中国生物工程杂志  2016, Vol. 36 Issue (1): 47-54

文章信息

郝文博, 姬芳玲, 王静云, 张悦, 王天琪, 车文实, 包永明
HAO Wen-bo, JI Fang-ling, WANG Jing-yun, ZHANG Yue, WANG Tian-qi, CHE Wen-shi, BAO Yong-ming
D194G突变对meso-2,3-丁二醇脱氢酶催化特性的影响
Effects of D194G Mutant on meso-2, 3-Butanediol Dehydrogenase Catalytic Properties
中国生物工程杂志, 2016, 36(1): 47-54
China Biotechnology, 2016, 36(1): 47-54
http://dx.doi.org/10.13523/j.cb.20160107

文章历史

收稿日期: 2015-08-04
修回日期: 2015-11-18
D194G突变对meso-2,3-丁二醇脱氢酶催化特性的影响
郝文博1,2, 姬芳玲1, 王静云1, 张悦1, 王天琪1, 车文实2, 包永明1     
1. 大连理工大学生命科学与技术学院 大连 116024;
2. 黑河学院物理化学系 黑河 164300
摘要: 目的:比较来源于Enterobacter aerogenes CICC10293和Bacillus subtilis的meso-2,3-丁二醇脱氢酶(E. a-BDH和D194G B. s-BDH)活性和动力学参数,分析D194氨基酸对BDH催化特性的影响。方法:利用E. coli BL21(DE3)原核表达E. a-BDH和D194G B. s-BDH,经HiTrap Q FF阴离子交换柱和Superdex 75凝胶柱纯化后,用MALDI-TOF MS确定其分子质量;检测NADH/NAD+氧化还原的吸光度变化确定BDH活性、辅酶和底物的特异性、最适pH、温度及动力学参数。结果:重组表达E. a-BDH和D194G B. s-BDH是同源四聚体蛋白,基因序列有两处碱基不同(g.27A/T和g.581A/G),其中g.581A/G导致BDH的一处氨基酸发生改变(p.D194G)。D194G B. s-BDH的活性约为E. a-BDH的2.3%,并且丧失了氧化meso-2,3-丁二醇的能力。二者均以乙偶姻/NADH为最适底物,但D194G B. s-BDH的KmE. a-BDH的5.63倍。结论:D194G氨基酸突变降低了BDH的活性。
关键词: meso-2,3-丁二醇脱氢酶     枯草芽孢杆菌     乙偶姻    
Effects of D194G Mutant on meso-2, 3-Butanediol Dehydrogenase Catalytic Properties
HAO Wen-bo1,2, JI Fang-ling1, WANG Jing-yun1, ZHANG Yue1, WANG Tian-qi1, CHE Wen-shi2, BAO Yong-ming1     
1. School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China;
2. Department of Physics and Chemistry, Heihe University, Heihe 164300, China
Abstract: Objective: To compare the activity and kinetic parameters of meso-2,3-Butanediol dehydrogenase (BDH) from Enterobacter aerogenes (E. a-BDH) and Bacillus subtilis (B. s-BDH), and analysis the influences of the residue D194 on catalytic properties of BDH. Methods: E. a-BDH and D194G B. s-BDH were expressed in E. coli BL21 (DE3), and purified by HiTrap Q FF anion-exchange and Superdex 75 gel column. MALDI-TOF MS was used to determine the molecular weight. The enzyme activity, coenzyme and substrate specificity, optimum pH, temperature, and kinetic parameters of BDH were investigated by monitoring changes in absorbance of NADH/NAD+ redox reaction. Results: The recombinant E. a-BDH and D194G B. s-BDH are homo-tetramer. Their nucleotide sequences exhibit two different bases (g.27A/T and g.581A/G), and g.581A/G results in an amino acid change (p.D194G). D194G B. s-BDH activity is about 2.3% of E. a-BDH, and lost the ability of oxidation of meso-2, 3-butanediol. Acetoin/NADH is the optimal substrate of BDH, but Km of D194G B. s-BDH is 5.63 times greater than that of E. a-BDH. Conclusion: D194G mutation reduces the BDH activity.
Key words: meso-2 3-butanediol dehydrogenase     Bacillus subtilis     Acetoin    

