中国生物工程杂志  2015, Vol. 35 Issue (4): 17-22

文章信息

魏金梅, 范小琴, 熊海庭, 高学娟, 刘小会, 刘朗夏
WEI Jin-mei, FAN Xiao-qin, XIONG Hai-ting, GAO Xue-juan, LIU Xiao-hui, LIU Lang-xia
hnRNPK与Nef相互作用并有利于细胞表面CD4的表达
hnRNPK Interacts with Nef and Facilitates the Cell Surface Expression of CD4
中国生物工程杂志, 2015, 35(4): 17-22
China Biotechnology, 2015, 35(4): 17-22
http://dx.doi.org/10.13523/j.cb.20150403

文章历史

收稿日期:2015-02-15
修回日期:2015-03-06
hnRNPK与Nef相互作用并有利于细胞表面CD4的表达
魏金梅, 范小琴, 熊海庭, 高学娟, 刘小会, 刘朗夏     
广东省高校功能蛋白质研究重点实验室 暨南大学生命与健康工程研究院 广州 510632
摘要:目的:前期不同的研究分别证明HIV蛋白Nef下调宿主细胞表面受体CD4的表达,以及Nef与宿主细胞蛋白heterogeneous nuclear ribonucleoprotein K (hnRNPK)存在相互作用。因此提出了两个值得研究探讨的重要问题:(1)hnRNPK是否参与调节细胞表面CD4的表达?(2)Nef是否通过hnRNPK调节细胞表面CD4的表达?方法:利用半体外GST-pulldown技术验证Nef与hnRNPK存在相互作用。通过瞬时转染的方式将HIV-1Nef表达在HeLa-CD4细胞里,同时利用siRNA干扰技术敲低hnRNPK,最后运用流式细胞技术检测细胞表面CD4的表达水平。结果:(1)GST-pulldown结果验证了Nef与hnRNPK存在相互作用;(2)Nef的表达使细胞表面CD4水平下降约75%;(3)不管是否有Nef,hnRNPK的敲低都使细胞表面CD4表达水平明显下降(50%);同样的,Nef下调CD4的作用也不受hnRNPK敲低的影响。结论:(1)hnRNPK与Nef相互作用;(2)hnRNPK 有利于细胞表面CD4的表达,其与Nef的下调作用的关系尚不明确,Nef对CD4的下调作用可能涉及有其他因素参与的复杂调控。
关键词分子生物学     Nef     CD4     hnRNPK     流式细胞术    
hnRNPK Interacts with Nef and Facilitates the Cell Surface Expression of CD4
WEI Jin-mei, FAN Xiao-qin, XIONG Hai-ting, GAO Xue-juan, LIU Xiao-hui, LIU Lang-xia     
Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
Abstract:Objective: Previous studies have respectively demonstrated that HIV-1 Nef down-regulated the cell surface expression of CD4, and that Nef interacted with the host protein hnRNPK. The purpose is to investigate (1) if hnRNPK regulates the surface expression of CD4, and (2) if hnRNPK is involved in the down-regulation of CD4 by HIV-1 Nef. Methods: in vitro GST-pulldown assay was used to confirm the interaction of HIV-1 Nef with hnRNPK. HIV-1 Nef was expressed in HeLa-CD4 cells by transient transfection, hnRNPK was knocked down by means of siRNA, and the cell surface expression level of CD4 was assessed by using flow cytometry. Results: (1) The GST-pulldown assay has successfully confirmed the Nef-hnRNPK interaction; (2) Nef ectopic expression resulted in about 75 percent reduction of the cell surface CD4 expression; (3) hnRNPK knockdown reduced dramatically the cell surface expression of CD4(50% of reduction) regardless Nef was present or not. Similarly, the effect of Nef on the cell surface expression of CD4 was not affected by hnRNPK knockdown. Conclusion: (1) hnRNPK interacts with Nef; (2) hnRNPK facilitates the cell surface expression of CD4, but the relationship between this effect and the down-regulation of CD4 expresion by Nef remains unclear, probably reflecting the complex regulation involving other factors.
Key words: Molecular Biology     Nef     CD4     hnRNPK     Flow cytometry    

