中国生物工程杂志  2015, Vol. 35 Issue (5): 87-95

文章信息

王永成, 陈涛, 石婷, 王智文, 赵学明
WANG Yong-cheng, CHEN Tao, SHI Ting, WANG Zhi-wen, ZHAO Xue-ming
嘌呤核苷及其衍生物的代谢工程
Progress in Biosynthesis of Purine Nucleosides and Their Derivatives by Metabolic Engineering
中国生物工程杂志, 2015, 35(5): 87-95
China Biotechnology, 2015, 35(5): 87-95
http://dx.doi.org/10.13523/j.cb.20150513

文章历史

收稿日期:2015-01-28
修回日期:2015-03-09
嘌呤核苷及其衍生物的代谢工程
王永成1,2,3, 陈涛1,2,3, 石婷1,2,3, 王智文1,2,3 , 赵学明1,2,3    
1. 天津大学化工学院 天津 300072;
2. 系统生物工程教育部重点实验室 天津 300072;
3. 天津化学化工协同创新中心 天津 300072
摘要:嘌呤核苷及其衍生物被广泛应用于食品和医药领域。利用诱变筛选技术可以获得嘌呤核苷类产品的工业生产菌株,但往往耗时,效率低,而且获得的某些高产菌株还存在不稳定的缺陷。菌株代谢调控与生理生化的研究为代谢工程优化嘌呤核苷类产品的合成提供了理论基础,利用代谢工程改造菌株合成嘌呤核苷也引起了研究人员的关注。系统地介绍了微生物嘌呤生物合成途径及其调控机制,综述了嘌呤核苷类产品及其衍生物的代谢工程研究进展,最后讨论了利用代谢工程改造菌株合成这些产品面临的问题及今后的研究方向。
关键词嘌呤核苷     嘌呤生物合成途径     调控机制     代谢工程    
Progress in Biosynthesis of Purine Nucleosides and Their Derivatives by Metabolic Engineering
WANG Yong-cheng1,2,3, CHEN Tao1,2,3, SHI Ting1,2,3, WANG Zhi-wen1,2,3 , ZHAO Xue-ming1,2,3    
1. School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China;
2. Key Laboratory of Systems Bioengineering Ministry of Education, Tianjin 300072, China;
3. SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Abstract:Purine nucleosides and their derivatives play an very important role in food and pharmaceutical industry. In recent years, they have gained further importance because of their beneficial effects, related to their antioxidant, neuroprotective and immunomodulatory properties. However, It is time consuming and low efficiency to get high-performing strains through mutation screening techniques. Moreover, some of these strains have disadvantage of genetic instability. With the better understanding of regulation mechanism of microorganism, metabolic engineering has been widely applied to improve the production of purine nucleoside products. In this article, the purine biosynthetic pathway and regulation mechanism are discussed, and progress in metabolic engineering of purine nucleosides and their derivatives is also reviewed. Meanwhile, the current problems and future research direction are proposed.
Key words: Purine nucleosides     Purine biosynthetic pathway     Regulation mechanism     Metabolic engineering    

嘌呤核苷类生物基产品,如肌苷、鸟苷、肌苷酸等,在医药和食品领域具有广泛的应用。这类产品能影响神经系统活动,产生心血管效应,可起到镇静、扩张血管、降血压等作用。开发研制具有抗肿瘤、抗病毒活性的核苷及其衍生物等新药已成为当今研究热点方向之一。此外,其还可用于生产各种功能性食品,包括抗寒食品、减肥食品等[1, 2]

20世纪60年代,诱变筛选技术是获得嘌呤核苷类产品工业生产菌株的主要手段[2]。然而,随机诱变获得工业生产菌株往往需要较长的时间,效率相对较低,并且诱变后的某些高产菌株还存在不稳定的缺陷。近年来,随着菌株代谢调控与生理生化研究的深入,代谢工程改造菌株合成嘌呤核苷引起了研究人员的关注,也取得了很大的进展。本文系统地介绍了嘌呤生物合成途径的组成,嘌呤生物合成途径的调控机制,以及利用代谢工程改造菌株合成嘌呤核苷类代谢物的研究进展,并讨论其面临的问题和今后的研究方向。 1 嘌呤生物合成途径

