种内吞通路介导的,目前尚无定论。(3)通过形成某种跨膜结构发生的转导模式,这种机制的穿膜机理是通过反相胶束结构形成,与疏水性膜结合,然后进入细胞内[26]

细胞穿透肽进入的细胞表面普遍存在共同的结构,比如细胞膜表面的磷脂。阳离子细胞穿透肽进入细胞的第一步就是先和细胞表面的硫酸类肝素蛋白多糖结合[27, 28, 29],如果携带的是小分子物质,阳离子细胞穿透肽会通过直接移位和内吞方式进入细胞,如果携带较大分子的物质,则通过能量依赖的微胞饮方式缓慢地进入细胞[30, 31]。Mai等[9]研究显示在4℃,几乎没有ATP的情况下,阳离子细胞穿透肽也能够进入细胞,表明细胞穿透肽进入细胞是非能量依赖的。Li等[32]证实细胞穿透肽转导效率随着疏水性的增加而提高。综上所述,每一种细胞穿透肽的穿膜机制可能都不太相同,即使同一个细胞穿透肽,其穿膜机制也与其所携带的基因和周围环境有关。另外,最近的资料[23, 33, 34]显示细胞穿透肽进入细胞可能有多个通路,具体哪一种通路占主导方式可能与细胞穿透肽本身、穿透肽浓度、其携带的载物及靶组织有关。

3 细胞穿透肽的治疗应用

由于其强大的携带载物能力和高效的转导效率,越来越多的细胞穿透肽被发现和应用,我们将对其治疗应用作一简述。

3.1 炎症靶向治疗

核因子κB(NF-κB)是公认的调节基因表达的转录因子,包括炎症反应。许多能够激活NF-κB的因子,包括肿瘤坏死因子(TNF),白细胞介素-1(IL-1),均为前炎症因子。NF-κB也可以被遗传毒性物质、氧化应激、病毒感染及机械刺激所激活,据报道,NF-κB持续活化可能会导致一些慢性炎症的发生,比如类风湿性关节炎[35],动脉粥样硬化[36],帕金森氏病[37],炎症性肠病[38]。NF-κB的活化需要NF-κB必需调节剂和激酶复合物相作用。May等[39]研究显示能够跨越NF-κB必需调节剂区域就能够阻止NF-κB必需调节剂和激酶复合物的相互作用,从而抑制NF-κB的活化。May构建了一个携带控制触角基因的细胞穿透肽,能够进入细胞,抑制NF-κB的活化。

炎症性肠病是一种慢性肠道炎性疾病,病变活动期一些炎症因子被激活,比如肿瘤坏死因子α(TNF-α),白细胞介素-6(IL-6)和白细胞介素-1(IL-1),这些炎性因子的活化能够被NF-κB调控,抑制NF-κB活化能够阻断炎症的进展。Dave等[40]将NF-κB必要调节器结合域(NBD)结合到细胞穿透肽,腹腔注射治疗炎症性肠病小鼠模型,结果显示治疗组小鼠活化的NF-κB被抑制,炎症细胞因子TNF-α、IL-6、IL-1减少,肠道炎症得到改善。

反义肽核酸(PNAs)能够特异性抑制基因表达和大肠杆菌的生长,有希望应用于抗炎方面的治疗[41]。因此,研究者们已经将PNA结合细胞穿透肽用于PNA的靶向治疗[42]。Tan等[43]将CPP-PNA结合物用于治疗感染大肠杆菌K-12感染的BALB/c小鼠,结果显示治疗组小鼠血液内细菌含量明显减少,提示PNA能够治疗一些重度感染,提高小鼠存活率。磷酰吗啉寡聚体(PMO)是一类DNA类似物,Tilley等[44]将CPP-PMO结合物治疗大肠杆菌感染小鼠,得到了与Tan类似的研究结果。以上研究结果显示CPP-PNA有抗炎治疗的潜力。

3.2 肿瘤治疗

细胞穿透肽携带化疗药物或生物制品治疗肿瘤,这种方法的最大优势是药物能够充分利用细胞穿透肽特异性进入肿瘤细胞,大大提高了治疗效果,在肿瘤治疗方面显示出了非常可观的前景。Katterle等[45]将磷脂酶C(PLC)-γ1SH2结构域结合到Tat肽,明显降低了PLC-γ1在肿瘤细胞的活性,阻止了EGFR/c-erb-2阳性的乳腺癌的转移和扩散。Takenobu等[46]将肿瘤抑制蛋白p53结合到聚精氨酸转导肽转染口腔癌细胞系,结果显示其抗肿瘤效果等同于腺病毒介导的P53基因。Michiue等[47]应用流感病毒血凝素-2携带聚精氨酸p53融合蛋白转导神经胶质瘤细胞,结果显示能抑制肿瘤细胞的生长。Kashiwagi等[48]应用TAT肽携带促凋亡Bcl-2家族成员BH3结构生物学效应子结构域的Bim结构导入T细胞淋巴瘤细胞系,胰腺癌和黑色素瘤细胞系,结果显示能够显著减少肿瘤生长。