Nef蛋白是艾滋病病毒HIV的辅助蛋白,包含206个氨基酸,相对分子质量为25kDa~27kDa,对于艾滋病的发病机理至关重要[1, 2, 3]。早期研究发现,Nef蛋白能够提高HIV病毒在宿主细胞内的复制及感染力[1, 4]。在病毒感染的早期,Nef能通过内吞作用下调宿主细胞表面受体CD4,CD4受体的下调抑制了CD4与gp120的结合从而促进病毒释放[5, 6, 7]。另外,Nef能与多种信号蛋白结合,如与Pak2的结合能影响F-actin的重排[8, 9];该蛋白高度保守的脯氨酸富集区PxxP(57-80aa)与Src家族激酶的SH3结合,从而抑制或激活它们的催化活性[10, 11]

hnRNPK是hnRNP家族的一种RNA结合蛋白,分子量为60kDa,它参与多种生物功能的调控,如信号转导、基因表达等[12, 13]。该蛋白包含3个KH (K homology)区和1个蛋白质相互区KI。KH区能与DNA、RNA结合,参与染色体重塑、基因转录、RNA剪接及蛋白质翻译等过程[13, 14, 15]。与Nef相似,KI区存在脯氨酸富集区,它能与含SH3结构的Scr家族激酶相互结合,包括Lck、Lyn等[14, 15, 16, 17]。Yoo等[17]发现hnRNPK能与N-WASP相互作用,调节细胞的粘附及传播。有研究表明,hnRNPK能调节多种细胞骨架相关基因的表达[18, 19],敲低hnRNPK可抑制TGF-β1引起的F-actin的极化现象[20]

上述hnRNPK与Nef的结构与功能特性特别是他们与细胞骨架的关系,以及Nef下调细胞表面CD4的表达的机制提示我们,hnRNPK也可能参与调节细胞表面CD4的表达。另有研究报道,hnRNPK与Nef存在相互作用,Nef通过hnRNPK增强Tat介导的HIV的转录活性[21],但其相互作用对宿主细胞表面CD4的表达是否有影响并不清楚。本研究通过GST-pulldown证实了两者的相互作用,并证明hnRNPK与Nef对细胞表面CD4的表达有相反的调节作用,两者之间有可能存在涉及复杂调控的非直接关系,这为进一步阐明细胞表面CD4表达水平的调节机制提供线索。

1 材料与方法 1.1 材 料 1.1.1 质粒、菌株及细胞

质粒pGEX-4T-1、pGEX-4T-GST-Nef、pCMV-N-Flag-Nef、pmCherry-N1、大肠杆菌E.coli DH5α、大肠杆菌E.coli BL21及HeLa-CD4细胞均由本实验室保存。

1.1.2 分子生物学相关材料试剂限制性内切酶EcoR Ι、BamH Ι、PrimeSTAR HS DNA聚合酶、T4 DNA连接酶等工具酶及DNA Marker购自TaKaRa公司;质粒提取和凝胶回收试剂盒购自天根公司;IPTG、溶菌酶、谷胱甘肽琼脂糖珠购自美国GE公司;DMEM高糖培养基购自美国Gibco公司;胎牛血清(FBS)购自德国PAA公司;转染试剂Lipofectamine 2000购自Invitrogen公司;PVDF膜、ECL显色液购自美国Bio-Rad公司;单克隆小鼠抗mCherry购自Abbkine公司,单克隆小鼠抗GAPDH购自北京中杉金桥公司,单克隆小鼠抗hnRNPK购自Santa Cruz公司,CD4 -FITC antibodies购自Miltenyi Biotec公司;其他试剂均为国产或进口分析纯。

1.2 方 法 1.2.1 GST蛋白及GST-Nef融合蛋白的表达与纯化

分别将pGEX-4T-1和pGEX-4T-GST-Nef转化至E.coli BL21感受态细胞,挑取阳性单克隆菌落置于含Amp的LB培养液中,37℃,200 r/min,过夜培养。次日按1∶100的比例扩大培养,至OD600为0.6~0.8时加入终浓度为0.2 mmol/L 的IPTG,室温诱导6~8 h。离心收集菌体,用含溶菌酶及PMSF 的EBC裂解液(150 mmol/L NaCl,50 mmol/L Tris,1%Triton,pH7.6)重悬菌体,超声破碎后,高速离心收集上清液。上清用Glutathione-Sepharose 4B 亲和层析法纯化目的蛋白。将结合有目的蛋白的GST、GST-Nef球珠重悬于EBC中,各取10 μl珠子悬液进行SDS-PAGE及考马斯亮蓝染色,分析蛋白纯化情况。