微生物嘌呤生物合成途径如图 1所示,嘌呤核苷类代谢物的生物合成途径包括两种:从头合成途径和补救合成途径。

图 1 嘌呤核苷及其衍生物生物合成途径[1] Fig. 1 Schematic overview of the biosynthetic pathways of purine nucleosides and their derivatives R-5-P: Ribose-5-phosphate; PRPP:Phosphoribosyl pyrophosphate; PRA:5-Phosphoribosylamine; GAR:5′-Phosphoribosylglycinamide; FGAR: 5′-Phosphoribosyl-N-formylglycinamide; FGAM: 2-(Formamido)-N1-(5′-phosphoribosyl)acetamidine; AIR: Aminoimidazole ribotide; CAIR: 1-(5-Phospho-D-ribosyl)-5-amino-4-imidazolecarboxylate; SAICAR: 1-(5′-Phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-imidazole; AICAR-P: 1-(5′-Phosphoribosyl)-5-amino-4-imidazolecarboxamide; FAICAR: 1-(5′-Phosphoribosyl)-5-formamido-4-imidazolecarboxamide; IMP:Inosine monophosphate; sAMP: Adenylosuccinate; AMP: Adenosine monophosphate; XMP: Xanthosine monophosphate; GMP: Guanosine monophosphate; GDP: Guanosine 5′-diphosphate; GTP: Guanosine 5′-triphosphate; ADP: Adenosine 5′- diphosphate; ATP: Adenosine 5′-triphosphate. Ino: Inosine; Xantho: Xanthosine; Guo: Guanosine; Ado,adenosine; Gua: Guanine; Xan: Xanthine; Hyp: Hypoxanthine; Ade: Adenine; DARPP: 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone-50-phosphate; ARPP: 5-amino-6-(50-phospho-ribosylamino)uracil; ArPP: 5-amino-6-(50-phospho-ribitylamino)uracil; ArP: 4-(1-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine; DHPB: 3,4-dihydroxy-2-butanone 4-phosphate; DRL: 6,7-dimethyl-8-ribityl-lumazine; Numbers represent enzymatic activities: 1: PRPP synthetase; 2: Gutamine phosphoribosyl pyrophosphate amidotransferase; 3: Phosphoribosylglycinamide synthetase; 4: Phosphoribosylglycinamide formyltransferase; 5: Phosphoribosylformylglycinamidine synthase; 6: Phosphoribosylaminoimidazole synthetase; 7: Phosphoribosylaminoimidazole carboxylase; 8: Phosphoribosylaminoimidazole-succinocarboxamide synthase; 9: Adenylosuccinate lyase; 10/11: Phosphoribosylaminoimidazolecarboxamide formyltransferase; 12: Adenylosuccinate synthase; 13: Adenylosuccinate lyase; 14: IMP dehydrogenase; 15: GMP synthase; 16: GMP reductase; 17: AMP deaminase; 18: 5′-nucleotidase; 19: Adenosine kinase; 20: Inosine/guanosine kinase; 21: Purine-nucleoside phosphorylase; 22: Guanylate/adenylate kinase; 23: Nucleosid-diphosphate kinase; 24: Guanine deaminase; 25: Xanthine dehydrogenase/oxidase; 26: Adenine deaminase; 27: Phosphoribosyltransferase; 28: Adenosine deaminase; 29: Adenine phosphoribosyltransferase; 30: Mannose-1-phosphate guanylyltransferase; 31: GDP-D-mannose-4,6-dehydratase; 32: GDP-4-keto-6-deoxymannose; 33: GTP cyclohydrolase II; 34: Diaminohydroxyphosphoribosylaminopyrimidine deaminase; 35: Diaminohydroxyphosphoribosylaminopyrimidine deaminase/5-amino-6-(5-phosphoribosylamino)uracil reductase; 36: Reductase; 37: 6,7-dimethyl-8-ribityllumazine synthase; 38: Riboflavin synthase; 39: 3,4-dihydroxy 2-butanone 4-phosphate synthase; 40: Phosphopentosisomerase; 41: 6-phosphogluconate dehydrogenase; 42: 6-phosphogluconolactonase; 43: Glucose-6-phosphate 1-dehydrogenase; Black solid lines represent an enzymatic process; Dashed lines and hollow arrows depict other metabolic connections outside the pathway,the dash-dotted lines depict salvage pathway. The cross indicates the deletion of the corresponding genes. The triangle indicates the overexpression of the corresponding genes. The star depicts the overexpression of the genes released from feedback inhibition
1.1 从头合成途径

在微生物中,嘌呤核苷的生物合成途径是从5-磷酸核糖焦磷酸(PRPP)和谷氨酰胺(glutamine)开始,经过十步反应生成肌苷酸(inosine acid,inosine mophosphate,IMP)。IMP又称为次黄嘌呤核苷酸,是转变为其他嘌呤核苷酸的重要前体物,因此可以将IMP称为嘌呤生物合成途径的中心代谢物[3]。IMP通过两条支路分别转化为腺苷单磷酸(AMP)和鸟苷单磷酸(GMP)。其中,AMP合成途径中腺苷酸琥珀酸合成酶和腺苷酸琥珀酸裂解酶分别催化IMP生成sAMP和AMP,而在GMP合成途径中IMP脱氢酶催化IMP生成黄苷酸(XMP),再由GMP合成酶催化XMP生成GMP。

一些微生物如大肠杆菌(Escherichia coli)和枯草芽胞杆菌(Bacillus subtilis),IMP生物合成相关基因大部分是以嘌呤操纵子(pur operon)形式存在。以枯草芽胞杆菌为例,嘌呤操纵子由3个重叠基因簇[purEKB-purCSQLF-purMNH(J)]以及3′端purD基因组成[4],编码从PRPP至IMP需要的所有酶。嘌呤操纵子的三个重叠基因簇被间隔序列隔开,其中purB和purC、purF和purM以及purH(J)和purD之间的序列间隔长度分别为73bp、101bp和15bp;而大肠杆菌的嘌呤操纵子基因分散于染色体中,除了嘌呤基因purH(J)D、purMN和purEK以基因簇形式存在外,其它嘌呤基因分散于染色体上[5]1.2 补救合成途径