研发肿瘤细胞特异性的细胞穿透肽能提高肿瘤靶向细胞疗效,Arap等[49]通过使用噬菌体展示来识别含RGD序列的肽并能够整合和优先表达在肿瘤血管。进一步研究显示RGD序列能够连接化疗药物阿霉素,治疗裸鼠乳腺癌,结果显示此方法能够降低药物的副作用,提高裸鼠生存率。

3.3 病毒与非病毒基因传递

病毒进入靶细胞内部的前提是首先病毒与细胞膜表面有效结合,将病毒膜结合蛋白连接到细胞穿透肽能够明显提高病毒转染效率[50],Gratton等[51]通过孵育腺病毒和控制触角基因肽大大提高了腺病毒的转导效率。Youn等[52]将一种源于鱼精蛋白的细胞穿透肽整合到腺病毒,明显提高了其进入大鼠神经胶质瘤细胞的转导效率。另外,细胞穿透肽已经应用于非病毒介导的基因传递[53],Kornegay等[54]将报告基因的DNA、DNA和阳离子脂质体络合到包含有连接DNA结合基序的TAT肽融合蛋白上,通过共聚焦显微镜和免疫染色分析显示DNA能够在多个不同的细胞系被有效地吸收,并转移至细胞核。另外,细胞穿透肽也可用来传递小干扰RNA[55]

3.4 细胞穿透肽的成像应用

细胞穿透肽成像应用原理类似于肿瘤靶向治疗,Nguyen等[56]应用荧光标志的细胞穿透肽通过一个可切开位点进入靶细胞,这个可切开位点能够被靶细胞表面表达的蛋白酶识别。采用这种方法来标志肿瘤组织,能够更好地确定肿瘤组织和正常组织的分界,提高了的肿瘤切除术的精确度[56]。量子点(Quantum dots QD)是荧光明亮、发光稳定的半导体纳米晶体,直径约1~6纳米,常用于生物学成像,明显优于传统的染色,然而其应用因不能穿透细胞膜而受到了限制。Ruan等[57]构建了TAT-QD,动态共聚焦成像显示TAT-QD能够穿透带负电荷细胞膜进入细胞,内化的TAT-QD被约束在囊泡内表面,并进入细胞器。Lei等[58]应用TAT-QD标志干细胞,并经静脉注射NOD/SCID裸鼠,结果显示QD荧光主要聚积于肝脏、肺脏和脾脏,而在脑、心脏和肾脏几乎没有聚积。Santra等[59]将TAT-QD经动脉注射大鼠,结果显示大鼠脑细胞有大量荧光表达,而单纯折射QD的大鼠其脑细胞没有荧光表达。

4 细胞穿透肽与载物的结合策略

大部分细胞穿透肽为带有正电荷的肽,当传递一些带有负电荷的物质时因为正负电荷中和作用使其传递效率明显降低或受到抑制,与一些已知的传递载体结合构建一种复合传递系统将能够解决这一问题,提高传递效率[60] 。目前已经报道可用来与细胞穿透肽结合的中间载体有脂质体,多聚体,阳离子肽,病毒载体。

脂质体的两端分别为疏水和亲水的脂质,在合适的条件下脂质体的亲水端可以和亲水性物质相结合,携带其进入细胞内部。细胞穿透肽和脂质体结合可明显提高转导效率[61]。Marty等[62]研究显示脂质体与Antp或Tat结合转导效率较单纯脂质体提高15~20倍。多聚体是一种应用较广的药物传递工具,与细胞穿透肽多聚体结合的复合传递载体能明显提高组织对药物的吸收[63]。阳离子肽能够与带有负电荷的物质结合,然后再通过共价连接的方式与细胞穿透肽结合,这种结合方式可以避免载物的负电荷与细胞穿透肽的正电荷中和,降低转导效率[64]。腺病毒载体是一种广泛应用于传递基因物质进行基因治疗的载体,其传递基因物质时需与靶细胞表面的腺病毒受体结合,如靶细胞表面缺乏腺病毒受体,则腺病毒载体不能够有效地进入靶细胞[65]。Kida等[66]构建了Tat蛋白与腺病毒载体的复合载体,研究结果显示在小鼠黑色素瘤细胞,构建的复合载体能够明显提高基因传递效率。

