中国生物工程杂志  2016, Vol. 36 Issue (6): 92-99

文章信息

张清芳, 刘如明, 肖建辉
ZHANG Qing-fang, LIU Ru-ming, XIAO Jian-hui
透明质酸在间充质干细胞向软骨细胞分化中的应用
Application of Hyaluronic Acid on the Cartilage Differentiation of Mesenchymal Stem Cells
中国生物工程杂志, 2016, 36(6): 92-99
China Biotechnology, 2016, 36(6): 92-99
http://dx.doi.org/10.13523/j.cb.20160613

文章历史

收稿日期: 2015-11-04
修回日期: 2016-01-19
透明质酸在间充质干细胞向软骨细胞分化中的应用
张清芳, 刘如明, 肖建辉     
遵义医学院附属医院 贵州省转化医学工程研究中心 遵义 563000
摘要: 随着组织工程学的发展,利用间充质干细胞(mesenchymal stem cells,MSCs)定向分化为软骨细胞,用于治疗骨性关节炎、关节创伤等因素造成的软骨缺损的研究方兴未艾。透明质酸(hyaluronic acid,HA) 是一种酸性多糖类生物大分子,亦是软骨基质的主要成分之一。由于其优良的生物相容性、可降解等特性,HA已成为优良的天然生物材料,其作为支架材料应用于软骨缺损修复已有一段历史。近年来又发现,HA除作为载体支架材料外,还可作为调节因子应用于MSCs向软骨细胞分化。以下将对近年来利用HA应用于MSCs向软骨细胞分化的研究进行总结,旨在为以MSCs为基础的组织工程化软骨的临床应用奠定基础。
关键词: 透明质酸     间充质干细胞     软骨分化     载体支架     调节因子    
Application of Hyaluronic Acid on the Cartilage Differentiation of Mesenchymal Stem Cells
ZHANG Qing-fang, LIU Ru-ming, XIAO Jian-hui     
Research Center of Translational Medicine, Guizhou Province, Affiliated Hospital of Zunyi Medical College, Zunyi 563000, China
Abstract: With the development of tissue engineering, the use of mesenchymal stems cells (MSCs) differentiation into chondrocytes, to treat the articular cartilage injury, induced by osteoarthritis or joint trauma, has been attracting more and more attention. Hyaluronic acid (HA), a acidic polysaccharide macromolecules, is one of the main components of cartilage matrix and possess some characteristics such as biocompatibility and biodegradability, and can be used as excellent natural biological material. It has been a long history of HA which is used as scaffold material on repair cartilage defect. In recent years, some studies found that HA not only could be used as scaffold material, but also a regulator factor, applied to differentiate into cartilage. The application of MSCs differentiating into cartilage cells combined with HA in recent years were outlined. It will provide new idea for the clinical application of tissue-engineered cartilage on the basis of the MSCs.
Key words: Hyaluronic acid     Mesenchymal stem cells     Cartilage differentiation     Scaffold     Regulatory factor    

创伤性关节炎、骨性关节炎等疾病常引起软骨缺损。因软骨本身没有血管、神经和淋巴,主要通过滑液和滑膜层血管渗透来获取营养,所以软骨缺损后修复极为困难[1]。近年来,关节软骨的修复与重建一直是骨科研究的难点和热点。目前,软骨缺损的修复主要包括自体软骨细胞移植、自体或异体软骨组织块移植、生物支架植入等[2]。这些方法对缺损软骨组织修复有一定作用,但存在供体来源有限、移植物与健康软骨难以弥合,易引起关节纤维化并发症,修复效果不佳等问题[3]。随着组织工程的飞速发展,采用组织工程技术进行软骨缺损修复已展现出令人鼓舞的应用前景。

组织工程(Tissue engineering)是指应用工程技术和生命科学的原理和方法,在可控(可重复)的条件下,通过哺乳动物(包括人)特定细胞的体外培养来形成具有特定功能的组织和生物替代物的一门新兴学科,主要包括三个要素:种子细胞、细胞载体支架以及包括生长因子在内的调节因子 [4, 5]。组织工程化软骨的基本原理是先将种子细胞在体外进行扩增,然后接种至载体支架材料上,形成细胞-生物复合体,再将该复合体回植到软骨缺损部位,利用种子细胞形成具有软骨功能的组织,从而完成对软骨缺损的修复。因此,良好的种子细胞是构建组织工程化软骨的关键之一。

间充质干细胞(mesenchymal stem cells,MSCs)是胚胎发育过程中的间叶组织(包括骨髓基质、脂肪、胎盘、骨骼肌和脐血等)留存下来的未分化的原始细胞,具有强大的自我更新能力和分化潜能,在适宜的体内外诱导环境下可分化为肌细胞、肝细胞、成骨细胞、软骨细胞等不同类型细胞。而且具有来源方便,易分离培养与扩增、免疫原性低等优点[6]。因此,MSCs是组织工程化软骨的理想种子细胞之一。不过,实现MSCs的临床应用,仍存在一些亟待解决的问题,如种子细胞的体外扩增策略、分化潜能维持、定向分化的条件和分化率的提升等。近年来,关于促进MSCs向软骨细胞分化的研究日渐增多。