在补救合成途径中,磷酸核糖转移酶催化PRPP和嘌呤碱生成相应的嘌呤核苷[6]。另外,一些脱氨酶可以催化不同的嘌呤之间相互转化,腺嘌呤脱氨酶催化腺嘌呤(Ade)生成次黄嘌呤(Hyp);鸟嘌呤脱氨酶催化鸟嘌呤(Gua)生成黄嘌呤(Xan);黄嘌呤脱氢酶催化黄嘌呤(Xan)生成次黄嘌呤(Hyp)。 2 嘌呤生物合成途径调控机制

微生物的嘌呤生物合成途径较长,GMP和AMP是细胞合成DNA和RNA的前体物,且嘌呤核苷为细胞的生长繁殖提供必需的能量,因此嘌呤生物合成途径受到多种调控机制的严格调控。在微生物中,嘌呤生物合成途径受到的调控方式可以归纳为转录阻遏、衰减机制、前馈激活和反馈抑制等[7](图 2)。

图 2 枯草芽胞杆菌嘌呤从头合成途径调控机制[8] Fig. 2 Regulation of the de novo purine biosynthetic pathway in B. subtilis (A)Transcription regulation of pur operon by PurR and a guanine-sensing riboswitch (B) Feedback inhibition and feedforward activation regulation of purine pathway at metabolic levels. Black solid lines depict represent metabolic conversions,dash-dotted lines represent enzyme activation,and dashed lines indicate feedback inhibition. R-5-P: Ribose-5-phosphate; PRPP: Phosphoribosyl pyrophosphate; PRA: 5-phospho-α-D-ribosylamin; IMP: Inosine monophosphate; XMP: Xanthosine monophosphate; GMP: Guanosine monophosphate; GDP: Guanosine 5′-diphosphate; GTP: Guanosine 5′-triphosphate; sAMP: Adenylosuccinate; AMP: Adenosine monophosphate; ADP: Adenosine 5′- diphosphate; ATP: Adenosine 5′-triphosphate; prs: PRPP synthetase; purF: PRPP amidotransferases; guaB: IMP dehydrogenase; guaA: GMP synthase; guaC: GMP reductase; purA: Adenylosuccinate synthetase; purB: Adenylosuccinate lyase
2.1 转录阻遏机制

随着对嘌呤生物合成途径调控机制的深入研究,发现嘌呤操纵子转录起始的调控是通过阻遏蛋白PurR实现的(图 2A)。在大肠杆菌中,PurR可以与一段位于嘌呤基因启动子区域的重复序列结合,从而抑制嘌呤基因的转录。在枯草芽胞杆菌中,PurR可与一段位于嘌呤操纵子基因上游被称为Pur Boxes的重复序列相结合,抑制嘌呤操纵子的转录。嘌呤操纵子转录起始位点上游-145~-29区的顺式作用元件是阻遏蛋白PurR结合位点。当胞内腺嘌呤浓度较高时,整个嘌呤生物合成途径受到阻遏,研究发现-145~-29的调控区域的缺失突变会使腺嘌呤的阻遏作用消失[4, 9],这证实腺嘌呤的阻遏作用与阻遏蛋白PurR有关。

在大肠杆菌中,次黄嘌呤和鸟嘌呤可以激活PurR-DNA结合。而在枯草芽胞杆菌中,阻遏蛋白PurR调节嘌呤操纵子表达时,PRPP是阻遏蛋白PurR的效应因子,它能抑制PurR-DNA的结合或导致PurR-DNA结合能力的降低[10]。当细胞内PRPP浓度高时,PRPP与PurR相结合,阻碍PurR结合于Pur Boxes重复序列上,从而使嘌呤基因的表达不受抑制;腺嘌呤的阻遏作用是由于PRPP合成酶受到酶水平的反馈抑制作用引起的,过量的腺嘌呤抑制胞内PRPP的合成,细胞中PRPP浓度低,PRPP不能有效地与PurR相结合,PurR结合于Pur Boxes重复序列上,从而使嘌呤基因的表达受阻遏。

阻遏蛋白PurR不仅阻抑嘌呤操纵子的表达,还参与调节编码GMP还原酶的guaC基因,编码腺苷酸琥珀酸合成酶的purA基因以及与嘌呤运输蛋白相关基因(pbuG和pbuO)等的表达,这些基因上游也存在Pur Boxes重复序列,PurR与Pur Boxes重复序列结合从而可以调节这些基因的表达。 2.2 转录衰减机制

