中国生物工程杂志  2016, Vol. 36 Issue (6): 24-31

文章信息

秦海霞, 崔红凯, 潘莹, 户瑞丽, 朱利红, 王世进
QIN Hai-xia, CUI Hong-kai, PAN Ying, HU Rui-li, ZHU Li-hong, WANG Shi-jin
miR-335靶向Rho相关卷曲螺旋形成蛋白激酶1对卵巢癌细胞增殖的影响
miR-335 Regulate Cell Proliferation by Targeting Rho Associated Coiled-coil Forming Protein Kinase 1 in Ovarian Cancer Cells SKOV3
中国生物工程杂志, 2016, 36(6): 24-31
China Biotechnology, 2016, 36(6): 24-31
http://dx.doi.org/10.13523/j.cb.20160604

文章历史

收稿日期: 2015-12-14
修回日期: 2016-01-04
miR-335靶向Rho相关卷曲螺旋形成蛋白激酶1对卵巢癌细胞增殖的影响
秦海霞1, 崔红凯2, 潘莹3, 户瑞丽1, 朱利红1, 王世进1     
1. 新乡医学院第一附属医院妇产科 卫辉 453100;
2. 新乡医学院第一附属医院介入科 卫辉 453100;
3. 新乡医学院第三附属医院 新乡 453000
摘要: 目的: 探讨miR-335 靶向Rho相关卷曲螺旋形成蛋白激酶1(rho associated coiled-coil forming protein kinase 1,ROCK1)对卵巢癌细胞系SKOV3增殖的调控作用。方法:(1)选取卵巢癌细胞系SKOV3及人正常卵巢上皮细胞系IOSE80,采用RT-PCR检测各组细胞中miR-335表达;采用Western blot检测各组细胞中ROCK1蛋白表达;(2)选取卵巢癌细胞系SKOV3,分别转染miR-335 mimic及mimic control,采用RT-PCR检测细胞中miR-335表达;(3)选取卵巢癌细胞系SKOV3,将SKOV3荧光素酶报告载体与miR-335 mimic共转染,采用荧光素酶活性实验验证miR-335对SKOV3的靶向作用;(4)选取卵巢癌细胞系SKOV3,分为3组,即SKOV3组(转染mimic control)、miR-335 mimic组(转染miR-335 mimic)及miR-335 mimic+ROCK1组(共转染miR-335 mimic+ROCK1),采用MTT法检测各组细胞增殖活性,采用Western blot检测各组细胞中ROCK1蛋白表达,采用RT-PCR检测细胞中Cyclin D1表达。结果: (1)RT-PCR结果显示,卵巢癌细胞SKOV3中miR-335表达显著低于人正常卵巢上皮细胞IOSE80(P < 0.05);Western blot结果显示,卵巢癌细胞SKOV3中ROCK1蛋白表达显著高于人正常卵巢上皮细胞IOSE80(P < 0.05);(2)RT-PCR结果显示,转染miR-335 mimic可使卵巢癌细胞SKOV3中miR-335表达上调,与转染mimic control相比较差异具有统计学意义(P < 0.05);(3)双荧光素酶活性检测结果显示,miR-335 mimic可显著抑制野生型ROCK1-Wt报告载体的荧光素酶活性,但对突变型ROCK1-Mut报告载体的荧光素酶活性并无显著抑制作用;(4)转染miR-335mimic后,卵巢癌细胞SKOV3增殖活性及Cyclin D1表达较阴性对照组显著降低(P < 0.05);而转染miR-335 mimic+ROCK1后,卵巢癌细胞SKOV3增殖活性及Cyclin D1表达较单纯转染miR-335 mimic组显著提高(P < 0.05),但仍显著低于阴性对照组(P < 0.05)。Western blot检测结果显示,转染miR-335mimic后,卵巢癌细胞SKOV3中ROCK1蛋白表达较阴性对照组显著降低(P < 0.05);而转染miR-335 mimic+ROCK1后,ROCK1蛋白表达较单纯转染miR-335mimic组显著增高(P < 0.05),且显著高于阴性对照组(P < 0.05)。结论: miR-335可通过靶向ROCK1抑制卵巢癌细胞系SKOV3增殖。
关键词: miR-335     ROCK1     卵巢癌     靶向     细胞增殖    
miR-335 Regulate Cell Proliferation by Targeting Rho Associated Coiled-coil Forming Protein Kinase 1 in Ovarian Cancer Cells SKOV3
QIN Hai-xia1, CUI Hong-kai2, PAN Ying3, HU Rui-li1, ZHU Li-hong1, WANG Shi-jin1     
1. Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China;
2. Department of Interventional Radiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China;
3. Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
