中国生物工程杂志  2016, Vol. 36 Issue (4): 57-62

文章信息

孙泽绪, 赵辰, 廖军义, 王琦, 徐伟, 陈诚, 黄伟
SUN Ze-xu, ZHAO Chen, LIAO Jun-yi, WANG Qi, XU Wei, CHEN Cheng, HUANG Wei
抑制Runx2的表达增强BMP2诱导的干细胞成软骨分化
Suppression of Runx2 Potentiates BMP2-induced Chondrogenic Differentiation
中国生物工程杂志, 2016, 36(4): 57-62
China Biotechnology, 2016, 36(4): 57-62
http://dx.doi.org/10.13523/j.cb.20160409

文章历史

收稿日期: 2015-12-02
修回日期: 2015-12-21
抑制Runx2的表达增强BMP2诱导的干细胞成软骨分化
孙泽绪, 赵辰, 廖军义, 王琦, 徐伟, 陈诚, 黄伟     
重庆医科大学附属第一医院 重庆 400016
摘要: 目的:利用腺病毒介导RNA干扰抑制成骨分化关键转录调控因子Runx2(Runt-related transcription factor 2)的表达,研究其对骨形态发生蛋白2(bone morphogenetic protein 2,BMP2)诱导间充质干细胞(mesenchymal stem cells,MSCs)成软骨分化的影响,并初步探讨相关机制。方法:利用腺病毒Ad-GFP、Ad-BMP2、Ad-SiRunx2感染C3H10T1/2细胞;共分4组:GFP组、BMP2组、BMP2+SiRunx2组和SiRunx2组。Alcian blue染色检测各组软骨细胞基质糖胺聚糖分泌;RT-PCR检测Runx2、早期成软骨标志物(Col2a1)、蛋白聚糖(Aggrecan)及晚期成软骨标志物(Col10a1)mRNA表达水平; Western blot 检测目的蛋白BMP2、Ⅱ型胶原 (Col2a1)及X型胶原(Col10a1)的蛋白表达。结果:在BMP2诱导C3H10T1/2细胞成软骨分化过程中, 下调Runx2的表达可以增强Col2a1、Aggrecan及软骨细胞外基质糖胺聚糖的合成,抑制Col10a1的合成。结论:下调Runx2表达可以增强BMP2诱导间充质干细胞成软骨分化能力,并抑制软骨细胞的成熟和肥大。
关键词: Runx2     骨形态发生蛋白2     C3H10T1/2细胞     成软骨分化    
Suppression of Runx2 Potentiates BMP2-induced Chondrogenic Differentiation
SUN Ze-xu, ZHAO Chen, LIAO Jun-yi,WANG Qi, XU Wei, CHEN Cheng, HUANG Wei     
Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
Abstract: Objective: To investigate the potentiation effect of RNA silenced Runx2 on bone morphogenetic protein 2 (BMP2) induced chondrogenic differentiation of mesenchymal stem cells (MSCs). Method: C3H10T1/2 cells were treated with adenovirus: Ad-BMP2, Ad-SiRunx2 or Ad-GFP. The sulfated glycosaminoglycan of cellular matrix was detected by Alcian Blue Staining. The mRNA level of Runx2, Col2a1, aggrecan , and Col10a1 were detected by RT-PCR,and the protein level of BMP2, Col2a1,Col10a1 were detected by Western blot .Results: The BMP2+SiRunx2 group (C3H10T1/2 cells were treated with AdBMP2 and AdSiRunx2) was more blue than the BMP2 group on day 10 proven by Alcian blue staining. The BMP2+SiRunx2 group showed a higher mRNA level of Col2a1 and aggrecan (P<0.05) and a lower protein level of Col10a1 (P<0.05) than the BMP2 group on day 7 and 14. The BMP2+SiRunx2 group showed a higher protein level of Col2a1(P<0.05) and a lower protein level of Col10a1(P<0.05) than the BMP2 group on day 10. Conclusion: The siRNA targeting Runx2 promotes BMP2-induced stem cell chondrogenic differentiation and supresses the chondrocyte hypertrophy and maturation.
Key words: Runt-related transcription factor 2     Bone morphogenetic protein 2     C3H10T1/2 cells     Chondrogenic differentiation    