研究发现,枯草芽胞杆菌中存在一种由鸟嘌呤介导嘌呤操纵子转录的衰减机制,在嘌呤操纵子的mRNA 5′-UTR(非编码区)含有一个“核糖核酸开关”[11],可以结合鸟嘌呤形成抗终止子结构或终止结构,用以调节嘌呤操纵子的转录。鸟嘌呤直接作用前导mRNA的二级结构,决定前导mRNA的二级结构是否形成终止结构。当胞内鸟嘌呤浓度高时,鸟嘌呤与mRNA相结合形成终止子结构,导致嘌呤操纵子mRNA提前发生终止衰减,形成长度为200个核苷酸的mRNA。反之,鸟嘌呤不能与mRNA相结合进而形成抗终止子结构,从而使嘌呤操纵子mRNA正常转录。在大肠杆菌中还没有关于嘌呤基因受到转录衰减机制调控的报道。 2.3 酶水平的调节机制

嘌呤生物合成途径中存在着关键酶的反馈抑制和前馈激活调控机制(图 2B),这些酶不仅调节嘌呤核苷酸的总量,而且使ATP和GTP的水平保持相对平衡。 2.3.1 PRPP合成酶(ribose-phosphate pyrophosphokinase,EC:2.7.6.1 )

PRPP合成酶影响细胞中PRPP浓度,而PRPP是调节嘌呤核苷合成的重要信号分子,因此PRPP合成酶对嘌呤物质的合成与调控产生重要作用。在微生物中,该酶催化核糖-5-磷酸(R-5-P)和ATP合成PRPP,受ADP和GDP的反馈抑制,受到前体物核糖-5-磷酸的激活。解除反馈抑制的PRPP合成酶可有效提高肌苷和核黄素的产量[12, 13, 14]2.3.2 PRPP转酰胺酶(gutamine phospho-ribosyl pyrophosphate amidotransferase,EC:2.4.2.14 )

PRPP转酰胺酶催化嘌呤生物合成途径的第一个限速反应,将PRPP转化为1-氨基-5-磷酸核糖(PRA),因此PRPP转酰胺酶也是嘌呤生物合成途径的关键调节酶[15]。PRPP转酰胺酶包括两个重要区域[5]:N-末端的谷氨酰胺区域将谷氨酰胺转化为谷氨酸和NH3;C-末端的磷酸核糖转移酶区域结合PRPP,并利用由谷氨酰胺得到的或外部提供的NH3合成PRA。PRPP转酰胺酶酶活性的高低直接影响进入嘌呤生物合成途径的碳代谢通量,PRPP转酰胺酶受到嘌呤核苷类物质的反馈抑制,反馈抑制由强到弱依次为:GMP、AMP、GDP、ADP、GTP和ATP,同时这些核苷酸还具有协同反馈抑制作用[16]。此外,PRPP与嘌呤核苷类物质竞争性与PRPP转酰胺酶结合,无PRPP时,PRPP转酰胺酶具有部分活性,PRPP可以激活PRPP转酰胺酶[5]

本课题组石婷等[8]对大肠杆菌和枯草芽胞杆菌的PRPP转酰胺酶进行氨基酸序列比对,预测了枯草芽胞杆菌中与反馈抑制作用有关的三个氨基酸位点(D293V,K316Q和S400W),并进行了突变。成功在酶水平上解除了PRPP转酰胺酶受到AMP,ATP,GMP和GTP的反馈抑制。 2.3.3 肌苷酸脱氢酶(inosine 5′-mono-phosphate dehydrogenase,EC:1.1.1.205 )

肌苷酸脱氢酶催化烟酰胺腺嘌呤二核苷酸(NAD+)和IMP合成XMP,该反应是GMP合成分支的第一个反应。枯草芽胞杆菌中由guaB基因编码的肌苷酸脱氢酶受到GMP的反馈抑制,GMP反馈抑制IMP向XMP转变,ATP前馈激活GMP的生成,肌苷酸脱氢酶活性与胞内GTP/ATP的大小成负相关[17]2.3.4 腺苷酸琥珀酸合成酶(adenylo-succinate synthase,EC:6.3.4.4 )

腺苷酸琥珀酸合成酶催化天门冬氨酸与IMP生成腺苷酸代琥珀酸(adenylosuccinate),GTP水解供能,受到GTP的前馈激活,AMP的反馈抑制[17]3 嘌呤核苷及其衍生物的代谢工程研究进展

基于嘌呤生物合成途径的生物基产品主要有肌苷、鸟苷以及嘌呤核苷类衍生物。嘌呤生物合成途径的代谢调控机制研究为代谢工程指导嘌呤核苷类产品的生产提供了理论基础,表 1列出了不同菌株中嘌呤核苷及其衍生物的代谢工程改造。