透明质酸(hyaluronic acid,HA)又称玻尿酸或玻璃酸,是一种由D-葡萄糖醛酸、N-乙酰氨基-D-葡萄糖以β-1,3糖苷键和β-1,4糖苷键交替连接形成的直链高分子酸性粘多糖,分子量范围为5~20 000 kDa[7]。HA广泛分布于动物和人体组织及细胞外基质中(如皮肤、玻璃体和微生物胞外荚膜等)。由于其特殊的分子结构,HA具有高度粘弹性、可塑性、渗透性、独特的流变学特性以及良好的生物相容性,已成为一种用途广泛的生物医学材料或制剂,如化妆品中的保湿剂、眼科手术的润滑剂、组织工程的生物支架材料等[8]。此外,作为关节软骨和滑液的主要成分之一,HA具有缓冲应力、充当填充剂和扩散屏障、清除自由基等多种生理功能[9]。基于其优良的理化性质,HA作为支架材料在关节软骨损伤修复领域得到了广泛应用。近年来,随着干细胞研究的深入,发现HA还可作为调节因子应用到MSCs向软骨细胞分化的研究中,并取得显著成效,为以MSCs为基础的组织工程化软骨的临床应用增添了新思路。本文将就近几年有关HA作为载体支架或调节因子应用于MSCs向软骨细胞分化的研究进行综述。

1 HA作为支架材料在MSCs向软骨细胞分化中的应用

组织工程支架材料来源可分为天然和人工合成两大类。比起人工合成材料支架,天然材料支架具有生物相容性好、易降解、毒副作用小、降解产物易吸收等优势,在组织工程中备受青睐。HA是软骨基质的重要组成部分之一,具有良好的生物相容性和降解性,并且能够形成多孔的三维网状结构,为细胞黏附、增殖和分化提供适宜的空间环境,是优良的天然支架材料。透明质酸支架应用于MSCs向软骨细胞分化的研究较多,根据透明质酸的形态及作用方式主要分为水凝胶和预制成型的三维多孔支架。

1.1 HA材料支架的应用

Dvorakova等[10]将100、600和1500 kDa的HA分别与人骨髓间充质干细胞(human bone marrow mesenchymal stem cells,hBMSCs)共同培养1周、2周和3周后,糖胺聚糖(glycosaminoglycan,GAG)等细胞外基质有所增加,并激活了软骨形成基因的转录,但HA并没有调控MSCs向软骨细胞分化。Ha等[11]将1.5 ml含有0.5×107/ml的人脐带血间充质干细胞(human umbilical cord blood mesenchymal stem cells,hUCB-MSCs)和4% HA水凝胶一起植入小型猪膝关节滑车槽、具有5 mm宽,10 mm深的全层软骨缺陷的孔内,对照组以相同方式建立软骨缺损,不给予任何治疗。12周后,该水凝胶能够促进软骨组织再生。Troy 等[12]将猪BMSCs接种在HA组成的圆形多孔支架上,在低氧(3%)条件下培养14天,形成透明样软骨组织,与常氧(21%)对照组相比,软骨相关基因表达明显上调。然而,王昌耀等[13]用两种不同浓度(0.1 mg/ml和0.2 mg/ml)的外源性HA 作用于兔BMSCs,发现虽然两组HA都可使兔BMSCs向软骨细胞分化,但HA的诱导能力却弱于TGF-β3。近来,Cavallo 等[14]将HA支架材料Hyaff-11与hBMSCs联用,能使hBMSCs形成软骨细胞,且该材料已用于临床。由此看来,单独利用HA材料作为支架,不同研究组报道的结果不尽一致,可能是由于HA存在稳定性较差、降解吸收过快、力学强度不够等缺点,从而影响附着的MSCs向软骨细胞分化。因此,有必要对HA支架材料进行化学修饰改良。