过度运动容易引起关节软骨损害[1],关节软骨修复能力很弱,且自体和异体软骨细胞移植虽然近期效果较好,但远期由于纤维软骨的形成,临床治疗效果一般不理想[2, 3]。因此利用干细胞培养出正常的透明软骨进行软骨移植具有重要的临床意义。

间充质干细胞(mesenchymal stem cells,MSCs)是一类来源于中胚层且具有多向分化潜能的成体干细胞,在不同的诱导环境下,可分化为软骨细胞、骨细胞、神经元细胞等,其利于分离和培养,且多次传代后仍具有多向分化的潜力[4, 5]。因此,MSCs作为种子细胞用于受损软骨组织的修复具有广阔的应用前景。骨形态发生蛋白2(BMP2)属于转化生长因子超家族中的一员,在细胞增殖、分化及凋亡等一系列生物过程中起着重要的作用,且在体外能够诱导干细胞成软骨分化[6, 7]。但是在BMP2诱导干细胞成软骨分化过程中,晚期阶段会出现软骨细胞的肥大、凋亡及基质钙化,破坏正常软骨细胞表型。这一现象的具体分子机制尚未明了,但研究表明Runx2在该过程中起到了重要作用[8]。在成软骨诱导分化晚期高表达的Runx2增强Col10a1的合成,标志着软骨细胞进入成熟和肥大阶段,正常软骨细胞表型受到破坏[9]。因此我们探讨通过重组腺病毒介导RNA干扰抑制Runx2的表达,从而观察其对BMP2诱导MSCs成软骨分化能力的影响及对软骨细胞表型维持的具体作用。为发挥BMP2更强的成软骨能力及更好的维持软骨细胞的表型提供一定的实验基础。

1 材料与方法 1.1 材 料

本实验所用的细胞为小鼠骨髓间充质干细胞株(C3H10T1/2) 以及人胚肾293细胞株( HEK293),重组腺病毒AdBMP2、 Ad-SiRunx2,Ad-GFP。胎牛血清购自Gibco公司,DMEM培养基、胰蛋白酶和青链霉素均购自HyClone公司,蛋白酶抑制剂( PMSF) 、 细胞裂解液、 鼠单克隆β-actin抗体、购于药明康德生物有限公司。SDS上样缓冲液、山羊抗小鼠 IgG 抗体等均购自碧云天生物技术有限公司,Real-Time PCR引物由上海生工公司合成。

1.2 方 法 1.2.1 细胞培养和腺病毒的扩增

于37℃、5% CO2的细胞孵箱内,C3H10T1/2和HEK293细胞用含有10%胎牛血清及1%青链霉素的高糖培养基培养。培养HEK293细胞,待密度达80%时加入适量病毒感染。 培养至细胞增大、脱落时,收集细胞,反复冻融细胞3次,用4℃、12 000r/min,15min离心,收取上清液,置于-20℃保存。

1.2.2 C3H10T1/2细胞成软骨诱导分化

待细胞密度达到70%~80%时进行细胞传代。待细胞生长至40%~50%时,分别加入Ad-BMP2、Ad-siRunx2、Ad-BMP2+Ad-siRunx2、Ad-GFP,24h后在荧光显微镜下观察病毒感染率。选取病毒感染率在30%~40%,且细胞生长状况良好的病毒滴度。

1.2.3 Alcian blue 染色

采用微球培养技术培养各处理组,处理第10天后,用Alcian blue 染料行软骨细胞外基质染色。用PBS清洗2~3次,多聚甲醛固定 15 min后,行 Alcian blue溶液染色20~30min,用蒸馏水冲洗5~10min后,观察各处理组颜色差异。

1.2.4 RNA的提取

培养细胞至处理时间,吸净培养液。用PBS清洗 2 次,洗去残存培养液,每孔加入1ml TRIZOL试剂,于冰上静置5min后,反复吹打后吸入1.5无酶 EP管,室温放置 5 min 后加入 200 μl 氯仿,振荡,待充分乳化溶液呈乳白状,室温静置5min。于4℃、12 000 r/min,15min离心。吸取上清液于另一EP管中,加入等体积异丙醇,上下颠倒混匀后静置10min。4℃,12 000 r/min,10min低温高速离心。管底可见白色沉淀,弃上清,沿管壁加入75%乙醇1ml,颠倒混匀,于4℃,7 500 r/min,5min离心,离心后弃上清,重复此操作。吸去乙醇,室温干燥5min,加入25μl DEPC水溶解。检测RNA浓度。