乙偶姻(AC)是一种食用香料,广泛应用于食品生产;也是化工原料,可作为合成其它化合物的前体物质[1]。其在一些微生物中是主要的代谢产物[2, 3, 4, 5, 6, 7, 8],然而,微生物发酵生产AC总是伴随着大量的下游还原副产物2,3-丁二醇(BD)[9, 10, 11, 12]。BD有三种同分异构体:meso-BD、(2S,3S)-BD和(2R,3R)-BD。不同菌株因其含有不同类型的BDH[meso-BDH、(2S,3S)-BDH和(2R,3R)-BDH]而生产出不同立体构型的BD[13, 14, 15, 16, 17, 18]。目前,已有多种方法提高葡萄糖发酵生产AC的产量。例如,筛选菌株[3];温度和碳代谢流调控[5];依赖于丙酮酸分解的代谢工程,包括抑制乳酸脱氢酶、过表达α-乙酰乳酸合成酶、抑制α-乙酰乳酸脱羧酶、抑制BDH及过表达NADH氧化酶[9]B. subtilis是非致病菌,降低B. subtilis的BDH活性可以显著提高AC产量,有利于广泛应用在大规模的发酵工业中。

课题组筛选的一株高产AC(41.63g/L)菌株,产生微量副产物BD。通过比对16S rDNA基因序列、编码β-甘露聚糖酶(EC 3.2.1 .78 )的gmuG基因序列,鉴定该菌株为Bacillus subtilis。为检测该菌株的BDH活性对其高产AC的影响,分别克隆、表达、纯化及序列分析了E. a-BDH和D194G B. s-BDH。同时,描述了该酶的分子质量、最适pH、最适温度、底物及辅酶的特异性。

1 材料与方法 1.1 材 料

E. coli DH5α和E. coli BL21(DE3)分别用于常规克隆和表达,均为本实验室保存。pMD19-T载体(TAKARA)和带有T7启动子的pET-21b载体(Novagen)分别用于基因亚克隆和蛋白质表达。E. aerogenes CICC10293购于中国工业菌种保藏中心,B. subtilis由课题组戴建英副教授赠送。含有100μg/ml氨苄青霉素的LB培养基用于所有E. coli培养。基因组提取试剂盒、高纯质粒小量制备试剂盒、DNA回收试剂盒购自Omega公司,DNA连接试剂盒、Taq酶、DNA Marker购自宝生物工程(大连)有限公司,限制性内切核酸酶购自NEB公司,引物由宝生物工程(大连)有限公司合成。

1.2 方 法 1.2.1 budC的克隆

E. aerogenes和B. subtilis基因组为模板扩增编码BDH的基因budC。引物(P1和P2)设计以E. aerogenes KCTC 2190基因组序列为模板,P1:CGCCATATGATGAAAAAAGTCGCACTTGTCACCGG;P2:CCCAAGCTTTTA GTTAAACACCATCCCGCCGTCGA,下划线为限制性内切核酸酶Nde I和Hind III位点。PCR反应程序为:94℃预变性5min;94℃变性30s,55℃退火30s,72℃延伸1min,30个循环;72℃延伸7min。将目的基因连接到pMD19-T载体,分别命名为pMD19-T-budC-E. a和pMD19-T-budC-B. s,送宝生物工程(大连)有限公司测序,用BLAST和ClustalX进行序列比对和分析。

1.2.2 BDH的表达和纯化

根据文献报道的方法[19]进行重组BDH的表达和纯化。pMD19-T-budC-E. a、pMD19-T-budC-B. s和pET-21b用Nde I和Hind III双酶切,经1%琼脂糖凝胶电泳及DNA回收试剂盒纯化回收后,用T4 DNA Ligase 16℃过夜连接,连接产物采用CaCl2法转化E. coli DH5α。提取质粒后对重组表达质粒进行酶切鉴定和序列分析,获得阳性克隆,将质粒命名为pET-21b-budC-E. a和pET-21b-budC-B. s,并转化到E. coli BL21(DE3)中,将菌株命名为E. coli BL21/pET-21b-budC-E. aE. coli BL21/pET-21b-budC-B. s。经含有100μg/ml氨苄青霉素的LB培养基,37℃,180r/min培养至OD600为0.6。1mmol/L IPTG、16℃、16h诱导重组蛋白表达。