1.2 修饰改良后HA材料支架的应用(表 1)
表 1 HA水凝胶或复合材料对MSCs向软骨分化的作用 Table 1 Effects of hydrogels or composite materials of HA on the cartilage differentiation of MSCs
种类及组成状态MSCs种类作用参考文献
HA-藻朊酸盐水凝胶hBMSCs促分化,Col2α1,Sox9等上调[15]
HA-胶原质-纤维蛋白纳米颗粒hBMSCs促分化,Col2α1,Sox9等上调[17]
HA-钙粘附蛋白多肽水凝胶hMSCs促分化,Col2α1,Sox9等上调[20]
HA衍生物-甲基丙烯酸酐等水凝胶hBMSCs促分化,Col2α1,Sox9等上调[22]
HA-酪氨酸水凝胶hBMSCs促分化,Col2α1,Sox9等上调[23]
HA-壳聚糖支架鼠BMSCs促分化[26]
HA-磷酸三钙-胶原支架hBMSCs促分化,Col2α1、Sox9等上调[27]
HA-链球菌胶原样蛋白2等水凝胶hMSCs促分化[28]
HA-磷酸钙-胶原支架hBMSCs促分化,Col2α1、Sox9等上调[29]
HA-胶原支架鼠BMSCs促分化,Col2α1、Sox9等上调[30, 35]
HA-I型胶原-纤维蛋白等纳米支架猪BMSCs促分化及软骨再生[31]
HA-硫酸软骨素-丝素蛋白支架兔BMSCs促分化,Col2α1上调[32]
HA -II型胶原支架hBMSCs形成软骨组织,Col2α1、Sox9上调[33]
HA-丝素蛋白/明胶等支架hBMSCs促分化,Col2α1、Sox9等上调[35]
HA-DNA膜复合物支架hBMSCs促软骨形成,Col2α1,Sox9等上调 [36]
HA-明胶-硫酸软骨素多孔支架鼠BMSCs促分化,Col2α1,Sox9等上调[37]
HA-聚乙醇酸支架兔BMSCs促分化,Col2α1,Sox9等上调[38]

目前,主要采用酯化、硫酸化,以及与酰肼、碳化二亚胺和蛋白质交联等方法修饰HA材料。Marloes 等[15]将HA分别与藻朊酸盐、纤维蛋白(fibrin)、N-异丙基丙烯酰胺形成水凝胶,并将其与hBMSCs共同培养28天,然后植入裸鼠皮下12周,考察三种水凝胶对hBMSC向软骨细胞分化的影响。结果提示,HA-藻朊酸盐水凝胶作用组番红-O阳性染色率明显高于另外两组,并且可检测到软骨相关基因的表达。因此,与另外两种水凝胶比较,HA-藻朊酸盐水凝胶具有更强的诱导hBMSCs向软骨细胞分化的能力。另外,也有报道称Fibrin-HA水凝胶加上低强度的超声波能够使兔BMSCs分化为软骨细胞[16]。Rampichová等[17]用含维生素C(Vitamin C)和地塞米松(Dexamthasone,dex)的DMEM培养基重悬hBMSCs,再注入到胶原质(collagen)、HA和Fibrin组成的纳米颗粒水凝胶上14天,hBMSCs可分化成软骨细胞。同样,Coates 等[18]用藻朊酸钙(alginic acid calcium)和HA形成相互交联的水凝胶应用于牛BMSCs,14天后,其向软骨细胞的分化程度高,且相关的软骨基因表达上调。也有证据表明,HA水凝胶可通过改变交联密度来影响hMSCs向肥大的软骨细胞分化[19]。Liming等[20]用钙粘附蛋白(epithelial cadherin,E-Cad)多肽来改变HA水凝胶的性能,检测该水凝胶对软骨形成和软骨基质沉淀的作用。结果提示,与HA水凝胶相比,E-Cad多肽修饰的HA水凝胶能够促进hMSCs形成早期软骨,且培养过程中产生了特定的软骨基质。另外,研究还发现通过光源作用使HA发生改性,即光交联水凝胶的形式,可为hMSCs提供合适的3D基质环境,并促使其分化为软骨[21]