Abstract: Objective: To evaluate the effect of miR-335 target regulating rho associated coiled-coil forming protein kinase 1(ROCK1)on the cell proliferation of ovarian cancer cells SKOV3. Methods: (1)Chose ovarian cancer cells SKOV3 and human normal ovarian epithelial cells IOSE80 as research object. The miR-335 expression was detected by RT-PCR. The ROCK1 protein expression was detected by Western blot.(2)Chose ovarian cancer cells SKOV3 as research object, transfected miR-335 mimic and mimic control respectively. The miR-335 expression was detected by RT-PCR. (3)Chose ovarian cancer cells SKOV3 as research object, the SKOV3 luciferase report carrier and miR-335 mimic were co-transfection to SKOV3, and the targeting effect of miR-335 to SKOV3 was verified by luciferase activity experiment. (4)Chose ovarian cancer cells SKOV3 as research object, which is divided into three groups: SKOV3 group(transfection mimic control), miR-335 mimic group(transfection miR-335 mimic)and miR-335 mimic+ROCK1 group(co-transfection miR-335 mimic+ROCK1). The cell proliferation activity of each group were detected by MTT method. The ROCK1 protein expression was detected by Western blot. The Cyclin D1 expression was detected by RT-PCR. Results: (1)RT-PCR result showed that, the miR-335 expression of ovarian cancer cells SKOV3 significantly lower than human normal ovarian epithelial cells IOSE80(P < 0.05). Western blot result showed that, the ROCK1 protein expression of ovarian cancer cells SKOV3 significantly higher than human normal ovarian epithelial cells IOSE80(P < 0.05). (2)RT-PCR result showed that, transfection miR-335 mimic made miR-335 expression of ovarian cancer cells SKOV3 significantly increased, and significantly higher than transfection mimic control(P < 0.05).(3)Luciferase activity experiment result showed that, transfection miR-335 mimic made the luciferase activity of ROCK1-Wt significantly decreased, but not inhibited the luciferase activity of ROCK1-Mut.(4)After transfection miR-335 mimic, the proliferative activity of ovarian cancer cells SKOV3 and the expression of Cyclin D1 significantly lower than negative control(P < 0.05). After transfection miR-335 mimic+ROCK1, the proliferative activity of ovarian cancer cells SKOV3 and the expression of Cyclin D1 significantly higher than only transfection miR-335 mimic(P < 0.05), but still significantly lower than negative control(P < 0.05). Western blot result showed that, after transfection miR-335 mimic, the ROCK1 protein expression of ovarian cancer cells SKOV3 significantly lower than negative control(P < 0.05). After transfection miR-335 mimic+ROCK1, the ROCK1 protein expression of ovarian cancer cells SKOV3 significantly higher than only transfection miR-335 mimic(P < 0.05), and still significantly higher than negative control(P < 0.05). Conclusion: miR-335 can target ROCK1 to inhibit the proliferation activity of ovarian cancer cells SKOV3.
Key words: miR-335     ROCK1     Ovarian cancer     Target     Cell proliferation    