1.2.5 RT-PCR

6孔板中诱导及培养C3H10T1/2细胞,培养至第7及第14天时,提取RNA后逆转录成cDNA,以小鼠GAPDH作为内参,RT PCR检测Runx2、col2a1、aggrecan、Col10a1的表达。所用引物序列见表 1

表 1 PCR引物序列 Table 1 The sequence of primers for RT-PCR
基因引物序列(5′~3′)片段大小(bp)
GAPDH正义链:AGCTCACCAGACCCTGAGAA 123
反义链:TCCCAGCAATCGTTACCTTC
Runx2 正义链:CCGGTCTCCTTCCAGGAT 122
反义链:GGGAACTGCTGTGGCTTC
Col2a1正义链:CAACACAATCCATTGCGAAC159
反义链:TCTGCCCAGTTCAGGTCTCT
Aggrecan 正义链:TGGCTTCTGGAGACAGGACT 188
反义链:TTCTGCTGTCTGGGTCTCCT
Col10a1 正义链:CATGCCTGATGGCTTCATAAA101
反义链:AAGCAGACACGGGCATACCT
1.2.6 Western blot

检测BMP2、Col2a1的表达 C3H10T1 /2 传至直径100mm培养皿,分4个处理组,各组分别为感染:Ad-GFP、Ad-BMP2、Ad-SiRunx2、Ad-BMP2 +Ad-SiRunx2共同感染。至检测时间提取蛋白,行SDS-PAGE凝胶电泳,转膜,采用BSA封闭2h,4℃敷育一抗过夜,洗膜3次。37℃敷育二抗1h,洗膜3次,行凝胶成像仪发光。

1.3 统计分析

采用 IBM SPSS Statistics 17.0 统计软件,计量资料以均数±标准差(x±s) 表示,比较4组组间差异采用单因素方差分析。

2 结 果 2.1 重组腺病毒感染C3H10T1/2细胞及目的基因的检测

按上述方法分别处理感染各组细胞,24h后用荧光显微镜观察各处理组细胞,Ad-GFP、Ad-BMP2、Ad-SiRunx2及Ad-BMP2+Ad-SiRunx2感染率在30%~40%细胞生长状态良好,可培养至感染后 14 d(图 1a) 。Western blot分别检测3d(1、2)、5d(3、4)目的蛋白BMP2的表达(图 1b),结果显示BMP2组BMP2蛋白表达要明显高于GFP组。Real-time PCR 检测目的基因Runx2 mRNA的相对表达水平(P<0.05)(图 2a),结果显示BMP2+SiRunx2组Runx2表达要明显低于BMP2单独处理组。证实重组腺病毒Ad-BMP2、Ad-SiRunx2均已成功转染细胞,且起到相应的促进及干扰抑制表达作用。

图 1 腺病毒感染细胞(a)及BMP2的表达(b) Fig. 1 C3H10T1/2 cells were infected with Ad-BMP2,Ad-SiRunx2,Ad-GFP(a) and BMP2 expression detected by Western blot on 3 and 5 day after infection(b)

图 2 RT-PCR检测Runx2、Col2a1、Aggrecan、Col10a1 mRNA表达 Fig. 2 RT-PCR for detecting the mRNA expression of the target gene Runx2 and the chondrogenesis related genes on 7 and 14 day after infection (a) Runx2 mRNA (b)Col2a1 mRNAe (c)Aggrecan mRNA (d)Col10a1 * P<0.05,compared with GFP group; ** P<0.05,compared with BMP2 group
2.2 RT-PCR检测成软骨标志物mRNA的相对表达量

诱导分化后第7、14天,Col2a1、Aggrecan mRNA相对表达,BMP2+SiRunx2组要明显高于BMP2组(P<0.05)。诱导分化后第7、14天,Col10a1 mRNA相对表达,BMP2+SiRunx2组要明显低于BMP2组(P<0.05)。见图 3(bcd)。

图 3 Alcian Blue染色 Fig. 3 Alcian blue staining for sulfated glycosaminoglycan on 10 day after infection
2.3 Alcian Blue染色检测软骨细胞外基质