表1 不同菌株嘌呤核苷及其衍生物的代谢工程改造 Table 1 Metabolic engineering of purine nucleosides and their derivatives in different strains
OrganismGenetic modificationsMain product(s)Key featureRef
Escherichia coliDeleted add,deoD,purA,purR; overespressed site-directed mutagenesis purFK326Q,P410WInosineTiter:1 g/L18
Deleted purA,deoD,purR,add,edd,pgi,yicP,xapA; overexpressed purFK326Q,prsD128AInosineTiter:6.2 g/L13
Deleted edd,pgi,yicPInosineTiter:3.7 g/L19
Deleted xapA,guaAInosineTiter:5.6 g/L20
Overexpressed guaB,guaA,gskGDP-L-fucoseTiter:305 mg/L21
Deleted add,deoD,purA,purR,gsk; overexpressed purFK326QInosine,guanosineTiter:1.2 g/L22
Corynebacterium ammoniagenesDeleted tktInosineTiter:11.1 g/L23
Corynebacterium glutamicumDeleted pgi,purA,guaB2; overexpressed site-directed mutagenesis purFK348QIMPConcentration:12.88 ± 0.74 μmol g-1 CDW24
Bacillus subtilisDeleted purA,guaB,punA,deoD,purR,pur operon (5′-UTR); overepressed pur operonInosineTiter:6 g/L25
Deleted purA,deoDInosineTiter:7.6 ± 0.34 g/L26
Overepressed pur operonRiboflavinTiter:5.1 g/L27
Overexpressed prs,ywlFRiboflavinTiter:15 g/L28
Deleted purR,pur operon(5′-UTR); overexpressed site-directed mutagenesis purF D293V,K316Q,S400WRiboflavinTiter:826 ± 6.27 mg/L8
Deleted purH,purR,pur operon(5′-UTR); overexpressed site-directed mutagenesis prsD128A and purFK326Q,P410WAICARTiter:11~13 g/L29
Bacillus amyloliquefaciensOverexpressed pbuE,E. coli nepIInosineTiter:8.7 g/L30
Co-expressed prs,purFGuanosineTiter:12.8 g/L31
Overexpressed guaBGuanosineTiter:13.5 g/L31
Overexpressed mutagenesis purFGuanosineTiter:11 g/L32
Overexpressed site-directed mutagenesis prsN120SGuanosineYield:3.1 g guo/g glucose12
Overexpressed site-directed mutagenesis prsL135IGuanosineYield:4.0 g guo/g glucose12
3.1 肌 苷

肌苷(inosine)又名次黄嘌呤核苷,是一种常规药物,在医疗上广泛用于治疗心脏病、肝病、眼科疾病等;肌苷也是工业合成抗病毒药物利巴韦林的原料,同时还是合成特鲜味精的主要原料。

解除嘌呤生物合成途径转录阻遏及酶水平上的反馈抑制等调控机制,阻断肌苷的分解途径[26],同时增加嘌呤生物合成途径的代谢通量是提高肌苷合成能力的重要策略。在大肠杆菌W3110中,Matsui等[18]敲除add(腺苷脱氨酶)、deoDpurA基因,阻断肌苷分解途径;进一步敲除purR基因解除嘌呤操纵子的转录阻遏机制,同时引入解除反馈抑制的PRPP转酰胺酶突变酶,肌苷产量可以达到1 g/L。Shimaoka等[13]研究发现,在大肠杆菌I-9中,采用低拷贝数量质粒表达purF突变基因肌苷产量达到3.6 g/L,进一步采用中等拷贝数量的质粒来表达prs突变基因,肌苷产量提高到6.2 g/L。在枯草芽胞杆菌168中,Asahara等[25]敲除编码核苷磷酸化酶的punAdeoD基因阻断肌苷分解途径,进一步敲除purR基因和嘌呤操纵子的“核糖核酸开关”,解除嘌呤生物合成途径转录阻遏和衰减机制,肌苷的最终产量达到6 g/L。另外,在谷氨酸棒杆菌ATCC13032(Corynebacterium Glutamicum)中,Peifer等[24]敲除purAguaB2,阻断IMP分解途径,同时引入purFK348Q来解除终产物对PRPP转酰胺酶的反馈抑制,IMP浓度由0.42±0.03μmol/g CDW提高到12.88±0.74μmol/g CDW,次黄嘌呤浓度提高348倍,达到101.53±1.09/g CDW,同时肌苷的浓度由0.21±0.04/g CDW提高到2.53±0.19/g CDW,笔者认为大部分肌苷转化成了次黄嘌呤,阻断肌苷到次黄嘌呤的代谢途径可以进一步提高肌苷的产量。

戊糖磷酸途径的改造也是提高肌苷合成能力的重要策略。敲除产氨棒杆菌KY13761(Corynebacterium ammoniagenes)中转酮酶的编码酶基因tkt,可以让碳代谢流从戊糖磷酸途径流向嘌呤生物合成途径,提高嘌呤合成途径的代谢通量,肌苷产量较出发菌提高了10%,达到11.1 g/L[23]。敲除大肠杆菌FADRdd中磷酸葡糖酸脱氢酶编码基因edd,阻断6-磷酸葡糖酸的分支途径,增加嘌呤生物合成途径前体物核糖-5-磷酸的供给,肌苷的产量从1.4 g/L提高到2.5 g/L,而敲除编码6-磷酸葡萄糖异构酶的pgi基因,阻断糖酵解途径,增加进入戊糖磷酸途径的通量,肌苷产量可以达到3.7 g/L[19]