1.3 HA复合材料支架的应用(表 1)

Timothy等[22]将hBMSCs接种在甲基丙烯酸酐(methacrylic anhydride),MA、HA和Fibrin组成的水凝胶(Fibrin-HA-MA)上,证实交联的Fibrin-HA-MA为BMSCs的分化提供了稳定的3D环境,形成了早期软骨。RT-qPCR证实,I型胶原mRNA表达减少,SOX9的mRNA表达增加。Jana等[23]将hBMSCs接种在过氧化物酶交联的HA酪氨酸水凝胶复合支架(hyaluronan-tyrosine,HA-TA)上,体外培养3周,分化为软骨细胞;将该支架植入大鼠皮下12周,得到与体外培养相似的结果。Bian 等[24]发现HA和海藻酸(alginate)组成微球型水凝胶能够更好地控制MSCs分化为软骨细胞。己二胺化的HA可提供更加优越的3D环境,且与HA作比较,其调控hBMSCs分化为软骨细胞的效果更好[25]。HA也可与壳聚糖、胶原等形成复合支架材料,联合MSCs应用于组织工程化软骨实验中。Schwartz 等[26]将鼠的BMSCs用软骨培养基重悬,分别接种在含不同浓度HA的壳聚糖(chitosan,HTCC)支架上,3周以后,与壳聚糖对照组相比,HA组的细胞基质有所增加,且基质GAG和II型胶原(Collagen type II)的含量与HA浓度呈剂量依赖关系。Meng等[27]将hBMSCs接种在没有外源生长因子的新型磷酸钙胶原透明质酸支架(Tricalcium Phosphate-collagen-hyaluronan,TCP-COL-HA)上3周,GAG分泌增加,II型胶原染色增强。Paresh 等[28] 将hBMSCs封装在链球菌胶原样蛋白2、HA和金属基质蛋白酶7(MMP7)敏感肽形成的生物降解水凝胶上4周,发现hBMSCs向软骨细胞分化的程度明显增加。Amos等[30]运用冷冻干燥技术制成三种不同孔径(94、130和300 μm)的胶原-HA支架(Collagen-Hyaluronic acid,CHyA),并将鼠BMSCs分别接种到这三种支架上,结果证实孔径为300μm的支架具有更强的促软骨细胞分化的能力。Eva等[31]将富含脂质体、碱性成纤维细胞生长因子和胰岛素的聚乙烯醇(polyvinyl alcohol,PVA)纳米纤维膜与HA、I型胶原以及纤维蛋白制成复合载体支架,并且证明该支架材料植入骨软骨缺损的小型猪体内12周后,可刺激猪体内的BMSCs到达缺损部位,促进软骨再生。Sun等[32]将兔BMSCs接种在基因修饰的硫酸软骨素-HA-丝素蛋白(Chondroitin sulfate- Hyaluronic acid-Silk fibroin,CHS)组成的混合支架上,体外培养2周,可形成纤维软骨层。同此,Yeh 等[33]制备了3D II型胶原透明质酸复合支架(Type II collagen-Hyaluronic acid,CII-HA)模拟天然软骨细胞外环境,将hBMSCs接种在该支架上8周,可形成软骨样组织。Amos等[34]分别用两种不同方法将胶原HA(Collagen-Hyaluronic acid,CHyA)支架与鼠BMSCs培养14天,可产生软骨样细胞基质。Nopporn等[35]将hBMSCs与丝素蛋白/明胶-硫酸软骨素-HA(Silk fibroin/Gelatin-Chondroitin sulfate-Hyaluronic acid,SF-GC-HA)3D支架培养21 天,与丝素蛋白(Silk fibroin,SF)对照组相比,硫酸化GAG分泌增加。最近,Guo等[36]通过层层自组装技术成功构建了HA-DNA的多层脂质膜复合物(Lipid membrane complex,LDC),该载体支架在酶催化下能缓释DNA,达到多层基因调控hBMSCs分化。与对照组相比,LDC与BMSCs联合培养后,碱性磷酸酶(alkaline phosphatase,ALP) 和茜素红S(Alizarin red S)染色减弱,阿利新蓝(Alcian blue)染色增强,且成骨基因表达下调,软骨基因表达上调。邓天政等[37]用明胶-硫酸软骨素-HA、明胶-陶瓷化多孔支架、软骨细胞分别和鼠BMSCs联合后,再植入不同裸鼠皮下,发现复合组织表面完整薄层纤维层下可见类似透明样软骨组织,HE染色各实验组,在软骨层和骨层,分别可见成软骨细胞、软骨细胞、骨细胞及相应的细胞外基质及类似正常结构的潮线。经过体外短时间的诱导使得细胞具有分化趋势后,再将其植入体内更有助于组织工程骨-软骨复合组织的形成。另外,Patrascu 等[38]用经过冷冻干燥的聚乙醇酸(polyglycolic acid,PGA)与HA形成复合材料,再和兔BMSCs一起植入兔关节软骨缺损模型内,能形成透明样软骨组织,且有典型的软骨标志基因表达。

1.4 HA支架材料及MSCs的临床应用

HA作为关节滑液和软骨基质的主要成分之一,多项临床研究表明将其直接注射入软骨损伤部位,即可发挥相应作用,降低相邻软骨间的摩擦,保护软骨创面并促进软骨缺损的修复[39, 40]。另外,HA复合材料的开发使得HA的性能得到明显改善,并使其在软骨缺损修复领域的应用得到进一步的推广。如基于HA开发的生物材料Hyaff-11已经商品化,其与自体软骨细胞联用被广泛应用于关节软骨修复[41]。MSCs强大的自我更新、增殖和多分化潜能,以及关节腔直接注射MSCs 具有操作简单,侵入性小等优点,使得MSCs也广泛应用于软骨缺损的临床治疗。Wakitani等[42]2002年首次报道将自体BMSCs经体外扩增培养后与胶原组织植入膝关节软骨缺损处,对照组仅有胶原而无MSCs,研究纳入平均63岁的患者24例,42周后可观察到原缺损部位出现软骨组织覆盖,并且患者关节镜及组织学评分比对照组都有所提升。此后,Wakitani等[43, 44]又报道使用该方法治疗2例髌骨全层软骨损伤患者及3例髌骨软骨缺损患者,患者临床症状均得到明显改善。该研究组还通过对1998年1月至2008年11月接受治疗的41例患者进行随访,对MSCs移植治疗关节炎的安全性进行了评估,证明自体MSCs移植治疗关节炎或软骨缺损是一种安全的疗法[45]。Centeno等[46]也报道了1例自体BMSCs经皮穿刺治疗关节炎的病例,6个月后随访,患者软骨、半月板体积明显增大,关节活动度增加。Kuroda等[47]通过将自体MSCs联合胶原支架用自体的骨瓣膜覆盖,修复运动员右膝内侧股骨髁的全层软骨缺损,也取得了良好的疗效。另外,也有少量报道将HA和MSCs联合用于治疗软骨缺损。如Steven等[48]发现向晚期骨关节炎关节腔内注射含HA、自体BMSCs等的骨髓浓缩物(bone marrow concentrate,BMC)可以促进关节软骨组织再生,并提高软骨修复质量。