细胞穿透肽与中间载体组成的复合载体既可以避免载物与细胞穿透肽结合因电荷中和降低转导效率,又大大增加了细胞穿透肽所携带载物的范围,具有非常广阔的应用前景。

5 细胞穿透肽临床应用问题

细胞穿透肽的发现已有20多年的历史,其转导机制,携带DNA、siRNA及药物的诊断和治疗潜力一直是研究热点,然而,目前仍然没有对细胞穿透肽在临床诊断和治疗方面的报道。基于细胞穿透肽的临床应用仍有许多问题要克服,首先,细胞穿透肽没有口服生物利用度方面的研究,目前所进行的研究都是通过局部注射或静脉给药。第二就是阳离子和疏水性细胞穿透肽组织特异性差,副作用大,通过筛选组织和细胞特异性穿透肽将能够解决这一问题。第三,细胞穿透肽所携带载物在靶组织和细胞的释放问题,载物在到达靶组织和细胞后如何释放,释放效率也是将来需要研究和解决的问题。最后,任何新型药物和治疗措施的研发,肝肾毒性是必须考虑的两个问题,需要仔细评估,权衡利弊。

6 总 结

细胞穿透肽是一类长约5~30个氨基酸的短肽,能够携带蛋白质,多肽,核酸及病毒颗粒穿透细胞膜进入细胞,人们用其作为载体,将运载物转运进入细胞。过去的研究证明用细胞穿透肽携带蛋白质和多肽治疗癌症和炎症性疾病的小鼠模型是有效的,基于动物实验研究,人们认为细胞穿透肽携带DNA或SiRNA治疗疾病将是有效的,同理,细胞穿透肽可以提高病毒转染的效率。另外,细胞穿透肽可以携带荧光或放射性试剂用于成像应用。总之,细胞穿透肽携带治疗基因进入细胞将有非常广阔的临床应用前景。