卵巢癌是继子宫内膜癌及宫颈癌后第三大常见妇科恶性肿瘤,其死亡率更是居妇科恶性肿瘤之首[1]。由于缺乏早期典型症状及可靠的早期诊断技术,故早期卵巢癌往往易被忽视,当出现临床症状并确诊时,大多已属晚期,从而错失实施根治性手术的最佳时间。当前,卵巢癌的临床治疗存在“两个70%”,即70%以上的患者临床确诊时已属晚期,70%以上的患者在治疗后两年内复发[2, 3]。化疗是卵巢癌临床治疗的常用辅助手段,随着近年来化疗技术的不断进步,其临床治疗效果大大提高,但患者5年生存率仍低于30%[4, 5]。因此,寻求更安全、高效的卵巢癌治疗方法是临床关注的热点及难点问题。

微小RNA(microRNA,miRNA)属于内源性非编码小分子RNA,它可通过5′-种子区与调控一个或多个靶基因mRNA 的3′-非翻译区(untranslated region,UTR)碱基互补配对,从而调控靶基因表达,进而起到类似抑癌或促癌基因的作用,并参与恶性肿瘤的发生与发展[6]。miR-335是近年来研究得较多的一种miRNA,其定位于人类7q32.2[7]。有研究证实,上皮性卵巢癌(epithelial ovarian cancer,EOC)组织中miR-335呈现低表达态势,并与临床预后密切相关,提示miR-335可能参与卵巢癌的发生与发展[8]。但miR-335对其下游靶基因的调控作用及机制尚未明确。

Rho相关卷曲螺旋形成蛋白激酶1(rho associated coiled-coil forming protein kinase 1,ROCK1)是Rho家族的主要效应分子,其表达水平与肿瘤分化程度、淋巴转移及远期生存率密切相关[9]。更有学者认为,Rho/ROCK信号途径直接参与恶性肿瘤细胞局部浸润及淋巴结转移过程[10]。ROCK1表达与人卵巢癌细胞SW626、Caov-3体外侵袭和迁移能力的相关性已得到证实,而采用反义寡核苷酸(antisense oligodeoxynucleotides,ASODN)特异性阻断ROCK1则可起到抑制人卵巢癌细胞体外侵袭和迁移的作用[11]

miR-335靶向ROCK1对细胞增殖的调控作用已在骨肉瘤中得到证实,但其在卵巢癌中的研究尚未见报道[12]。本研究拟选取卵巢癌细胞系SKOV3为研究对象,观察miR-335靶向ROCK1对卵巢癌细胞系SKOV3增殖的调控作用及分子机制,旨在为卵巢癌的靶向治疗提供理论依据。

1 材料与方法 1.1 材料

卵巢癌细胞系SKOV3及人正常卵巢上皮细胞系IOSE80(购于美国ATCC细胞库);RNA提取试剂盒、PCR试剂盒、质粒提取试剂盒、LipofectamineTM2000转染试剂盒、反转录试剂盒(购于Invitrogen公司);DMEM培养基、PBS缓冲液、胰蛋白酶(购于Hyclone公司);胎牛血清(购于Gibco公司);MTT(购于Sigma公司);ROCK1兔源单克隆抗体(购于大连Santa Cruz公司);miR-335 mimic、mimic control(由广州锐博生物有限公司构建);ROCK1表达质粒(购于Origene公司);miR-335、U6引物(由上海生工生物工程有限公司合成);ECL化学发光试剂盒、BCA蛋白浓度测定试剂盒(购于碧云天生物试剂有限公司)。

1.2 方法 1.2.1 细胞培养

分别常规复苏卵巢癌细胞系SKOV3及人正常卵巢上皮细胞系IOSE80,PBS洗涤细胞3次,无血清DMEM培养基洗涤细胞3次,用含有10%胎牛血清和1%双抗的DMEM培养液将细胞混匀,并置于37℃、5% CO2培养箱中培养,每天换液1次,收集对数生长期细胞,提取细胞总RNA及总蛋白待用。