1.2.2 GST-pulldown验证Nef与hnRNPK的相互作用

37℃,5% CO2培养HeLa-CD4,细胞汇合率达80%~90%后收集细胞,加入EBC裂解液(含1 mmol/L蛋白酶抑制剂PI、1mmol/L PMSF、10mmol/L NaF、1mmol/L Na3VO4)裂解,4℃高速离心20 min,收集上清,用BCA法测定蛋白浓度。各取50 μg纯化的GST、GST-Nef蛋白与1.5 mg HeLa-CD4全细胞裂解液4℃旋转孵育过夜,2500 r/min,4℃离心5 min,弃上清,珠子用EBC清洗3~5次,加入30 μl 1×SDS loading buffer 沸水煮10 min,SDS-PAGE电泳后用单克隆鼠抗hnRNPK进行Western blot检测。

1.2.3 pmCherry-N1-Nef真核表达载体的构建

根据Nef基因序列设计引物,引物序列如下:F:5′-CGGAATTCTGATGGGTGGCAAG TGGTCA-3′(下划线为EcoR Ι酶切位点);R:5′- CGGGATCCTGGCAGTTCTTG

AAGTACT-3′(下划线为BamH Ι酶切位点)。以pCMV-N-Flag-Nef为模板,PCR扩增Nef片段,凝胶回收PCR产物。用EcoR Ι和BamH Ι双酶切pmCherry-N1质粒及回收的Nef片段,凝胶回收双酶切产物后用T4 DNA连接酶连接,连接产物转化至E.coli DH5α,抽提质粒进行双酶切及电泳鉴定,选取阳性克隆进行测序。

1.2.4 HeLa-CD4细胞的转染、干扰及细胞流式技术

处于对数生长期的HeLa-CD4细胞按60%汇合率铺板于6孔板,16 h后按Invitrogen公司Lipofectamine 2000转染试剂说明书进行转染及hnRNPK的siRNA干扰实验,hnRNPK干扰片段及干扰对照片段序列如下。

siRNA-hnRNPK 1: 5′-UAUUAAGGCUCUCCGUACATT-3′ 5′-UGUACGGAGAGCCUUAAUATT-3′

siRNA-hnRNPK 2: 5′-CCUUAUGAUCCCAACUUUUTT-3′ 5′-AAAAGUUGGGAUCAUAAGGTT-3′

siRNA-control: 5′-UUCUCCGAACGUGUCACGUTT-3′ 5′-ACGUGACACGUUCGGAGAATT-3′

实验分4组:(1)转染pmCherry-N1并加siRNA-control;(2)转染pmCherry-N1并加siRNA-hnRNPK;(3)转染pmCherry-N1-Nef并加siRNA-control;(4)转染pmCherry-N1-Nef并加siRNA-hnRNPK。转染及干扰36 h后收集细胞,取部分细胞用单克隆鼠抗mCherry、hnRNPK进行Western blot检测转染及干扰效果,剩余细胞与CD4-FITC 抗体孵育后,用BD AccuriTM C6流式细胞仪分析细胞表面CD4表达水平。该实验进行3次独立重复。

1.2.5 免疫印迹(Western blot)

样品经SDS-PAGE电泳后电转于PVDF膜上,TBST洗膜3次,5%脱脂奶粉室温封闭1 h,加入用5%脱脂奶粉稀释的一抗(1∶1000),4℃过夜孵育,TBST洗膜3次,加入相应二抗室温轻摇1h,TBST洗膜3次,用ECL发光液进行显影。

2 结 果 2.1 GST蛋白及GST-Nef融合蛋白的表达与纯化

分别将pGEX-4T-1和pGEX-4T-GST-Nef转化至E.coli BL21,IPTG诱导表达,收集菌体超声破碎,上清用Glutathione-Sepharose 4B亲和层析法纯化GST和GST-Nef融合蛋白,SDS-PAGE电泳及考马斯亮蓝染色法检测蛋白纯化情况。结果见图 1,泳道2、8分别表明成功诱导表达了GST和GST-Nef蛋白,GST分子量为26kDa,GST-Nef分子量约为52kDa,泳道6和泳道12表明成功纯化出GST、GST-Nef蛋白。