参考文献
[1] Kurrikoff K, Gestin M, Langel U. Recent in vivo advances in cell-penetrating peptide-assisted drug delivery. Expert Opin Drug Deliv, 2016,13(3):373-387.
[2] Reissmann S. Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci, 2014,20(10):760-784.
[3] Jiang Y, Li M, Zhang Z, et al. Cell-penetrating peptides as delivery enhancers for vaccine. Curr Pharm Biotechnol, 2014,15(3):256-266.
[4] Funhoff A M, van Nostrum C F, Lok M C, et al. Poly(3-guanidinopropyl methacrylate): a novel cationic polymer for gene delivery. Bioconjug Chem, 2004,15(6):1212-1220.
[5] Liu B R, Liou J S, Huang Y W, et al. Intracellular delivery of nanoparticles and DNAs by IR9 cell-penetrating peptides. PLoS One, 2013,8(5):e64205.
[6] Frankel A D, Pabo C O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988,55(6):1189-1193.
[7] Joliot A, Pernelle C, Deagostini-Bazin H, et al. Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A, 1991,88(5):1864-1868.
[8] Wender P A, Mitchell D J, Pattabiraman K, et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A, 2000,97(24):13003-13008.
[9] Mai J C, Shen H, Watkins S C, et al. Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J Biol Chem, 2002,277(33):30208-30218.
[10] El-Andaloussi S, Johansson H, Magnusdottir A, et al. TP10, a delivery vector for decoy oligonucleotides targeting the Myc protein. J Control Release, 2005,110(1):189-201.
[11] Tunnemann G, Ter-Avetisyan G, Martin R M, et al. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci, 2008,14(4):469-476.
[12] Oehlke J, Scheller A, Wiesner B, et al. Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta, 1998,1414(1-2):127-139.
[13] Morris M C, Depollier J, Mery J, et al. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol, 2001,19(12):1173-1176.
[14] Pujals S, Giralt E. Proline-rich, amphipathic cell-penetrating peptides. Adv Drug Deliv Rev, 2008,60(4-5):473-484.
[15] Zahid M, Robbins P D. Identification and characterization of tissue-specific protein transduction domains using peptide phage display. Methods Mol Biol, 2011,683:277-289.
[16] Nicklin S A, White S J, Watkins S J, et al. Selective targeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. Circulation, 2000,102(2):231-237.
[17] Mi Z, Lu X, Mai J C, et al. Identification of a synovial fibroblast-specific protein transduction domain for delivery of apoptotic agents to hyperplastic synovium. Mol Ther, 2003,8(2):295-305.
[18] Chamarthy S P, Jia L, Kovacs J R, et al. Gene delivery to dendritic cells facilitated by a tumor necrosis factor alpha-competing peptide. Mol Immunol, 2004,41(8):741-749.
[19] Rehman K K, Bertera S, Bottino R, et al. Protection of islets by in situ peptide-mediated transduction of the Ikappa B kinase inhibitor nemo-binding domain peptide. J Biol Chem, 2003,278(11):9862-9868.
[20] Zahid M, Phillips B E, Albers S M, et al. Identification of a cardiac specific protein transduction domain by in vivo biopanning using a M13 phage peptide display library in mice. PLoS One, 2010,5(8):e12252.
[21] Avula U M, Kim G, Lee Y E, et al. Cell-specific nanoplatform-enabled photodynamic therapy for cardiac cells. Heart Rhythm, 2012,9(9):1504-1509.
[22] Chien W M, Liu Y, Chin M T. Genomic DNA recombination with cell-penetrating peptide-tagged cre protein in mouse skeletal and cardiac muscle. Genesis, 2014,52(7):695-701.
[23] Gump J M, June R K, Dowdy S F. Revised role of glycosaminoglycans in TAT protein transduction domain-mediated cellular transduction. J Biol Chem, 2010,285(2):1500-1507.
[24] Veach R A, Liu D, Yao S, et al. Receptor/transporter-independent targeting of functional peptides across the plasma membrane. J Biol Chem, 2004,279(12):11425-11431.
[25] Mayor S, Parton R G, Donaldson J G. Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol, 2014,6(6):1-20.
[26] Derossi D, Calvet S, Trembleau A, et al. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem,1996,271(30):18188-18193.
[27] Rusnati M, Coltrini D, Oreste P, et al. Interaction of HIV-1 Tat protein with heparin. Role of the backbone structure, sulfation, and size. J Biol Chem, 1997,272(17):11313-11320.
[28] Tyagi M, Rusnati M, Presta M, et al. Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem, 2001,276(5):3254-3261.
[29] Chen C J, Tsai K C, Kuo P H, et al. A heparan sulfate-binding cell penetrating peptide for tumor targeting and migration inhibition. Biomed Res Int, 2015,2015:237969.
[30] Ma D X, Shi N Q, Qi X R. Distinct transduction modes of arginine-rich cell-penetrating peptides for cargo delivery into tumor cells. Int J Pharm, 2011,419(1-2):200-208.
[31] Di Pisa M, Chassaing G, Swiecicki J M. Translocation mechanism(s) of cell-penetrating peptides: biophysical studies using artificial membrane bilayers. Biochemistry, 2015,54(2):194-207.
[32] Li Y, Rosal R V, Brandt-Rauf P W, et al. Correlation between hydrophobic properties and efficiency of carrier-mediated membrane transduction and apoptosis of a p53 C-terminal peptide. Biochem Biophys Res Commun,2002,298(3):439-449.
[33] Jiao CY, Delaroche D, Burlina F, et al. Translocation and endocytosis for cell-penetrating peptide internalization. J Biol Chem, 2009,284(49):33957-33965.
[34] Maniti O, Piao H R, Ayala-Sanmartin J. Basic cell penetrating peptides induce plasma membrane positive curvature, lipid domain separation and protein redistribution. Int J Biochem Cell Biol, 2014,50:73-81.