2 HA作为调节因子在MSCs向软骨细胞分化中的应用(表 2)
表 2 HA作为调节因子对MSCs软骨分化的影响 Table 2 HA as the adjustment factor effect on the MSCs cartilage differentiation
调节因子及组成MSCs种类HA对MSCs软骨分化的作用参考文献
100、600、1500 kDa HAhBMSCs无明显影响;激活Col2α1、GAG等表达[10]
0.1mg/ml、0.2mg/ml HA兔BMSCs存在Col2α1表达,分化能力比TGF-β3弱[13]
马关节滑液、HA马BMSCs促分化,Col2α1,Sox9等上调[52]
MSCs、HA猪MSCs促分化,Col2α1,Sox9等上调[53]
胶质纤维酸性蛋白、HAhMSCs促分化,Col2α1,Sox9等上调[54]
TGF-β3、HAhBMSCs形成纤维软骨组织,Col2α1,ACAN等上调[55]
2.1 HA促MSCs向软骨细胞分化

调节因子是软骨组织工程不可或缺的组成部分,多种生长因子(growth factors,GFs)已广泛应用于促软骨形成,包括转化生长因子β(TGF-β)、纤维母细胞生长因子(FGF)、骨形态发生蛋白(BMP)和胰岛素样生长因子(IGF)等[49, 50]。近年来研究发现,HA除作为载体支架外,还可作为调节因子以利于MSCs向软骨细胞分化。Dvorakova等[10]将100、600 和1500 kDa的HA分别与hMSCs共同培养1周、2周和3周以后,增加了富含GAG等细胞外基质的积累,并分别激活了软骨形成基因的转录。王昌耀等[13]用两种不同浓度(0.1 mg/ml和0.2 mg/ml)的外源性HA 作用于兔BMSCs,两组HA都可使兔BMSCs向软骨细胞分化。不过,HA仅弱于TGF-β3的诱导分化能力。寇建强等[51]也报道了类似的结果。Hegewald 等[52]从18个月大的Haflinger马分离出BMSCs,用10 ng/ml TGF-β1、0.1 mg/ml HA以及5%、10%、50%的自体滑膜液分别作为软骨诱导因子,HA和关节滑液单独诱导比单独用TGF-β1有更高的II型胶原表达。孟繁钢等[29]将hBMSCs接种在复合磷酸三钙-胶原支架材料上,然后在含100 mg/L HA的培养基中进行3D培养2周后,阿尔新蓝染色、II型胶原染色均强于对照组。最近,Lee等[53]在猪关节内骨折的模型中注入HA重悬的hBMSCs,能有效修复股骨软骨缺损,根据体内标记hBMSCs的示踪,确认修复后的软骨组织为hBMSCs分化而来。类似的报道还提示,将GFs和人自体同源的外周血干细胞(Activated autologous peripheral blood stem cells,AAPBSC)一起加入人关节腔内为一个实验组;同时用微型钻机刺激关节镜下的MSCs,再加入胶质纤维酸性蛋白(Collagen fiber acidic protein,GFAP)和HA作为另一组,两组均成功地在早期的骨性膝关节炎的关节腔中使得软骨再生,且两组的效果没有显著性差异[54]。Sharon 等[55]用HA与hBMSCs制成1.2和14.1μm模拟软骨的HA微球与细胞所释放的TGF-β3一起作为生长因子在体外促进hBMSCs分化为软骨细胞。结果II型胶原和糖胺聚糖染色阳性表达,X型胶原表达较少;将载有HA、TGF-β3和hBMSCs的微球一起植入骨关节炎软骨缺损的模型内,形成纤维软骨组织且糖胺聚糖染色增加。

2.2 HA促MSCs向软骨细胞分化的分子机制

目前,HA促MSCs向软骨细胞定向分化的分子机制尚不明确,虽然MSCs定向分化为软骨细胞的分子机制(如Wnt[56]、Interleukin-6/STAT-3信号通路[57]等)较多,但 HA作为调节因子促MSCs向软骨细胞定向分化的分子机制仍未见报道。一方面可能是HA单独使用于MSCs向软骨细胞分化的实验中,其诱导能力弱于TGF-β3[13],另一方面存在不同分子量或不同浓度的HA促MSCs的分化能力存在差异;与其他调节因子联合使用,其促MSCs向软骨细胞定向分化的效果仍未可知,尚待进一步研究。