离心收集菌体,洗涤,重悬于含有1mmol/L DTT、0.1mmol/L EDTA、0.1mmol/L PMSF、5mmol/L β-巯基乙醇、pH 8.0的10mmol/L Tris-HCl 缓冲液中,冰浴超声裂解处理。将匀浆物离心,澄清的细胞裂解物上样到5ml HiTrap Q FF阴离子交换柱(GE Healthcare,美国),用AKTA explorer蛋白质纯化系统(GE Healthcare,美国)纯化蛋白质,用含有50mmol/L KCl、1mmol/L DTT、0.1mmol/L EDTA、0.1mmol/L PMSF、5mmol/L β-巯基乙醇、pH 8.0的10mmol/L Tris-HCl洗脱缓冲液洗脱,UV检测波长为280nm。收集含BDH馏分,浓缩至1ml,上样到Superdex 75凝胶柱(GE Healthcare,美国)进行凝胶过滤做最后纯化,流速为1ml/min。该柱预先用pH 7.6的20mmol/L磷酸钾缓冲液平衡两个柱体积。纯化后的酶采用SDS-PAGE分析纯度,用Bradford法测定蛋白质浓度。

1.2.3 BDH分子质量的测定

采用凝胶层析色谱确定天然酶的分子质量。在25℃下,通过比较经Superdex 200凝胶柱洗脱的蛋白质标准物和BDH的保留时间来确定其分子质量。流动相为pH 7.6的20mmol/L磷酸钾缓冲液,流速为1ml/min。蛋白质标准物为肌红蛋白(17kDa)、碳酸酐酶(29kDa)、卵白蛋白(44kDa)、γ球蛋白(158kDa)和β淀粉酶(200kDa)。采用MALDI-TOF MS确定酶亚基的分子质量。采用Biflex II MALDI-TOF质谱仪(Bruker公司,德国)获得MALDI-TOF MS,该质谱仪装有氮激光器(λ=337nm)用以解吸和电离样品,用血管紧张素II和钠离子校准。以芥子酸(10mg/ml的50%乙腈,0.1%三氟乙酸)为基质,1μl蛋白质样品水溶液进行MALDI-TOF MS分析。

1.2.4 BDH的活性分析

在37℃、340nm条件下,通过检测NADH/NAD+氧化还原的吸光度变化来确定BDH活性[ε340=6 220 L/(g·cm)]。以加入几微升酶至2ml反应混合物中开始计时,1min后读取数值。一个酶活力单位定义为每分钟消耗1μmol NADH所需酶蛋白的量(毫克),取3次平均值。

1.2.5 BDH底物和辅酶特异性分析

BDH对丁二酮(DA)、AC和BD的氧化还原具有催化活性。还原活性的测定用10mmol/L DA或AC为底物,0.2mmol/L NADH或NADPH为辅酶。氧化活性的测定用10mmol/L BD或AC为底物,0.6mmol/L NAD+或NADP+为辅酶。反应在37℃、pH 7.6的20mmol/L磷酸钾缓冲液中进行,总体积为2ml。

1.2.6 BDH最适pH和最适温度分析

在37℃下,测定不同pH 6.0~8.5对BDH活性的影响。将纯化酶稀释一定倍数后加入反应缓冲液中,测定在不同pH下酶活力的大小,反应缓冲液采用20mmol/L磷酸钾缓冲液(pH 6.0~8.0)和20mmol/L Tris-HCl缓冲液(pH 8.5)。采用底物浓度为10mmol/L,辅酶浓度为NADH 0.2mmol/L或NAD+ 0.6mmol/L。

在最适pH下,将温度范围设定为30~60℃,每隔5℃检测不同温度下酶活力的大小。

1.2.7 BDH动力学参数分析

在37℃,pH 7.6的20mmol/L磷酸钾缓冲液中进行KmVmaxkcatkcat/Km值的测定。还原反应以0.2mmol/L NADH/NADPH作为辅酶,氧化反应以0.6mmol/L NAD+作为辅酶。辅酶NADH和NADPH的动力学参数以50mmol/L AC为底物,NAD以120mmol/L meso-BD为底物,双倒数法得到动力学参数。