1.2.2 细胞转染

收集对数生长期的卵巢癌细胞系SKOV3,用含有10%胎牛血清和1%双抗的DMEM培养液将细胞密度调节至2×105 cells/well,后接种于6孔板中,共9孔,分为3组,即SKOV3组、miR-335 mimic 组及miR-335 mimic+Sp1组,每孔设3个复孔;将细胞置于37℃、5% CO2培养箱中培养24h;根据上述分组不同,利用LipofectamineTM2000转染miR-335mimic(50nmol/L)、相应的mimic control(50nmol/L)及ROCK1表达质粒(50nmol/L),其中SKOV3组转染mimic control、miR-335 mimic组转染miR-335 mimic、miR-335 mimic+ROCK1组共转染miR-335 mimic+ROCK1,操作严格按照转染试剂盒说明书进行;转染后将细胞置于37℃、5% CO2培养箱中继续培养48h;收集细胞总RNA及总蛋白以备后续实验。

1.2.3 双荧光素酶报告基因法检测miR-335与ROCK1的靶向作用

收集对数生长期的卵巢癌细胞系SKOV3,用含有10%胎牛血清和1%双抗的DMEM培养液将细胞密度调节至2×105 cells/well,后接种于24孔板中,将荧光素酶报告载体(0.1μg/孔)与miR-335 mimic(20nmol/L)共转染SKOV3细胞;将细胞置于37℃、5% CO2培养箱中继续培养48h;采用双荧光素酶活性检测试剂盒检测细胞荧光素酶活性,相对荧光素酶活性=萤火虫荧光素酶/海肾荧光素酶。

1.2.4 MTT法检测细胞增殖

收集对数生长期的细胞,按方法2.2分为三组,即SKOV3组、miR-335 mimic 组及miR-335 mimic+ROCK1组,每孔设3个复孔。分组转染后,调整细胞浓度为2×105 cells/well,并接种于96孔板中,置于37℃、5% CO2培养箱培养,分别培养24h、48h、72h,后加入MTT(5mg/ml)20μl/孔,37℃、5% CO2培养箱4h,800r/min离心10min,弃上清;利用MTT法检测HSC增殖活性,即培养结束后,每孔加入MTT溶液(5mg/ml)20μl,继续置于37℃、5% CO2培养箱4h进行显色实验,后吸弃孔内培养上清液,每孔加入100μl DMSO终止显色,振荡10min,使结晶物充分溶解,采用全自动酶标仪检测OD490nm吸光值。

1.2.5 Real-time PCR检测细胞中miR-335及Cyclin D1表达

采集对数生长期的卵巢癌细胞SKOV3、人正常卵巢上皮细胞IOSE80及分组转染的各组细胞,参照Trizol试剂盒说明书提取细胞总RNA,利用反转录试剂盒逆转录总RNA至cDNA,取逆转录产物加入SYBR Green法行RT-PCR。miR-335以U6为内参,Cyclin D1以β-actin为内参,引物序列见表 1

表 1 引物序列 Table 1 Primer sequence
Primer Sequence (5′~3′)
miR-335 Forward: GTCGTATCCAGTGCAGGGTCCG Reverse: GTGCAGGGTCCGAGGT
U6 Forward: CTCGCTTCGGCAGCACA Reverse: AACGCTTCACGAATTTGCGT
Cyclin D1 Forward:TGTTCGTGGCCTCTAAGATG Reverse: ACTCCAGAAGGGCTTCAA
β-actin Forward:AGCTGAGAGGGAAATCGTGCG Reverse:GTGCCACCAGACAGCACTGTG
1.2.6 Western blot法检测细胞中ROCK1蛋白表达

收集对数生长期的卵巢癌细胞SKOV3、人正常卵巢上皮细胞IOSE80及分组转染的各组细胞,加入细胞裂解液,沸水浴5min,室温冷却,BCA蛋白定量试剂盒检测样品蛋白浓度,取200μl样品行SDS-PAGE凝胶电泳,转至硝酸纤维膜,5%封闭液4℃封闭4h,TBS缓冲液漂洗3次,加入一抗(ROCK1、β-actin)(1:2 000),4℃孵育过夜,TBS缓冲液漂洗3次,加入相应二抗(1:500),室温孵育2h,按ECL试剂盒说明书行电化学发光检测,增强化学发光显色系统显色。