此外,核苷酸转运系统的代谢工程改造对于肌苷的合成具有重要作用,这可能由于该途径末端代谢物存在强烈的酶水平反馈抑制作用。如在解淀粉芽胞杆菌AJ1991(Bacillus amyloliquefaciens)中,Sheremet等[30]过表达编码核苷酸转运蛋白的pbuE基因,肌苷产量较AJ1991提高100%,达到6 g/L,而过表达来自大肠杆菌的编码核苷酸转运蛋白的nepI基因,肌苷产量可以提高190%。 3.2 鸟 苷

鸟苷(guanosine)又名鸟嘌呤核苷。在医药工业领域,鸟苷主要作为利巴韦林、阿昔洛韦等核苷类抗病毒药物的重要中间体;在食品工业领域,鸟苷是合成增味剂核苷酸鸟苷酸二钠的主要原料。

解除嘌呤生物合成途径的调控机制,增加关键基因的表达以及切断其它代谢支路等代谢工程策略也被成功应用到鸟苷生产菌的构建。Zakataeva等[12]发现向解淀粉芽胞杆菌AJ1991的prs基因引入突变N120S和L135I,可以解除ADP和GDP对PRPP合成酶的反馈抑制,鸟苷得率分别提高15%和48%,而在枯草芽胞杆菌KMBS375中,相同的基因操作可以使鸟苷得率分别提高61%和71%。在大肠杆菌W3110中,Matsui等[22]敲除purF,purA,deoD,purR和add基因,阻断鸟苷降解途径和解除转录水平阻遏机制;进一步敲除gsk基因、表达解除反馈抑制的purF基因,菌株最终可以积累1210mg/L的肌苷,鸟苷产量达到60mg/L。鲍朋等[32]在解淀粉芽胞杆菌TA208中过表达解除反馈抑制的purF突变基因,鸟苷的产量从9g/L提高到11g/L,产量提高22%。

单独增加嘌呤生物合成途径中关键基因的表达有时并不能达到预期的效果,对关键基因进行协同表达可以有效提高鸟苷产量。何逵夫等[31]详细地研究了prs,purF,guaB过表达对解淀粉芽胞杆菌TA208发酵生产鸟苷的影响。他们发现prs和purF基因的单独过表达均未提高鸟苷产量;将prs和purF基因串联表达,鸟苷产量达到12.8 g/L,较出发菌株提高了14.4%,糖苷转化率增加6.8%。guaB基因过表达的工程菌鸟苷产量较出发菌株提高20.7%。 3.3 嘌呤核苷类衍生物

代谢工程改造嘌呤生物合成途径,除了可以应用于提高嘌呤核苷类产品的产量,对嘌呤核苷类衍生物,如核黄素、腺苷酸活化蛋白激酶激活剂(AICAR)、鸟苷二磷酸-L-海藻糖(GDP-L-fucose)等的合成也具有重要意义。

嘌呤生物合成途径中GTP是核黄素生物合成的前体物,增加GTP的供给可以提高核黄素的产量。在枯草芽胞杆菌中,本课题组史硕博等[28]通过转录组比较分析核黄素高产菌B.subtilis RH33和野生型菌株168,发现B.subtilis RH33中嘌呤操纵子(purEKBCS-QLFMNHD)和其它受阻遏蛋白PurR调控基因的转录水平下调,限制了核黄素前体物的供给,在B.subtilis RH33中过表达prs和ywlF基因,提升胞内PRPP浓度,解除阻遏蛋白对嘌呤操纵子的阻遏机制,提高嘌呤生物合成途径代谢通量,最终核黄素的产量达到15 g/L,较出发菌株提高了25%。此外,过表达核黄素高产菌B.subtilis PK嘌呤生物合成途径中purF、purM、purN、purH和purD基因,提高核黄素合成前体物GTP的供给,工程菌B.subtilis PK-P核黄素产量较出发菌提高31%,核黄素的得率提高25%[27]

本课题组石婷等[8]敲除枯草芽胞杆菌嘌呤操纵子转录阻遏基因purR和其“核糖核酸开关”,解除了嘌呤生物合成途径的转录阻遏和衰减机制;进一步过表达purF突变基因(D293V,K316Q和S400W),解除终产物对PRPP转酰胺酶的反馈抑制作用,最后工程菌核黄素产量较出发菌株提高了63%。

此外,也有关于代谢工程合成腺苷酸活化蛋白激酶激活剂(AICAR-P)和鸟苷二磷酸-L-海藻糖(GDP-L-fucose)的报道,Lobanov等[29]在枯草芽胞杆菌AM732(野生型)中敲除purH基因,阻断AICAR-P的降解途径;敲除purR基因和嘌呤操纵子的“核糖核酸开关”,进一步在淀粉酶水解位点过表达大肠杆菌的prs突变基因和purF突变基因,从转录水平和酶水平解除嘌呤操纵子受到的调控,最后AICAR产量从痕量(少于0.001g/L)提高到11~13g/L。在大肠杆菌BL21star(DE3)中,Lee等[21]通过过表达guaB和guaA基因,提高前体物GTP供给,鸟苷二磷酸-L-海藻糖的产量达到261.7±0.6mg/L,较出发菌株提高35%,过表达gsk基因,增加鸟苷到GMP途径的代谢通量,鸟苷二磷酸-L-海藻糖产量达到305.5 ± 5.3 mg/L,提高58%。 4 展 望