2 结 果 2.1 budC的克隆及序列分析

经PCR反应扩增budC基因,插入pMD19-T载体,得到pMD19-T-budC-E. a和pMD19-T-budC-B. s质粒。测序后经序列比对分析发现,编码D194G B. s-BDH的budC基因存在两个碱基变化(图 1),其中一个是无意改变(g.27C/T),而另一个碱基改变(g.581A/G)导致了氨基酸变化(p.D194G)(图 2)。这个氨基酸变化导致了D194G B. s-BDH的活性降至约为E. a-BDH的2.3%。D194G B. s-BDH具有短链脱氢酶/还原酶(SDR)家族的催化四联体保守序列,如图 3所示,基于Klebsiella peneumoniae的BDH (PDB ID: 1GEG) [20]晶体结构,D194G B. s-BDH的变化位点D194G位于其中的一个α螺旋中部。由于该B. subtilis发酵后未检测到BD,推测该突变可能影响了D194G B. s-BDH的活性。

图 1 E. a-BDH和D194G B. s-BDH的基因序列比对 Fig. 1 Gene sequence alignment of E. a-BDH and D194G B. s-BDH The mutation sites on D194G B. s-BDH gene are marked with tic tac toe
图 2 E. a-BDH和D194G B. s-BDH的氨基酸序列比对 Fig. 2 Amino acid sequence alignment of E. a-BDH and D194G B. s-BDH The location of known catalytic tetrad is marked with single star. The mutation site on D194G B. s-BDH is marked with tic tac toe. Secondary structure of α-helix is described according to the crystal structure of meso-BDH (PDB ID: 1GEG)
2.2 BDH的表达和纯化

构建表达质粒pET-21b-budC-E. a和pET-21b-budC-B. s,并转化到E. coli BL21(DE3)中,经IPTG诱导蛋白质表达后,收集E. coli BL21/pET-21b-budC-E. aE. coli BL21/pET-21b-budC-B. s菌体,经超声破碎离心取上清液。依次采用阴离子交换层析和凝胶过滤来纯化BDH。结果E. a-BDH的纯化倍数为3.16倍,回收率为18%,比活力为462U/mg;D194G B. s-BDH的纯化倍数为7.2倍,回收率为21%,比活力为9.14U/mg(表 1)。纯化后的BDH经SDS-PAGE检测为单一组分(图 3)。

表 1 重组E. a-BDH和D194G B. s-BDH的纯化 Table 1 Purification of recombinant E. a-BDH and D194G B. s-BDH
EnzymePurification stepAmount of protein (mg)Total activity (U)*Specific activity (U/mg)Yield (%)Purification fold
Cell-free extract37.35 4451461001
E. a-BDHHiTrap Q FF7.51928257351.76
Superdex 752.1970462183.16
Cell-free extract34.8044.201.271001
D194G B. s-BDHHiTrap Q FF5.0621.664.28493.37
Superdex 751.029.289.14217.20
* One unit (1U) of enzyme activity was defined as the amount of enzyme that converts 1μmol of AC and NADH to BD and NAD+ per min at pH 7.6 and 37℃
图 3 重组BDH的SDS-PAGE分析 Fig. 3 SDS-PAGE analysis of recombinant BDH M: Marker; 1: Purified E. a-BDH; 2,7: Supernatant bacterial lysate after induction; 3,6: Product before induction; 4,5: Crude extract of E .coli BL21 (DE3); 8: Purified D194G B. s-BDH
2.3 BDH的分子质量

采用凝胶层析色谱分析,蛋白质标准物、E. a-BDH和D194G B. s-BDH的保留时间为肌红蛋白(17kDa)115.2min,碳酸酐酶(29kDa)104.3min、卵白蛋白(44kDa)99.7min、γ球蛋白(158kDa)49.0min、β淀粉酶(200kDa)21.9 min、E. a-BDH和D194G B. s-BDH 76.3min(图 4)。以保留时间为纵坐标、分子质量为横坐标作图,绘制线性回归曲线,得出E. a-BDH和D194G B. s-BDH两种酶的分子质量约为96kDa。MALDI-TOF MS测量分子质量分别为26 771.07Da和26 713.59Da,其理论分子量分别为26 760.31Da和26 702.57Da。说明BDH为同源四聚体,与文献报道相同[21]

图 4 凝胶层析色谱分析E. a-BDH和

D194G B. s-BDH的分子质量
Fig. 4 Determination of the molecular mass of E. a-BDH and D194G B. s-BDH by gel filtration chromatography A: β-amylase elution time 21.9min; B: γ-globulin elution time 49.0min; C: E. a-BDH and D194G B. s-BDH elution time 76.3min; D: Ovalbumin elution time 99.7min; E: Carbonic anhydrase elution time 104.3min; F: Myoglobin elution time 115.2min
2.4 BDH底物和辅酶的特异性