1.3 统计学方法

采用SPSS18.0统计软件,计量资料用均值±标准差(Mean±SD)表示,多组间比较用单因素方差检验,两两间比较用独立样本t检验,P<0.05为差异具有统计学意义。

2 结果 2.1 SKOV3及IOSE80中miR-335、ROCK1表达

RT-PCR结果显示,与人正常卵巢上皮细胞IOSE80比较,卵巢癌细胞SKOV3中miR-335表达显著降低,组间差异具有统计学意义(P<0.05)(图 1);Western blot结果显示,与人正常卵巢上皮细胞IOSE80比较,卵巢癌细胞SKOV3中ROCK1蛋白表达显著增高,组间差异具有统计学意义(P<0.05)(图 2)。

图 1 SKOV3及IOSE80中miR-335表达 Fig. 1 The expression of miR-335 in SKOV3 and IOSE80 Mean±SD, n=3, a:P<0.05, vs IOSE80
图 2 SKOV3及IOSE80中ROCK1蛋白表达 Fig. 2 The protein expression of ROCK1 in SKOV3 and IOSE80 Mean±SD, n=3, a:P<0.05, vs IOSE80
2.2 转染miR-335 mimic对SKOV3中miR-335表达的影响

RT-PCR结果显示,转染miR-335 mimic可使卵巢癌细胞SKOV3中miR-335表达上调,与阴性对照组比较差异具有统计学意义(P<0.05)(图 3)。

图 3 转染miR-335 mimic对SKOV3中miR-335表达的影响 Fig. 3 The expression of miR-335 in SKOV3 after transfected miR-335 mimic Mean±SD, n=3, a:P<0.05, vs negative control(NC)
2.3 miR-335对ROCK1 3′-UTR荧光酶活性的影响

双荧光素酶活性检测结果显示,miR-335 mimic可显著抑制野生型ROCK1-Wt报告载体的荧光素酶活性,但对突变型ROCK1-Mut报告载体的荧光素酶活性并无显著抑制作用,提示miR-335可特异性地与ROCK1 3′-UTR结合(图 4)。

图 4 SKOV3中miR-335 mimic共转染野生型ROCK1 3′-UTR或突变型ROCK1 3′-UTR对荧光素酶活性的影响 Fig. 4 The luciferase activity in SKOV3 cells after co-transfected with wild-type (WT) ROCK1 3′-UTR or mutant (Mut) ROCK1 3′-UTR in the presence of miR-335 mimic Mean±SD, n=3, a:P<0.01, vs negative control(NC)
2.4 miR-335靶向ROCK1对卵巢癌细胞SKOV3增殖活性的影响

细胞培养24h、48h及72h后,MTT法检测结果显示,转染miR-335mimic后,卵巢癌细胞SKOV3增殖活性较阴性对照组显著降低(P<0.05);而转染miR-335 mimic+ROCK1后,卵巢癌细胞SKOV3增殖活性较单纯转染miR-335 mimic组显著提高(P<0.05),但仍显著低于阴性对照组(P<0.05)(图 5)。RT-PCR法检测结果显示,转染miR-335mimic后,卵巢癌细胞SKOV3中Cyclin D1表达显著降低(P<0.05);而转染miR-335 mimic+ROCK1后,卵巢癌细胞SKOV3中Cyclin D1表达较单纯转染miR-335 mimic组显著提高(P<0.05),但仍显著低于阴性对照组(P<0.05)(图 6)。Western blot检测结果显示,转染miR-335mimic后,卵巢癌细胞SKOV3中ROCK1蛋白表达较阴性对照组显著降低(P<0.05);而转染miR-335 mimic+ROCK1后,ROCK1蛋白表达较单纯转染miR-335mimic组及阴性对照组显著增高(P<0.05)(图 7)。