3 展 望

综上所述,软骨缺损修复仍是骨科领域亟待解决的难题之一,组织工程与再生医学的发展为攻克这一顽疾带来了希望。MSCs因其具有强大的自我更新、增殖和多分化潜能,已成为组织工程化软骨优良的种子细胞。另外,大量动物实验及临床研究表明,HA作为软骨基质的主要成分之一,不仅可以作为支架材料为MSCs提供稳定的、适宜细胞生长分化的微环境,还可作为调节因子应用于MSCs向软骨细胞分化,其与MSCs联用在软骨缺损修复领域已显示出巨大的应用前景。但组织工程化软骨涉及生命、仿生、材料和工程等多学科领域,系统复杂,目前多处于试验探索阶段,构建的软骨组织尚不够成熟,临床应用还相对较少。因此,为推动组织工程化软骨的临床应用,未来研究可集中于以下几个方面:(1)新型复合HA载体支架材料的开发:通过化学修饰、复合改性等方法使其具备更佳的理化性质,实现智能化;(2)MSCs应用于软骨缺损的基础研究:如向软骨细胞定向分化的分化机制和调控策略及信号传导通路,及其对关节炎的免疫抑制、抗炎及细胞微环境方面的研究等;(3)具体临床应用过程中的问题:如MSCs培养的标准化、植入细胞的存活以及细胞固有的分化特性、适应症的选择及治疗策略优化等;(4)HA既可作为支架材料,也可作为调节因子参与软骨分化,与MSCs联用后,如何阐明种子细胞、载体支架和生长因子相互间的协同和耦合作用也是需要关注的问题。