E. a-BDH还原DA为手性AC,继续还原AC为具有立体特异性的BD。D194G B. s-BDH具有同样的还原性底物,但催化活性不同,以DA为底物时,活性(6.98 U/mg)仅为E. a-BDH(380.13U/mg)的1.84%;以AC为底物时,活性(9.41U/mg)仅为E. a-BDH(461.67U/mg)的2.3%。E. a-BDH可以催化meso-BD的氧化,因此被命名为meso-BDH,但D194G B. s-BDH不能催化meso-BD的氧化。同时,E. a-BDH和D194G B. s-BDH都不能氧化(2R,3R)-BD和(2S,3S)-BD,也不能氧化AC,即BDH催化的DA还原反应是不可逆的,与文献报道相同[22]

BDH还原反应的辅酶特异性分析表明,E. a-BDH以NADH和NADPH为辅酶,而D194G B. s-BDH只以NADH为辅酶。对BD立体异构体的氧化反应辅酶特异性进行研究,发现E. a-BDH仅以NAD+为辅酶,而D194G B. s-BDH以NAD+、NADP+为辅酶时均未检测到活性。

2.5 pH和温度对E. a-BDH酶活性的影响

不同pH和温度环境对D194G B. s-BDH的活力没有明显影响。此外,E. a-BDH以NADPH(2.97U/mg)/NADP+(2.37U/mg)为辅酶的酶活力明显小于以NADH(580.13U/mg)/NAD+(119.55U/mg)为辅酶的酶活力。因此,评价pH和温度对E. a-BDH活性的影响,采用NADH/NAD+为辅酶对不同底物(DA、AC和meso-BD)的作用。

以20mmol/L磷酸钾缓冲液(pH 6.0~8.0)和20mmol/L Tris-HCl缓冲液(pH 8.5)为反应缓冲液,分别测定不同pH环境下E. a-BDH以DA和AC为底物的还原活性和以meso-BD为底物的氧化活性。结果如图 5所示,以DA和AC为底物的最适pH为6.5,以meso-BD为底物的最适pH为8.0。文献报道来源于Kluyveromyces marxianus[22]的BDH还原DA的最佳pH为7.2,来源于Klebsiella pneumoniae IAM1063[23]的BDH氧化BD的最佳pH分别为10.0。

在30~60℃时,每隔5℃设一个温度梯度,检测E. a-BDH在不同温度条件下的酶活力大小。如图 5所示,对DA、AC和meso-BD的最适温度分别为35℃、50℃和55℃。总体来说,温度的升高增加了底物和酶分子之间的碰撞从而影响了还原氧化反应的分子动能。

图 5 pH和温度对E. a-BDH活性的影响 Fig. 5 Effects of pH and temperature on the E. a-BDH activity The square line indicates the reduction reaction of E. a-BDH with AC and NADH,the dot line indicates the reduction reaction of E. a-BDH with DA and NADH,the lozenge indicates the oxidation reaction of E. a-BDH with meso-BD and NAD+
2.6 酶催化反应动力学

根据米氏方程,得出BDH对底物和辅酶的动力学参数(KmVmaxkcatkcat/Km),结果见表 2E. a-BDH以NADH为辅酶还原AC和DA的Km值分别为2.51mmol/L和4.60mmol/L,以NAD+为辅酶氧化meso-BD的Km值为7.42mmol/L,即E. a-BDH对AC/NADH表现出最低的Km,同样也对AC/NADH表现出最高的kcat值(4 046.87/s),并且E. a-BDH对AC的催化效率(kcat/Km)比DA和meso-BD高出4.09倍和19.28倍;对比DA/NADH和meso-BD/NAD+,AC/NADH是E. a-BDH的特异性底物。而D194G B. s-BDH对AC和DA的Km值分别为14.12mmol/L和19.01mmol/L,分别是E. a-BDH的5.63倍和4.13倍。来源于B. stearothermophilus[21]K. marxianus[22]的BDH也是以AC为特异性底物的。