图 5 转染miR-335、ROCK1对SKOV3增殖活性的影响 Fig. 5 The effect of transfection miR-335 and ROCK1 on the proliferation of SKOV3 Mean±SD, n=3, a:P<0.05, vs SKOV3 group(negative control), b:P<0.05, vs miR-335 mimic group
图 6 转染miR-335、ROCK1对Cyclin D1表达的影响 Fig. 6 The effect of transfection miR-335 and ROCK1 on the Cyclin D1 expression of SKOV3 Mean±SD, n=3, a:P<0.05, vs SKOV3 group(negative control), b:P<0.05, vs miR-335 mimic group
图 7 转染miR-335、ROCK1对SKOV3中ROCK1蛋白表达的调控作用 Fig. 7 The effect of transfection miR-335 and ROCK1 on ROCK1 protein expression in SKOV3 Mean±SD, n=3, a:P<0.05, vs SKOV3 group(negative control), b:P<0.05, vs miR-335 mimic group
3 讨论

卵巢癌是妇科常见恶性肿瘤,严重威胁妇女生命安全。由于卵巢的生理解剖位置较为隐蔽,故起病隐匿,目前仍缺乏特异性的诊断及治疗措施。早期手术切除是治疗卵巢癌的可靠办法,但多数晚期患者并无法受益。化疗仅能改善患者生活质量,却无法使其长期生存,而长期化疗所致的毒副反应也不容忽视[13]。因此,探寻更安全、高效的卵巢癌治疗方法是目前亟待解决的重点及难点问题。

miRNA属于高度保守的非编码小分子单链RNA,并广泛存在于真核生物中。正常生理状态下,机体内miRNA表达遵守严格的组织、时序特异性;但在肿瘤环境下,不同miRNA则表现出不同的生物学活性,并起到类似癌基因或抑癌基因的作用[14, 15, 16]。miR-335在不同恶性肿瘤发生、发展过程中发挥着不同作用。伍家燕等[17]研究证实,乳腺癌细胞MDA-MB-231中miR-335呈现低表达,过表达miR-335可有效抑制乳腺癌细胞MDA-MB-231迁移,提示miR-335发挥着抑癌基因的功能。而Shu等[18]研究发现,星形细胞瘤中miR-335呈现高表达状态,并与细胞增殖及侵袭能力密切相关,从而发挥类似癌基因功能。本研究结果显示,与人正常卵巢上皮细胞IOSE80相比较,卵巢癌细胞SKOV3中miR-335表达显著降低(P<0.05);而转染miR-335 mimic可使卵巢癌细胞SKOV3中miR-335表达显著升高,同时显著抑制卵巢癌细胞SKOV3增殖活性,提示miR-335在卵巢癌的发生与发展进程中起着类似抑癌基因的作用[19]

ROCK1作为Rho效应分子,可通过Rho/ROCK信号通路激活下游多种靶分子,进而参与肿瘤发生及转移过程[20]。病理生理状态下,Rho蛋白活化并与ROCK1上位点结合,暴露ROCK1催化活性中心,激活ROCK1,促进肌球蛋白轻链磷酸化及肌丝收缩,进而调控细胞骨架蛋白介导的恶性肿瘤细胞运动[21]。研究证实,ROCK1在非小细胞肺癌[22]、乳腺癌[23]及前列腺癌[24]等恶性肿瘤组织中均呈现高表达态势,且其高表达水平与肿瘤低分化、淋巴转移及预后不良密切相关。本研究结果显示,卵巢癌细胞SKOV3中ROCK1蛋白表达显著高于人正常卵巢上皮细胞IOSE80(P<0.05),而转染miR-335 mimic可使卵巢癌细胞SKOV3中ROCK1蛋白表达得到显著抑制,提示卵巢癌细胞SKOV3中miR-335表达水平与ROCK1表达水平存在明显相关性,而这种相关性很可能是由miR-335负向调控ROCK1表达所致[25]。进一步利用双荧光素酶活性检测证实,miR-335可与ROCK1 3′-非翻译区(untranslated region,UTR)特异性结合,降低荧光酶活性,从而为miR-335靶向ROCK1提供有力证据,与王勇等[26]研究结论一致。