[35] Makarov S S. NF-kappa B in rheumatoid arthritis: a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res, 2001,3(4):200-206.
[36] Brown J D, Lin C Y, Duan Q, et al. NF-kappaB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell, 2014,56(2):219-231.
[37] Hunot S, Brugg B, Ricard D, et al. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of Patients with parkinson disease. Proc Natl Acad Sci U S A, 1997,94(14):7531-7536.
[38] Karin M, Greten F R. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005,5(10):749-759.
[39] May M J, D'Acquisto F, Madge L A, et al. Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science, 2000,289(5484):1550-1554.
[40] Dave S H, Tilstra J S, Matsuoka K, et al. Amelioration of chronic murine colitis by peptide-mediated transduction of the IkappaB kinase inhibitor NEMO binding domain peptide. J Immunol,2007,179(11):7852-7859.
[41] Good L, Awasthi S K, Dryselius R, et al. Bactericidal antisense effects of peptide-PNA conjugates. Nat Biotechnol, 2001,19(4):360-364.
[42] Deshayes S, Konate K, Aldrian G, et al. Structural polymorphism of non-covalent peptide-based delivery systems: highway to cellular uptake. Biochim Biophys Acta, 2010,1798(12):2304-2314.
[43] Tan X X, Actor J K, Chen Y. Peptide nucleic acid antisense oligomer as a therapeutic strategy against bacterial infection: proof of principle using mouse intraperitoneal infection. Antimicrob Agents Chemother, 2005,49(8):3203-3207.
[44] Tilley L D, Mellbye B L, Puckett S E, et al. Antisense peptide-phosphorodiamidate morpholino oligomer conjugate: dose-response in mice infected with Escherichia coli. J Antimicrob Chemother, 2007,59(1):66-73.
[45] Katterle Y, Brandt B H, Dowdy S F, et al. Antitumour effects of PLC-gamma1-(SH2)2-TAT fusion proteins on EGFR/c-erbB-2-positive breast cancer cells. Br J Cancer, 2004,90(1):230-235.
[46] Takenobu T, Tomizawa K, Matsushita M, et al. Development of p53 protein transduction therapy using membrane-permeable peptides and the application to oral cancer cells. Mol Cancer Ther, 2002,1(12):1043-1049.
[47] Michiue H, Tomizawa K, Wei F Y, et al. The NH2 terminus of influenza virus hemagglutinin-2 subunit peptides enhances the antitumor potency of polyarginine-mediated p53 protein transduction. J Biol Chem, 2005,280(9):8285-8289.
[48] Kashiwagi H, McDunn J E, Goedegebuure P S, et al. TAT-Bim induces extensive apoptosis in cancer cells. Ann Surg Oncol, 2007,14(5):1763-1771.
[49] Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 1998,279(5349):377-380.
[50] Schott J W, Galla M, Godinho T, et al. Viral and non-viral approaches for transient delivery of mRNA and proteins. Curr Gene Ther, 2011,11(5):382-398.
[51] Gratton J P, Yu J, Griffith J W, et al. Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nat Med,2003,9(3):357-362.
[52] Youn J I, Park S H, Jin H T, et al. Enhanced delivery efficiency of recombinant adenovirus into tumor and mesenchymal stem cells by a novel PTD. Cancer Gene Ther, 2008,15(11):703-712.
[53] Tiera M J, Shi Q, Winnik F M, et al. Polycation-based gene therapy: current knowledge and new perspectives. Curr Gene Ther, 2011,11(4):288-306.
[54] Kornegay J N, Peterson J M, Bogan D J, et al. NBD delivery improves the disease phenotype of the golden retriever model of Duchenne muscular dystrophy. Skelet Muscle, 2014,4:18.
[55] Elbashir S M, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001,411(6836):494-498.
[56] Nguyen Q T, Olson E S, Aguilera T A, et al. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci U S A, 2010,107(9):4317-4322.
[57] Ruan G, Agrawal A, Marcus A I, et al. Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc, 2007,129(47):14759-14766.
[58] Lei Y, Tang H, Yao L, et al. Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjug Chem, 2008,19(2):421-427.
[59] Santra S, Yang H, Dutta D, et al. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem Commun (Camb), 2004,24:2810-2811.
[60] Li H, Tsui T Y, Ma W. Intracellular delivery of molecular cargo using cell-penetrating peptides and the combination strategies. Int J Mol Sci,2015,16(8):19518-19536.
[61] Zhang Q, Tang J, Fu L, et al. A pH-responsive alpha-helical cell penetrating peptide-mediated liposomal delivery system. Biomaterials, 2013,34(32):7980-7993.
[62] Marty C, Meylan C, Schott H, et al. Enhanced heparan sulfate proteoglycan-mediated uptake of cell-penetrating peptide-modified liposomes. Cell Mol Life Sci, 2004,61(14):1785-1794.
[63] Walker L, Perkins E, Kratz F, et al. Cell penetrating peptides fused to a thermally targeted biopolymer drug carrier improve the delivery and antitumor efficacy of an acid-sensitive doxorubicin derivative. Int J Pharm, 2012,436(1-2):825-832.
[64] Mo R H, Zaro J L, Shen W C. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy. Mol Pharm, 2012,9(2):299-309.
[65] Sharma P, Kolawole A O, Wiltshire S M, et al. Accessibility of the coxsackievirus and adenovirus receptor and its importance in adenovirus gene transduction efficiency. J Gen Virol, 2012,93(Pt 1):155-158.
[66] Kida S, Eto Y, Maeda M, et al. Preparation of a Tat-related transporter peptide for carrying the adenovirus vector into cells. Protein Pept Lett, 2008,15(2):219-222.