表 2 不同底物和辅酶的BDH氧化还原反应动力学参数 Table 2 Kinetic parameters for the reduction and oxidation of BDH on various substrates and coenzymes
EnzymeSubstrateKm (mmol/L)Vmax[μmol/(L·min·mg)]kcat (/s)kcat/Km [mmol/(L·s)]
DA4.60310.121 810.14393.51
AC2.51700.454 046.871 612.30
NADH0.05312.61×103426.118 522.20
E. a-BDHNADPH0.5464.23×10385.72158.74
meso-BD7.4290.31530.2383.63
NAD+0.06143.25×103184.213 070.17
NADP+NDNDNDND
DA19.017.0741.802.20
AC14.129.3655.433.96
NADH0.9360.7282.0788.25
D194G B. s-BDHNADPHNDNDNDND
meso-BDNDNDNDND
NAD+NDNDNDND
NADP+NDNDNDND
Note: ND: Could not be detected
3 讨 论

meso-BDH隶属于SDR家族,一些SDR家族的蛋白质晶体结构已被报道[24],均含有一个N端辅酶结合模块GXXXGXG、一个活性位点模块YXXXK和一个类似于Rossmann折叠结构 [25]。通过生化和晶体学研究发现,Asn-Ser-Tyr-Lys形成了SDR家族的催化四联体[26]。多序列比对发现,D194G B. s-BDH中也存在该催化四联体。虽然BDH的氨基酸序列早已被广泛研究,但迄今为止只有一个X射线晶体结构(PDB代码:1GEG)。我们选择了K. Peneumoniae BDH(PDB代码:1GEG)[19]的X射线晶体结构作为模板,通过同源建模得出BDH与底物和辅酶的三维结构,通过对该酶的结构及热力学参数分析,结果发现突变的Asp194不在BDH的催化四联体附近,由于Gly的短侧链和非极性,使得在第194位氨基酸处Gly取代Asp破坏了Asp与Gly206、Gly208和Thr209氮原子之间的氢键和静电相互作用。通过 ITC检测发现 D194G B. s-BDH 可与底物结合但不能与底物发生反应,本文比较了该酶的动力学参数Kmkcat,得出与之相符的结果。Ui等[23]报道了来源于K. pneumoniae IAM和K. terrigena VTT-E-74023的BDH,其第196位氨基酸Gln下游氨基酸序列的差别对酶特性影响不大。Otagiri等[27]报道了meso-BDH活性位点残基的突变(双突变体Q140I/ N146F和三重突变Q140I/N 146F/W190H)显著降低了以meso-BD为底物的活性,其中三重突变相比于野生型meso-BDH和(2S,3S)-BDH,对(2S,3S)-BD的氧化仍保持约50%和67%的活性。

E. a-BDH以AC为底物时具有较小的Km值,表明该酶以NADH为辅酶还原AC具有更高的亲和力。所以,BD是E. aerogenes CICC10293发酵过程中的主要产物。其他天然菌株也有类似的报道,如K. pneumonia[9]K. oxytoca[10]S. marcescens[28]。酶动力学测定结果表明,D194G B. s-BDH以AC为底物的Km值是E. a-BDH的5.63倍、是DA的4.13倍,较高Km值是D194G突变显著降低D194G B. s-BDH酶活力的原因。此外,未检出D194G B. s-BDH具有氧化meso-BD的活性,表明Gly取代Asp也可能导致酶的相关活性消失。因此,D194G突变影响了D194G B. s-BDH的活性。