图 1 GST和GST-Nef蛋白的表达与纯化 Fig. 1 The Expression and purification of GST and GST-Nef 1: pGEX-GST without IPTG induction; 2: pGEX-GST with IPTG induction; 3: The pellet of cell lysates; 4:The supernatant of cell lysates; 5: The flow-through; 6: GST protein-beads after purification; M: Protein marker; 7: pGEX-GST-Nef without IPTG induction; 8: pGEX-GST-Nef with IPTG induction; 9: The pellet of cell lysates; 10:The supernatant of cell lysates; 11: The flow-through; 12: GST protein-beads after purification
2.2 GST-pulldown验证Nef与hnRNPK的相互作用

前期研究通过免疫共沉淀实验证明了Nef与hnRNPK在Jurkat细胞里存在相互作用[21]。为了验证这一发现,我们进行GST-pulldown实验。分别取50 μg纯化于Glutathione-Sepharose 4B上的GST和GST-Nef与1.5 mg HeLa-CD4的全细胞裂解液孵育,反复洗涤后进行SDS-PAGE电泳及Western blot分析,用单克隆鼠抗hnRNPK检测GST-Nef与hnRNPK的结合情况。结果显示(图 2),GST-Nef蛋白能够与细胞内表达的hnRNPK特异性结合,而阴性对照GST不能特异性结合hnRNPK,从而证实了Nef与hnRNPK存在相互作用。

图 2 GST-pulldown验证Nef与hnRNPK的相互作用Fig. 2 The interaction between Nef and hnRNPK determined by GST-pulldown Used 50 μg the purified GST and GST-Nef incubated with 1.5 mg whole cell lysis from HeLa-CD4 cell respectively. After sufficient cleaning the sample was subjected to SDS-PAGE electrophoresis. coomassie blue staining detected the presence of GST and GST-Nef. Western blot showed the GST-Nef could bond to hnRNPK,but not GST
2.3 pmCherry-N1-Nef真核表达载体的构建

以pCMV-N-Flag-Nef为模板,PCR扩增获得的目的片段Nef经EcoR Ι和BamH Ι双酶切后,用T4 DNA连接酶将其插入到载体pmCherry-N1中,连接产物转化至E.coli DH5α,挑取3个单克隆扩大培养,抽提质粒并进行双酶切鉴定。结果(图 3a)显示,③号质粒(泳道7、8)成功将目的片段Nef插入pmCherry-N1载体中,将③号质粒送Invitrogen公司测序,测序结果表明,重组质粒序列完全正确,图 3b为部分测序结果。

图 3 重组质粒pmCherry-N1-Nef的构建Fig. 3 The construction of the recombinant plasmid pmCherry-N1-Nef (a) Identification of pmCherry-N1-Nef by dual-enzyme digestion M: DNA marker; 1: Enzyme-digested product Nef; 2: The pmCherry-N1 plasmid digested by EcoR Ι and BamH Ι; 3,5,7: pmCherry-N1-Nef plasmid from different monoclonal; 4,6,8: Dual-enzyme digestion of different pmCherry-N1-Nef recombinant plasmid (b)Partial sequencing results of pmCherry-N1-Nef plasmid
2.4 Nef与hnRNPK 对细胞表面CD4的表达有相反的调节作用

为探究hnRNPK是否参与调节细胞表面CD4的表达,以及Nef是否通过hnRNPK调节细胞表面CD4的表达,对HeLa-CD4细胞进行转染及siRNA干扰实验,实验组别设置见方法。Western blot检测转染及干扰效果,结果(图 4a)显示,质粒pmCherry-N1 和pmCherry-N1-Nef成功转染并表达目的蛋白,另外,hnRNPK的干扰效果非常明显。流式细胞术检测细胞表面CD4表达水平,结果见图 4(b)(c),①③组相比,Nef的表达使细胞表面CD4表达水平大约降低了75%;②④组相比表明,敲低hnRNPK的情况下,Nef的表达以同样的幅度下调细胞表面CD4表达水平;比较 ①②组说明,没有Nef时敲低hnRNPK,细胞表面CD4表达水平降低了50%;③④组相比显示,Nef存在时,hnRNPK的敲低依然使细胞表面CD4表达水平明显下降。结果表明hnRNPK参与调节细胞表面CD4的表达,其调节作用与Nef相反,二者的作用可能独立不相关,但也有可能是涉及复杂调控的非直接关系。