MTT法检测细胞增殖活性结果显示,共转染miR-335及ROCK1可实现miR-335对卵巢癌细胞SKOV3增殖抑制作用的部分逆转,提示miR-335可通过靶向ROCK1表达调控卵巢癌细胞SKOV3增殖。Cyclin D1是细胞增殖周期启动的重要调控因子。本研究结果显示,共转染miR-335或miR-335+ROCK1后,Cyclin D1的表达趋势变化与卵巢癌细胞SKOV3增殖趋势一致,这为证实miR-335靶向ROCK1抑制卵巢癌细胞SKOV3增殖提供了有利证据,也在一定程度上阐明了miR-335靶向ROCK1抑制卵巢癌细胞SKOV3增殖的作用机制。但值得注意的是,转染ROCK1无法完全逆转miR-335对卵巢癌细胞SKOV3增殖的抑制作用。miR-335的靶向基因众多,目前已知的包括Sp1、HER3等,而靶基因的非唯一性可能是导致其靶向ROCK1无法完全调控卵巢癌细胞增殖的原因之一。

总之,miR-335与ROCK1存在靶向关系,miR-335可通过靶向调控ROCK1表达抑制卵巢癌细胞SKOV3增殖活性,而ROCK1可能是治疗卵巢癌的潜在靶基因。此外,miR-335还可能通过靶向其他下游基因参与卵巢癌的发生与发展过程。