利用代谢工程提高嘌呤核苷类产品的产量虽然取得了一定成就,但是嘌呤生物合成途径受到多种调控机制的严格调控,并与其他代谢途径如氨基酸和叶酸等[33, 34, 35]有着紧密的联系。在提高嘌呤核苷类产品产量的同时,嘌呤生物合成途径的代谢工程改造往往会影响菌株的生理特性,如敲除purA基因或过表达purF基因,菌体生长的速率会下降。另外,生物体代谢网络具有刚性和冗余性的特点,目前利用代谢工程改造嘌呤核苷菌株大多集中于敲除或过表达单个或少数基因,具有一定的盲目性,有时并不能达到预期的目的。

笔者认为今后的研究方向可以从以下几个方面展开:(1)从嘌呤核苷的合成、菌体的生长代谢如呼吸链改造,氧的利用等方面,组合优化相关途径基因,达到工程菌较好的生产能力;(2)根据基因组尺度的代谢网络的模拟预测找到基因靶点,利用基因组工程或基因组编辑技术[36, 37, 38, 39],在基因组尺度上更理性精确地对嘌呤及其相关途径如TCA和磷酸戊糖途径进行改造;(3)近几年,菌株的底物利用种类受到研究者的关注。也可以利用合成生物学方法,增加生产菌株的底物利用种类,期望用廉价的底物生产嘌呤核苷及其衍生物等高附加值产品。