Alcian Blue染色可定性检测软骨细胞外基质合成情况。处理细胞后,采用微球培养10天。染色后发现与GFP组相比,BMP2、BMP2+SiRunx2软骨细胞外基质合成要明显多于GFP组,BMP2+SiRunx2 组软骨细胞外基质要多于BMP2 组(图 3)。以上结果表明,下调Runx2的表达可以增强BMP2的成软骨诱导作用。

2.4 Western blot检测细胞Col2a1蛋白表达情况

Western blot检测细胞感染后第10天各组Col2a1蛋白的表达(图 4)。与对照组相比,BMP2组和BMP2+SiRunx2的蛋白表达明显增高,且BMP2+SiRunx2组Col2a1蛋白表达要明显高于BMP2单独处理组(P<0.05)。本实验结果进一步证实干扰抑制Runx2的表达可以增强BMP2诱导干细胞成软骨分化的能力。

图 4 Western blot检测各组Col2a1蛋白的表达 Fig. 4 Expression of Col2a1 in C3H10T1/2 cells was detected by Western blot after 10 day infection * P<0.05,compared with GFP group;** P<0.05,compared with BMP2 group
2.5 Western blot检测细胞Col10a1蛋白表达情况

Western blot检测细胞感染后第10天各组Col10a1蛋白的表达(图 5)。与对照组相比,BMP2组和BMP2+SiRunx2的蛋白表达明显增高,但BMP2+SiRunx2组Col10a1蛋白表达要明显低于于BMP2单独处理组(P<0.05)。本实验结果证实干扰抑制Runx2的表达可以抑制软骨细胞成熟和肥大,促进软骨细胞表型的维持。

图 5 Western blot检测Col10a1蛋白的表达 Fig. 5 Expression of Col10a1 in C3H10T1/2 cells was detected by Western blot after 10 day infection * P<0.05,compared with GFP group;** P<0.05,compared with BMP2 group
3 讨 论

疾病和创伤引起的关节软骨缺损,导致运动功能障碍甚至残疾,给患者造成巨大痛苦[10]。关节软骨缺少血液供应,血液及骨髓中的干细胞难以到达缺损的软骨组织处,同时周围的软骨细胞不能移行至缺损处分泌充足的细胞外基质修复受损的软骨组织,受损的透明软骨组织只能由缺乏正常生理功能的纤维软骨所取代[11, 12]

MSCs作为一种具有多向分化潜能的成体干细胞,广泛存在于人体结缔组织中,并且MSCs具有低免疫原性,自体和同种异体的MSCs细胞移植,其所发生的免疫排斥反应均较低[13]。因此,在组织工程软骨中,MSCs是一种比较理想的种子细胞用于软骨的再生和修复。本课题组前期研究发现,BMP2具有强烈的诱导成软骨分化作用[7],其主要通过经典的BMP-SMAD和非经典的MAPK等下游信号通路调节成软骨分化因子Sox9和成骨关键因子Runx2诱导干细胞成软骨和成骨分化[14]。然而,在体外诱导其成软骨分化过程中,其更加倾向于软骨内成骨,诱导生成的软骨细胞在晚期会出现肥大、凋亡和基质钙化[15],破坏正常软骨细胞的表型。因此如何减少或阻止诱导生成的软骨细胞成熟和肥大,对采用该种子细胞培养出正常且具有生理功能的软骨组织是至关重要的[16]

成骨关键因子Runx2是Runx基因家族中的一员,在成骨及成软骨分化过程中起到了重要的作用[17, 18]。研究表明,在软骨分化过程中,Runx2在肥大前的软骨细胞中表达,促进软骨细胞肥大和成熟。并且在基因敲除Runx2的小鼠中,肥大的软骨细胞数量以及软骨基质的矿化要明显低于野生型小鼠[19, 20]。最新研究表明在诱导干细胞成软骨分化过程中,Runx2不仅在晚期阶段起到重要的作用,而且可能在早期阶段也抑制干细胞成软骨分化,Zhang等[21]证明miR-455-3p可能通过抑制Runx2的表达从而增强干细胞早期成软骨分化。

Col2a1是早期的成软骨标志物,研究表明2型胶原在正常透明软骨中起到了重要的作用,本实验通过抑制Runx2的表达,通过RT-PCR检测发现在第7天和第9天,抑制Runx2的表达可以显著提高并且维持Col2a1的表达水平,通过Western blot检测发现,联合组Col2a1的表达要明显高于其他组。这与Zhang等[21]的研究结果一致。