参考文献
[1] Bojesen S E, Pooley K A, Johnatty S E, et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45(4): 371-384.
[2] Burger R A, Brady M F, Bookman M A, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. New England Journal of Medicine, 2011, 365(26): 2473-2483.
[3] Perren T J, Swart A M, Pfisterer J, et al. A phase 3 trial of bevacizumab in ovarian cancer. New England Journal of Medicine, 2011, 365(26): 2484-2496.
[4] Buys S S, Partridge E, Black A, et al. Effect of screening on ovarian cancer mortality: the prostate, lung, colorectal and ovarian (PLCO) cancer screening randomized controlled trial. Jama, 2011, 305(22): 2295-2303.
[5] Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. New England Journal of Medicine, 2012, 366(15): 1382-1392.
[6] Ha M, Kim V N. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 2014, 15(8): 509-524.
[7] Zhu L, Chen L, Shi C M, et al. MiR-335, an adipogenesis-related microRNA, is involved in adipose tissue inflammation. Cell Biochemistry and Biophysics, 2014, 68(2): 283-290.
[8] Cao J, Cai J, Huang D, et al. miR-335 represents an independent prognostic marker in epithelial ovarian cancer. American Journal of Clinical Pathology, 2014, 141(3): 437-442.
[9] Vigil D, Kim T Y, Plachco A, et al. ROCK1 and ROCK2 are required for non-small cell lung cancer anchorage-independent growth and invasion. Cancer Research, 2012, 72(20): 5338-5347.
[10] Jeong K J, Park S Y, Cho K H, et al. The Rho/ROCK pathway for lysophosphatidic acid-induced proteolytic enzyme expression and ovarian cancer cell invasion. Oncogene, 2012, 31(39): 4279-4289.
[11] 韩志强, 洪振亚, 胡春霞, 等. 寡核苷酸阻断 ROCK-1 蛋白对人卵巢癌细胞恶性行为的影响. 中华肿瘤杂志, 2007, 29(10): 723-727. Han Z Q, Hong Z Y, Hu C X, et al. Effect of blocking of ROCK-1, an effector of small G protein Rho, on the malignant behavior of ovarian tumor cells in vitro. Chinese Journal of Oncology, 2007, 29(10): 723-727.
[12] Wang Y, Zhao W, Fu Q. miR-335 suppresses migration and invasion by targeting ROCK1 in osteosarcoma cells. Molecular and Cellular Biochemistry, 2013, 384(1-2): 105-111.
[13] Weiner-Gorzel K, Milewska M, Sharpe D, et al. Abstract A34: MiR-433 induces cellular senescence rendering ovarian cancer cells less likely to undergo chemotherapy-induced apoptosis. Clinical Cancer Research, 2015, 21(4): 34-35.
[14] Iorio M V, Croce C M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Molecular Medicine, 2012, 4(3): 143-159.
[15] Lim L, Balakrishnan A, Huskey N, et al. MicroRNA-494 within an oncogenic microRNA megacluster regulates G1/S transition in liver tumorigenesis through suppression of mutated in colorectal cancer. Hepatology, 2014, 59(1): 202-215.
[16] Kong W, He L, Richards E J, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene, 2014, 33(6): 679-689.
[17] 伍家燕, 高月, 曾帆, 等. miR-335 对 MDA-MB-231 乳腺癌细胞生物学特性的影响. 第三军医大学学报, 2015, 14(2): 3-5. Wu J Y, Gao Y, Zeng F, et al. Effect of miR-335 on biological behavior of breast cancer MDA-MB-231 cells. Journal of Third Military Medical University, 2015, 14(2): 3-5.
[18] Shu M, Zheng X, Wu S, et al. Targeting oncogenic miR-335 inhibits growth and invasion of malignant astrocytoma cells. Mol Cancer, 2011, 10(1): 59-60.
[19] Cao J, Cai J, Huang D, et al. miR-335 represents an invasion suppressor gene in ovarian cancer by targeting Bcl-w. Oncology Reports, 2013, 30(2): 701-706.
[20] Maurer J, Castro D J, Kim M, et al. ROCK1 inhibition promotes the self-renewal of a novel mouse mammary cancer stem cell. Cancer Research, 2014, 74(19 Supplement): 3867-3867.
[21] 何彦丰. hsa-miR-125a-5p通过上调Rock-1表达促进胃癌细胞侵袭. 中国微生态学杂志,2014,12(2):1401-1404. He Y F. Hsa-miR-125a-5p promotes cell invasion by up-regulating Rock-1 in gastric cancer. Chinese Journal of Microecology, 2014,12(2):1401-1404.
[22] Vigil D, Kim T Y, Plachco A, et al. ROCK1 and ROCK2 are required for non-small cell lung cancer anchorage-independent growth and invasion. Cancer Research, 2012, 72(20): 5338-5347.
[23] Gilkes D M, Xiang L, Lee S J, et al. Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proceedings of the National Academy of Sciences, 2014, 111(3): 384-393.
[24] Kroiss A, Vincent S, Decaussin-Petrucci M, et al. Androgen-regulated microRNA-135a decreases prostate cancer cell migration and invasion through downregulating ROCK1 and ROCK2. Oncogene, 2015, 34(22): 2846-2855.
[25] 王勇, 王科峰, 赵伟. miR-335 及 ROCK1 在骨肉瘤中表达及相互关系研究. 重庆医学, 2015, 44(16): 2170-2173. Wang Y, Wang K F, Zhao W. The expression and correlation of miR-335 and ROCK1 in osteosarcoma. Chongqing Medicine, 44(16): 2170-2173.
[26] 王勇, 王科峰, 赵伟. miR-335靶向Rho相关卷曲螺旋形成蛋白激酶1抑制人骨肉瘤细胞MG-63侵袭转移的实验研究. 中国癌症杂志, 2014, 24(11): 801-804. Wang Y, Wang K F, Zhao W. miR-335 inhibits migration and invasion of human osteosarcoma cell line MG-63 by targeting ROCK1. China Oncology, 2014, 24(11): 801-804.