参考文献
[1] 张美,吕国枫. 骨髓间充质干细胞向软骨的诱导分化. 中国组织工程杂志, 2010,14(45):8483-8486. Zhang M, Lv G F. Bone marrow mesenchymal stem cells to differentiate into cartilage. Journal of Chinese Tissue Engineering,2010,14(45):8483-8486.
[2] Boopalan P R, Sathishkumar S, Kumar S, et al. Rabbit articular cartilage defects treated by allogenic chondrocyte transplantation. International Orthopaedics, 2006,30(5):357-361.
[3] Saadeh P B, Brent B, Mehrara B J, et al. Human cartilage engineering: chondrocyte extraction, proliferation, and characterization for construct development. Annals of Plastic Surgery,1999,42(5):509-513.
[4] Langer R, Vacanti J P. Tissue engineering. Science,1993,260(5 110):920-926.
[5] Bell E. Tissue engineering: a perspective. Cell Biochemistry,1991,45(3):239-241.
[6] 顾蔚,顾健. 脐带间充质干细胞的归巢机制. 中国组织工程研究,2013,17(6):1135-1140. Gu W, Gu J. Homing mechanism of umbilical cord mesenchymal stem cells. Chinese Journal of Tissue Engineering Research,2013,17(6):1135-1140.
[7] 李棋,唐新,裴福兴,等. 透明质酸在骨关节疾病中的应用. 中国组织工程研究与临床康复,2010,14(47):8835-8839. Li Q, Tang X, Pei F X, et al. Hyaluronic acid used in bone and joint diseases. Clinical Rehabilitative Tissue Engineering Research,2010,14 (47):8835-8839.
[8] Kristen R T, Janet M T, Jennifer A R, et al. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. Biological Chemistry,2004,279(17):17079-17084.
[9] 于洋,李鸿斌. 透明质酸诱导骨髓间充质干细胞治疗骨性关节炎软骨分化研究进展. 内蒙古医学杂志,2013,45(4):438-441. Yu Y, Li H B. Hyaluronic acid induced bone marrow mesenchymal stem cells to treat osteoarthritis cartilage differentiation between research progress. Journal of Inner Mongolia Medicine,2013,45(4):438-441.
[10] Dvorakova J, Velebny V, Kubala L. Hyaluronan influence on the onset of chondrogenic differentiation of mesenchymal stem cells. Neuroendocrinology Letters,2008,29(5):685-690.
[11] Ha C, Park Y, Jun C, et al. Cartilage repair using composites of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel in a minipig model. Stem Cells Translational Medicine, 2015,4:1044-1051.
[12] Troy D B, Nadr M J, Aillette M S, et al. Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds. Stem Cell Research & Therapy, 2015, 6:84.
[13] 王昌耀,于丽,王英振,等. 不同浓度透明质酸对骨髓来源间充质干细胞成软骨分化的影响. 中华临床医师杂志,2011,5(21):6213-6220. Wang C Y, Yu L, Wang Y Z, et al. Influence of different concentrations of hyaluronic acid into the cartilage differentiation of bone marrow-derived mesenchymal stem cells. Chinese Journal of Clinicians,2011, 5(21):6213-6220.
[14] Cavallo C, Desando G, Columbaro M, et al. Chondrogenic differentiation of bone marrow concentrate grown onto a hylauronan scaffold: rationale for its use in the treatment of cartilage lesions. Journal of Biomedical Materials Research part A,2013,101(6):1559-1570.
[15] Marloes L, de Vries-van Melle M L, Tihaya M S, et al. Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in a simulated osteochondral environment is hydrogel dependent. European Cells & Materials,2014,27:112-123.
[16] Choi J W, Choi B H, Park S H, et al. Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel. Artificial Organs,2013, 37(7):648-655.
[17] Rampichová M, Buzgo M, Křížková B, et al. Injectable hydrogel functionalised with thrombocyte-rich solution and microparticles for accelerated cartilage regeneration. Acta Chirurgiae Orthopaedicae et Traumatologiae Cechoslovaca,2013,80 (1):82-88.
[18] Coates E E, Riggin C N, Fisher J P. Photocrosslinked alginate with hyaluronic acid hydrogels as vehicles for mesenchymal stem cell encapsulation and chondrogenesis. Journal of Biomedical Materials Research part A, 2013,101(7):1962-1970.
[19] Liming B, Zhai D Y, Zhang E C, et al. Dynamic compressive loading enhances cartilage matrix synthesis and distribution and suppresses hypertrophy in hMSC-laden hyaluronic acid hydrogels. Tissue Engineering Part A, 2012,18(7-8):715-724.
[20] Liming B, Chieh H, Elena T, et al. The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy. Biomaterials,2013,34(2): 413-421.
[21] Bian L, Guvendiren M, Mauck R L, et al. Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proceedings of the National Academy of Sciences of the Nnited States of America,2013,110(25):10117-10122.
[22] Timothy N S, Krishna M, Miranda I, et al. A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair. Journal of Biological Engineering,2014,8:10.
[23] Jana D, Lukáš K, Karol Š, et al. Chondrogenic differentiation of mesenchymal stem cells in a hydrogel system based on an enzymatically crosslinked tyramine derivative of hyaluronan. Journal of Biomedical Materials Research Part A,2014,102A:3523-3530.
[24] Bian L, Zhai D Y, Tous E, et al. Enhanced MSC chondrogenesis following delivery of TGF-beta3 from alginate microspheres within hyaluronic acid hydrogel in vitro and in vivo. Biomaterials,2011,32(27): 6425-6434.
[25] Jung H, Park J S, Yeom J, et al. 3D tissue engineered supramolecular hydrogels for controlled chondrogenesis of human mesenchymal stem cells. Biomacromolecules,2014,15(3):707-714.
[26] Schwartz Z, Griffon D J, Fredericks L P,et al. Hyaluronic acid and chondrogenesis of murine bone marrow mesenchymal stem cells in chitosan sponges. American Journal of Veterinary Research,2011,72(1):42-50.
[27] Meng F, He A, Zhang Z, et al. Chondrogenic differentiation of ATDC5 and hMSCs could be induced by a novel scaffold-tricalcium phosphate-collagen-hyaluronan without any exogenous growth factors in vitro. Journal of Biomedical Materials Research Part A, 2014, 102A: 2725-2735.
[28] Paresh A P, Lesley W C, Jean-Philippe St-Pierre, et al. Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials, 2015, 54: 213-225.
[29] 孟繁钢,何爱珊,张志奇,等. 透明质酸促进人间充质干细胞复合磷酸三钙-胶原材料体外成软骨研究.中华实用外科杂志, 2014,31(11): 2515-2518. Meng F G, He A S, Zhang Z Q, et al. Hyaluronic acid to promote human mesenchymal stem cells tricalcium phosphate -collagen composite materials research into cartilage in vitro. Chinese Journal of Practical Surgery, 2014, 31(11): 2515-2518.