参考文献
[1] Xiao Z J, Lu J R. Strategies for enhancing fermentative production of acetoin: A review. Biotechnology Advances, 2014, 32(2): 492-503.
[2] Sun J, Zhang L, Rao B, et al. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresource Technology, 2012, 119(7): 94-98.
[3] Liu Y, Zhang S, Yong Y, et al. Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09. Process Biochemistry, 2011, 46(1): 390-394.
[4] Teixeira R M, Cavalheiro D, Ninow J L, et al. Optimization of acetoin production by Hanseniaspora guilliermondii using experimental design. Brazilian Journal of Chemical Engineering, 2002, 19(2): 181-186.
[5] Zhang Y J, Li S B, Liu L M, et al. Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens. Bioresource Technology, 2013, 130(1): 256-260.
[6] Luo Q L, Wu J, Wu M C. Enhanced acetoin production by Bacillus amyloliquefaciens through improved acetoin tolerance. Process Biochemistry, 2014, 49(8): 1223-1230.
[7] Zhang X, Zhang R Z, Bao T, et al. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Merabolic Engineering, 2014, 23(2): 34-41.
[8] Li S B, Xu N, Liu L M, et al. Engineering of carboligase activity reaction in Candida glabrata for acetoin production. Merabolic Engineering, 2014, 22(3): 32-39.
[9] Borim K, Lee S, Park J, et al. Enhanced 2, 3-butanediol production in recombinant Klebsiella pneumoniae via overexpression of synthesis-related genes. Journal of Microbiology and Biotechnology, 2012, 22(9): 1258-1263.
[10] Han S H, Lee J E, Park K, et al. Production of 2, 3-butanediol by a low-acid producing Klebsiella oxytoca NBRF4. New Biotechnology, 2013, 30(2): 166-172.
[11] Yang T W, Rao Z M, Zhang X, et al. Effects of corn steep liquor on production of 2, 3-butanediol and acetoin by Bacillus subtilis. Process Biochemistry, 2013, 48(11): 1610-1617.
[12] Nakashima N, Akita H, Hoshino T. Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2, 3-butanediol and acetoin, Merabolic Engineering, 2014, 25(1): 204-214.
[13] Ji X J, Huang H, Ouyang P K. Microbial 2, 3-butanediol production: a state-of-the-art review. Biotechnology Advances, 2011, 29(3): 351-364.
[14] Celinska E, Grajek W. Biotechnological production of 2, 3-butanediol - current state and prospects, Biotechnology Advances, 2009, 27(6): 715-725.
[15] Li L X, Wang Y, Zhang L J, et al. Biocatalytic production of (2S, 3S)-2, 3-butanediol from diacetyl using whole cells of engineered Escherichia coli. Bioresource Technology, 2011, 115(4): 111-116.
[16] Zhang LY, Yang Y L, Sun J A, et al. Microbial production of 2, 3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresource Technology, 2010, 101(6): 1961-1967.
[17] Yu B, Sun J B, Bommareddy R R, et al. Novel (2R, 3R)-2, 3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321. Applied and Environmental Microbiology, 2011, 77(12): 4230-4233.
[18] González E, Fernández M R, Larroy C, et al. Characterization of a (2R, 3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Journal of Biological Chemistry, 2000, 275(46): 35876-35885.
[19] Hao W B, Ji F L, Wang J Y, et al. Biochemical characterization of unusual meso-2, 3-butanediol dehydrogenase from a strain of Bacillus subtilis. Journal of Molecular Catalysis B-Enzymatic, 2014, 109(1): 184-190.
[20] Otagiri M, Kurisu G, Ui S, et al. Crystal structure of meso-2, 3-butanediol dehydrogenase in a complex with NAD+ and inhibitor mercaptoethanol at 1.7 A resolution for understanding of chiral substrate recognition mechanisms. Journal of Biochemistry, 2001, 129(2): 205-208.
[21] Giovannini P P, Medici A, Bergamini C M, et al. Properties of diacetyl (acetoin) reductase from Bacillus stearothermophilus. Bioorganic & Medicinal Chemistry Letters, 1996, 4(8): 1197-1201.
[22] Schwarz J G, Hang Y D. Purification and characterization of diacetyl reductase from Kluyveromyces marxianus. Letters in Applied Microbiology, 1994, 18(5): 272-276.
[23] Ui S, OkajimaY, Mimura A, et al. Sequence analysis of the gene for and characterization of D-acetoin forming meso-2,3-butanediol dehydrogenase of Klebsiella pneumoniae expressed in Escherichia coli. Journal of Fermentation and Bioengineering, 1997, 83(97): 32-37.
[24] Filling C, Berndt K D, Benach J, et al. Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. Journal of Biological Chemistry, 2002, 277(28): 25677-25684.
[25] Ghosh D, Weeks C M, Grochulski P, et al. Three-dimensional structure of holo 3 alpha, 20 beta-hydroxsteroid dehydrogenase: a member of short-chain dehydrogenase family. Proceedings of the National Academy of Sciences, 1991, 88(22): 10064-10068.
[26] Tanaka N, Nonaka T, Nakanishi M, et al. Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 ? resolution: the structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family. Structure, 1996, 4(1): 33-45.
[27] Otagiri M, Ui S, Takusagawa Y, et al. Structural basis for chiral substrate recognition by two 2,3-butanediol dehydrogenases. FEBS Letters, 2010, 584(1): 219-223.
[28] Rao B, Zhang L Y, Sun J A, et al. Characterization and regulation of the 2, 3-butanediol pathway in Serratia marcescens. Applied Microbiology and Biotechnology, 2012, 93(5): 2147-2159.