图 4 敲低hnRNPK或表达Nef对细胞表面CD4表达的影响Fig. 4 Analyses of the effect of hnRNPK knockdown or Nef expression on the cell surface epression of CD4 (a)Western blot analyses showing the transient expression of mCherry-Nef and the siRNA interference of hnRNPK in HeLa-CD4 cells (b) Assays of CD4 cell surface expression by flow cytometry The data was analysed by Flow-Jo software (c) Mean fluorescence intensity of cell surface CD4 of three independent experiments The unpaired T test by GraphPad Prism5 software(* P<0.05,*** P<0.001). were performed for the statistical analysis
3 讨 论

HIV Nef蛋白作为病毒的辅助蛋白之一,在病毒感染的早期大量合成,对病毒的复制及感染力至关重要[1, 2, 3]。它能够下调宿主细胞表面受体CD4、CD28及组织相容性复合物[6, 22]。其N端能结合多种信号蛋白复合物,包括Lck、Src、PKCδ、Eed等,简称Nef相关激酶复合物(NAKC)[23, 24]。有研究表明,hnRNPK也是NAKC 成员之一,它通过Eed与Nef间接相互作用,导致Erk1/2的激活,进而增强Tat介导的病毒的转录活性[21]。另有文献报道,Nef与hnRNPK都存在能与Src家族激酶相互作用的脯氨酸富集区,且两者都与F-actin细胞骨架相关[8, 11, 14, 20]。这促使我们探究hnRNPK是否也参与细胞表面CD4表达的调节,且其调节机制是否与Nef的作用相关。

本研究采用GST-pulldown技术鉴定Nef与hnRNPK的相互作用。首先纯化GST和GST-Nef融合蛋白,看其能否沉淀细胞内源表达的hnRNPK,结果显示,GST-Nef能够与内源的hnRNPK结合,而阴性对照GST不能,证明Nef与hnRNPK确实存在相互作用。为了进一步研究hnRNPK是否参与调节细胞表面CD4的表达,以及Nef是否通过hnRNPK调节细胞表面CD4的表达,我们先构建了带红色荧光标签的真核表达载体pmCherry-N1-Nef,将其转染到稳定表达CD4的HeLa细胞中,并联合hnRNPK的敲低实验,采用流式细胞术分析细胞表面CD4的表达水平。结果显示,不管是否有Nef,hnRNPK的敲低都使细胞表面CD4表达水平明显下降;另一方面,不管是否敲低hnRNPK,Nef的表达都使细胞表面CD4表达水平下调约75%。这些结果表明hnRNPK参与调节细胞表面CD4的表达,其调节作用与Nef相反,本研究提示Nef不是单纯通过hnRNPK下调细胞表面CD4的表达。

在病毒感染的早期,Nef与细胞连接蛋白复合物和NBP1蛋白形成复合物,该复合物再与CD4的胞浆尾区双亮氨酸结合,然后通过内吞作用将复合物转运到溶酶体,促进CD4的降解[5, 6, 25]。有研究表明,细胞受体的内吞作用依赖于细胞骨架[26],Nef与Pak2结合影响细胞骨架actin的重排,且Nef能调节actin调节器N-WASP的活性[8, 9]。另有研究表明,hnRNPK调节多种细胞骨架相关基因的表达[18, 19],并通过作用于RNA及RNA结合蛋白调节细胞的传播及迁移[27],在A549细胞中敲低hnRNPK能抑制TGF-β1引起的F-actin的极化,显示hnRNPK对细胞骨架的调节作用[20],特别是hnRNPK能结合并抑制N-WASP 的活性[17]。这提示我们,hnRNPK与Nef对细胞表面CD4表达的调节可能存在非直接关系,两者涉及复杂调控机制,可能通过N-WASP 及细胞骨架建立联系;另一方面,hnRNPK可能通过调节CD4的转录及翻译起调节作用,后期研究可从这两方面进行试验,以确定两者相互作用对细胞表面CD4表达的影响。

本文验证了hnRNPK与Nef的相互作用,并首次证实了hnRNPK有利于细胞表面CD4的表达,这为进一步阐明细胞表面CD4表达水平的调节机制提供线索,为抗HIV的发展提供新思路和新靶点。