Col10a1作为晚期成软骨标志物,代表软骨细胞肥大和成熟。我们通过RTPCR和Western blot 发现,下调Runx2的表达,可以明显降低BMP2诱导干细胞成软骨分化时Col10a1的表达。提示抑制Runx2的表达可以抑制软骨细胞成熟和肥大,维持正常软骨细胞表型。

综上所述,本实验研究发现,在BMP2诱导间充质干细胞成软骨分化过程中,抑制Runx2的表达可以提高BMP2的成软骨诱导能力,抑制软骨细胞成熟和肥大,该实验为软骨组织工程提供一个初步的实验理论。实验所涉及的具体分子机制,我们将进一步探讨。

参考文献
[1] Heir S, Nerhus T K, Rtterud J H, et al. Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery.Am J Sports Med, 2010,382:231-237.
[2] Bentley G, Biant L C, Vijayan S,et al. Minimum ten-year results of a prospective randomized study of autologous chondrocyte implantation versus mosaicplasty for symptomatic articular cartilage lesions of the knee. J Bone Joint Surg Br, 2012,94:504-509.
[3] Brittberg M, Lindahl A, Nilsson A, et al.Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med, 1994,331:889-895.
[4] Augello A L, Kurth T B, De Bari C.Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches.Eur Cell Mater,2010,20:121-133.
[5] Gardner O F, Alini M, Stoddart M J. Mesenchymal stem cells derived from human bone marrow.Methods Mol Biol, 2015,1340:41-52.
[6] Yoon B S, Lyons K M.Multiple functions of BMPs in chondrogenesis.J CellBiochem,2004,93(1):93-103.
[7] Liao J, Hu N, Zhou N, et al. Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation.PLoS One, 2014,9(2):e89025.
[8] Valcourt U, Ronzière M C, Winkler P, et al. Differenteffects of bone morphogenetic proteins 2, 4, 12, and 13 on the expression of cartilage and bone markers in the MC615 chondrocyte cell line, 1999,251(2):264-274.
[9] Drissi M H , Li X , Sheu T J ,et al. Runx2/Cbfa1 stimulation by retinoic acid is potentiated by BMP2 signaling through interaction with Smad1 on the collagen X promoter in chondrocytes.J Cell Biochem, 2003,90 (6): 1287-1298.
[10] Mahmoudifar N, Doran P M. Chondrogenesis and cartilage tissue engineering: the longer road to technology development. Trends Biotechnol,2012,30(3):166-176.
[11] Falah M, Nierenberg G, Soudry M, et al. Treatment of articular cartilage lesions of the knee. Int Orthop,2010,34(5):621-630.
[12] Chen S Y, Fu P R, Cong R S, et al. Strategies to minimize hypertrophy in cartilage engineering and regeneration.Genes Dis,2015,2(1):76-95.
[13] Tse W T, Pendleton J D, Beyer W M,et al.Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation.Transplantation,2003,75(3):389-397.
[14] Nishimura R, Hata K, Matsubara T, et al. Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J Biochem,2012,151( 3) : 247-254.
[15] Hennig T, Lorenz H, Thiel A, et al. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol, 2007,211(3):682-691.
[16] Studer D, Millan C, Ozturk E,et al. Molecular and biophysical mechanisms regulating hypertrophic differentiation in chondrocytes and mesenchymal stem cells.Eur Cell Mater,2012,24:118-135.
[17] Swingler T E, Wheeler G, Carmont V, et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum,2012,64:1909-1919.
[18] Chen H, Ghori-Javed F Y, Rashid H, et al.Runx2 regulates endochondral ossification through control of chondrocyte proliferation and differentiation. J Bone Miner Res,2014,29(12):2653-2665.
[19] Choi J Y, Pratap J, Javed A, et al.Subnuclear targeting of Runx/Cbfa/AML factors is essential for tissue-specific differentiation during embryonic development. Proc Natl Acad Sci USA, 2001,98(15):8650-8655.
[20] Takarada T, Hinoi E, Nakazato R,et al.An analysis of skeletal development in osteoblasts pecific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice. J Bone Miner Res,2013,28(10):2064-2069.
[21] Zhang Z, Hou C, Meng F, et al.MiR-455-3p regulates early chondrogenic differentiation via inhibiting Runx2.FEBS Lett,2015,589(23):3671-3678.