[30] Amos M, John P G, Fergal J O. Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Engineering Part A, 2015, 21, (3-4):486-497.
[31] Eva Filová, Michala Rampichová, Andrej Litvinec et al. A cell-free nanofiber composite scaffold regenerated osteochondral defects in miniature pigs. International Journal of Pharmaceutics,2013, 447:139-149.
[32] Sun L, Li H, Qu L, et al. Immobilized lentivirus vector on chondroitin sulfate-hyaluronate acid-silk fibroin hybrid scaffold for tissue-engineered ligament-bone junction. Biomed Research International,2014,1-10.
[33] Yeh H Y, Lin T Y, Lin C H, et al. Neocartilage formation from mesenchymal stem cells grown in typeII collagen-hyaluronan composite scaffolds. Differentiation, 2013,86:171-183.
[34] Amos M, Tanya J L, John P G, et al. Incorporation of TGF-Beta 3 within collagen-hyaluronic acid scaffolds improves their chondrogenic potential. Advanced Healthcare Materials, 2015, 4:1175-1179.
[35] Nopporn S, Teerasak D, Wilairat L, et al. Silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells. Materials Science and Engineering C, 2015,52:90-96.
[36] Guo P, Shi Z L, Liu A, et al. Cartilage oligomeric matrix protein gene multilayers inhibit osteogenic differentiation and promote chondrogenic differentiation of mesenchymal stem cells. International Journal of Molecular Sciences,2014,15:20117-20133.
[37] 邓天政,吕晶,杨捷绯,等. 组织工程骨-软骨复合组织体内异位移植的研究. 中国美容医学,2013,22(1):51-54. Deng T Z, Lv J, Yang J F, et al. Tissue engineering bone and cartilage composite organization research of heterotopic transplantation in vivo. Chinese Journal of Aesthetic Medicine,2013,22(1):51-54.
[38] Patrascu J M, Krüger J P, Böss H G, et al. Polyglycolic acid-hyaluronan scaffolds loaded with bone marrow-derived mesenchymal stem cells show chondrogenic differentiation in vitro and cartilage repair in the rabbit model. Journal of Biomedical Materials Research part B-Applied Biomaterials,2013,101(7):1310-1320.
[39] 伏治国,瞿玉兴. 关节镜下微骨折技术联合关节内注射玻璃酸钠修复膝关节软骨缺损. 东南大学学报(医学版), 2012, 31(2): 196-198. Fu Z G,Qu Y X. Microfracture technique in combination with intraarticular hyaluronic acid sodium injection for the treatment of knee chondral defect under arthroscopy. Journal Southeast University (Medical Science Edition) 2012, 31(2): 196-198.
[40] 章有才,付昌马,钱春生,等. 微骨折术联合玻璃酸钠注射治疗膝骨关节炎软骨缺损. 实用骨科杂志, 2014, 20 (1): 22-25. Zhang Y C,Fu C M,Qian C S,et al. Arthroscopic microfracture technique combined with sodium hyaluronate injection in the treatment of cartilage defects in knee osteoarthritis. Journal of Practical Orthopaedics, 2014, 20 (1): 22-25.
[41] Mats Brittberg. Knee cartilage repair with hyalograft® (Hyaff-11 scaffold with seeded autologous chondrocytes). Techniques in Cartilage Repair Surgery, Berlin:SpringerVerlag,2014.227-235.
[42] Wakitani S, Yamamoto T. Response of the donor and recipient cells in mesenehymal cell transplantation to cartilage defect. Microscopy Research and Technique, 2002, 58(1): 14-18.
[43] Wakitani S, Mitsuoka T, Nakamura N, et al. Autologous bone marrow stromal cell transplantation for repair of full thickness articular cartilage defects in human patellae: two case reports. Cell Transplant, 2004, 13(5): 595-600.
[44] Wakitanis S, Nawata M, Tensho K, et al. Repair of articular cartilage defects in the patello femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1(1): 74-79.
[45] Wakitani S, Okabe T, Horibe S, et al. Safety of autologous bone marrow derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5(2): 146-150.
[46] Centeno C J, Busse D, Kisiday J, et al. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician, 2008, 11(3): 343-353.
[47] Kuroda R, Ishida K, Matsumoto T, et al. Treatment of a full thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage, 2007, 2: 226-231.
[48] Steven S, Angie B B, Danielle A. Autologous bone marrow concentrate: review and application of a novel intra-articular orthobiologic for cartilage disease. The Physician and Sportsmedicine, 2013,41(3):7-18.
[49] Bobick B E, Chen F H, Le A M, et al. Regulation of the chondrogenic phenotype in culture. Birth Defects Research Part C -Embryo Today: Reviews,2009,87(4):351-371.
[50] Cindy C, Jason A Burdick. Engineering cartilage tissue. Advanced Drug Delivery Reviews,2008,(60): 243-262.
[51] 寇建强,王昌耀,王英振. 外源性透明质酸对兔骨髓间充质干细胞定向分化为软骨细胞的影响. 中国组织工程研究与临床康复,2011,15(3):381-385. Kou J Q, Wang C Y, Wang Y Z. Exogenous hyaluronic acid on rabbit bone marrow mesenchymal stem cells to differentiate into chondrocytes influence. Journal of Clinical Rehabilitative Tissue Engineering Research,2011,15(3):381-385.
[52] Hegewald A A, Ringe J, Bartel J, et al. Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells:a preliminary study. Tissue Cell,2004,36:431-438.
[53] Lee K B, Hui J H, Song I C, et al. Injectable mesenchymal stem cell theapy for large cartilage defects——a porcine model. Stem Cells,2007,25:2964-2971.
[54] Turajane T, Chaweewannakorn U, Larbpaiboonpong V, et al. Combination of intra-articular autologous activated peripheral blood stem cells with growth factor addition/preservation and hyaluronic acid in conjunction with arthroscopic microdrilling mesenchymal cell stimulation Improves quality of life and regenerates articular cartilage in early osteoarthritic knee disease. Journal of the Medical Association of Thailand,2013,96(5):580-588.
[55] Sharon A, Jessica S H, Valerie B, et al. A chondromimetic microsphere for in situ spatially controlled chondrogenic differentiation of human mesenchymal stem cells. Journal of Controlled Release 2014, 179:42-51.
[56] Qu F, Wang J L, Xu N R, et al. Wnt3a modulates chondrogenesis via canonical and non-canonical Wnt pathways in MSCs. Frontiers in Bioscience-Landmark,2013,(18):493-503.
[57] Kondo M, Yamaoka K, Sakata K, et al. Contribution of the interleukin-6/STAT-3 signaling pathway to chondrogenic differentiation of human mesenchymal stem cells. Arthritis Rheumatol,2015,67(5):1250-1260.