参考文献
[1] Ledesma-Amaro R,Jiménez A,Santos M A,et al. Biotechnological production of feed nucleotides by microbial strain improvement. Process Biochemistry,2013,48(9):1263-1270.
[2] 蔡显鹏,储炬,庄英萍,等. 芽胞杆菌生产嘌呤核苷研究进展. 中国生物工程杂志,2002,22(5):9-14. Cai X P,Chu J,Zhuang Y P,et al. Progress on manufacturing purine nucleoside with Bacillus genus. China Biotechnology,2002,22(5):9-14.
[3] 徐善金,虞德兵,杜文兴. 肌苷酸及其相关酶的研究进展. 生物技术通报,2011,3:44-52. Xu S J,Yu D B,Du W X. Current research advances in IMP and related enzymes. Biotechnology Bulletin,2011,3:44-52.
[4] Ebbole D J,Zalkin H. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J Bio Chem,1987,262(17):8274-8287.
[5] 徐咏全,张蓓,张克旭. 谷氨酰胺磷酸核糖焦磷酸转酰胺酶研究进展. 生物技术通讯,2003,14(6):535-538. Xu Y Q,Zhang B,Zhang K X. Advanced studies on glutsmine phosphoribosylpyrophosphate amdo-transferase. Letters in Biotechnology,2003,14(6):535-538.
[6] Ljungdahl P O,Daignan-Fornier B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics,2012,190(3):885-929.
[7] Escobar-Henriques M,Daignan-Fornier B. Transcriptional regulation of the yeast GMP synthesis pathway by its end products. J Bio Chem,2001,276(2):1523-1530.
[8] Shi T,Wang Y,Wang Z,et al. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis. Microb Cell Fact,2014,13:101.
[9] Ebbole D J,Zalkin H. Detection of pur operon-attenuated mRNA and accumulated degradation intermediates in Bacillus subtilis. J Bio Chem,1988,263(22):10894-10902.
[10] Weng M,Nagy P L,Zalkin H. Identification of the Bacillus subtilis pur operon repressor. PNAS,1995,92(16):7455-7459.
[11] Mandal M,Boese B,Barrick J E,et al. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell,2003,113(5):577-586.
[12] Zakataeva N P,Romanenkov D V,Skripnikova V S,et al. Wild-type and feedback-resistant phosphoribosyl pyrophosphate synthetases from Bacillus amyloliquefaciens: purification, characteri-zation, and application to increase purine nucleoside production. Appl Microbiol Biotechnol,2012,93(5):2023-2033.
[13] Shimaoka M,Takenaka Y,Kurahashi O,et al. Effect of amplification of desensitized purF and prs on inosine accumulation in Escherichia coli. Journal of Bioscience and Bioengineering,2007,103(3):255-261.
[14] Jimenez A,Santos M A,Revuelta J L. Phospho-ribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii. BMC Biotechnol,2008,8:67.
[15] Batool S,Nawaz M S,Kamal M A. In silico analysis of the amido phosphoribosyltransferase inhibition by PY873, PY899 and a derivative of isophthalic acid. Invest New Drugs,2013,31(5):1355-1363.
[16] Zhou G,Charbonneau H,Colman R F,et al. Identification of sites for feedback regulation of glutamine 5-phosphoribosylpyrophosphate amido-transferase by nucleotides and relationship to residues important for catalysis. J Bio Chem,1993,268(14):10471-10481.
[17] Saxild H H,Nygaard P. Regulation of levels of purine biosynthetic enzymes in Bacillus subtilis: effects of changing purine nucleotide pools. J Gen Microbiol,1991,137(10):2387-2394.
[18] Matsui H,Kawasaki H,Shimaoka M,et al. Investigation of various genotype characteristics for inosine accumulation in Escherichia coli W3110. Biosci Biotechnol Biochem,2001,65(3):570-578.
[19] Shimaoka M,Kawasaki H,Takenaka Y,et al. Effects of edd and pgi disruptions on inosine accumulation in Escherichia coli. Biosci Biotechnol Biochem,2005,69(7):1248-1255.
[20] Shimaoka M,Takenaka Y,Mihara Y,et al. Effects of xapA and guaA disruption on inosine accumulation in Escherichia coli. Biosci Biotechnol Biochem,2006,70(12):3069-3072.
[21] Lee W H,Shin S Y,Kim M D,et al. Modulation of guanosine nucleotides biosynthetic pathways enhanced GDP-L-fucose production in recombinant Escherichia coli. Appl Microbiol Biotechnol,2012,93(6):2327-2334.
[22] Matsui H,Shimaoka M,Takenaka Y,et al. gsk disruption leads to guanosine accumulation in Escherichia coli. Biosci Biotechnol Biochem,2001,65(5):1230-1235.
[23] Kamada N,Yasuhara A,Takano Y,et al. Effect of transketolase modifications on carbon flow to the purine-nucleotide pathway in Corynebacterium ammoniagenes. Appl Microbiol Biotechnol,2001,56(5-6):710-717.
[24] Peifer S,Barduhn T,Zimmet S,et al. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine. Microb Cell Fact,2012,11:138.
[25] Asahara T,Mori Y,Zakataeva N P,et al. Accumulation of gene-targeted Bacillus subtilis mutations that enhance fermentative inosine production. Appl Microbiol Biotechnol,2010,87(6):2195-2207.
[26] Li H,Zhang G,Deng A,et al. De novo engineering and metabolic flux analysis of inosine biosynthesis in Bacillus subtilis. Biotechnol Lett,2011,33(8):1575-1580.
[27] Shi S,Shen Z,Chen X,et al. Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis. Biochemical Engineering Journal,2009,46(1):28-33.
[28] Shi S,Chen T,Zhang Z,et al. Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production. Metab Eng,2009,11(4–5):243-252.
[29] Lobanov K V,Errais Lopes L,Korol'kova N V,et al. Reconstruction of purine metabolism in Bacillus subtilis to obtain the strain producer of AICAR: a new drug with a wide range of therapeutic applications. Acta Naturae,2011,3(2):79-89.
[30] Sheremet A S,Gronskiy S V,Akhmadyshin R A,et al. Enhancement of extracellular purine nucleoside accumulation by Bacillus strains through genetic modifications of genes involved in nucleoside export. J Ind Microbiol Biotechnol,2011,38(1):65-70.
[31] 何逵夫,马跃超,杜姗姗,等. 解淀粉芽胞杆菌关键酶基因过表达对鸟苷积累的影响. 微生物学报,2012,52(6):718-725. He K F,Ma Y C,Du S S,et al. Effects of overexpression of key enzyme genes on guanosine accumulation in Bacillus amyloliquefaciens. Acta Microbiologica Sinica,2012,52(6):718-725.
[32] 鲍朋,陈宁,温廷益. 修饰的谷氨酰胺磷酸核糖焦磷酸转酰胺酶对鸟苷产量的影响. 安徽农业科学,2011,39(17):10097-10111. Bao P,Chen N,Wen T Y. Effects on guanosine productivity by modifying glutamine phospho-ribosylpyrophosphate amidotransferase. Journal of Anhui Agri Sci,2011,39(17):10097-10111.
[33] Rébora K,Laloo B,Daignan-Fornier B. Revisiting purine-histidine cross-pathway regulation in Saccharomyces cerevisiae: a central role for a small molecule. Genetics,2005,170(1):61-70.
[34] Gauthier S,Coulpier F,Jourdren L,et al. Co-regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations. Molecular Microbiology,2008,68(6):1583-1594.
[35] Ramazzina I,Costa R,Cendron L,et al. An aminotransferase branch point connects purine catabolism to amino acid recycling. Nat Chem Biol,2010,6(11):801-806.
[36] Ji W,Lee D,Wong E,et al. Specific gene repression by CRISPRi system transferred through bacterial conjugation. ACS Synth Biol,2014,3(12):929-931.
[37] Konermann S,Brigham M D,Trevino A E,et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature,2015,517(7536):583-588.
[38] Wang H H,Isaacs F J,Carr PA,et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature,2009,460(7257):894-898.
[39] Warner J R,Reeder P J,Karimpour-Fard A,et al. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol,2010,28(8):856-862.