参考文献
[1] Kestler H W, Ringler D J, Mori K, et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell, 1991, 65(4): 651-662.
[2] Amorim N A, da Silva E M, de Castro R O, et al. Interaction of HIV-1 Nef protein with the host protein Alix promotes lysosomal targeting of CD4 receptor. The Journal of Biological Chemistry, 2014, 289(40): 27744-27756.
[3] Baur A S. HIV-Nef and AIDS pathogenesis: are we barking up the wrong tree? Trends Microbiol, 2011, 19(9): 435-440.
[4] Jere A, Fujita M, Adachi A, et al. Role of HIV-1 Nef protein for virus replication in vitro. Microbes and Infection/Institut Pasteur, 2010, 12(1): 65-70.
[5] Grzesiek S, Stahl S J, Wingfield P T, et al. The CD4 determinant for downregulation by HIV-1 Nef directly binds to Nef. Mapping of the Nef binding surface by NMR. Biochemistry, 1996, 35(32): 10256-10261.
[6] Arganaraz E R, Schindler M, Kirchhoff F, et al. Enhanced CD4 down-modulation by late stage HIV-1 nef alleles is associated with increased env incorporation and viral replication. Journal Of Biological Chemistry, 2003, 278(36): 33912-33919.
[7] Hanna Z, Priceputu E, Hu C Y, et al. HIV-1 Nef mutations abrogating downregulation of CD4 affect other Nef functions and show reduced pathogenicity in transgenic mice. Virology, 2006, 346(1): 40-52.
[8] Haller C, Rauch S, Michel N, et al. The HIV-1 pathogenicity factor Nef interferes with maturation of stimulatory T-lymphocyte contacts by modulation of N-Wasp activity. The Journal of Biological Chemistry, 2006, 281(28): 19618-19630.
[9] Renkema G H, Manninen A, Mann D A, et al. Identification of the Nef-associated kinase as p21-activated kinase 2. Current Biology: CB, 1999, 9(23): 1407-1410.
[10] Asamitsu K, Morishima T, Tsuchie H, et al. Conservation of the central proline-rich (PxxP) motifs of human immunodeficiency virus type 1 Nef protein during the disease progression in two hemophiliac patients. Febs Lett, 2000, 467(2-3): 366.
[11] Saksela K, Cheng G, Baltimore D. Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. The EMBO Journal, 1995, 14(3): 484-491.
[12] Tsai P L, Chiou N T, Kuss S, et al. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing. Plos Pathog, 2013, 9(6):e1003460.
[13] Szczyrba J, Nolte E, Hart M, et al. Identification of ZNF217, hnRNP-K, VEGF-A and IPO7 as targets for microRNAs that are downregulated in prostate carcinoma. International Journal of Cancer, 2013, 132(4): 775-784.
[14] Bomsztyk K, Denisenko O, Ostrowski J. hnRNP K: one protein multiple processes. BioEssays, 2004, 26(6): 629-638.
[15] Liepelt A, Mossanen J C, Denecke B, et al. Translation control of TAK1 mRNA by hnRNP K modulates LPS-induced macrophage activation. Rna, 2014, 20(6): 899-911.
[16] Ciarlo M, Benelli R, Barbieri O, et al. Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/beta-catenin signaling in prostate cancer cells. International Journal of Cancer, 2012, 131(3): 582-590.
[17] Yoo Y, Wu X, Egile C, et al. Interaction of N-WASP with hnRNPK and its role in filopodia formation and cell spreading. The Journal of Biological Chemistry, 2006, 281(22): 15352-15360.
[18] Liu Y Y, Szaro B G. hnRNP K post-transcriptionally co-regulates multiple cytoskeletal genes needed for axonogenesis. Development, 2011, 138(14): 3079-3090.
[19] Nagano K, Bornhauser B C, Warnasuriya G, et al. PDGF regulates the actin cytoskeleton through hnRNP-K-mediated activation of the ubiquitin E(3)-ligase MIR. EMBO Journal, 2006, 25(9): 1871-1882.
[20] Li L P, Lu C H, Chen Z P, et al. Subcellular proteomics revealed the epithelial-mesenchymal transition phenotype in lung cancer. Proteomics, 2011, 11(3): 429-439.
[21] Wolf D, Witte V, Clark P, et al. HIV Nef enhances Tat-mediated viral transcription through a hnRNP-K-nucleated signaling complex. Cell Host Microbe, 2008, 4(4): 398-408.
[22] Greenway A L, Holloway G, McPhee D A, et al. HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication. J Biosciences, 2003, 28(3): 323-335.
[23] Witte V, Laffert B, Rosorius O, et al. HIV-1 Nef mimics an integrin receptor signal that recruits the polycomb group protein Eed to the plasma membrane. Mol Cell, 2004, 13(2): 179-190.
[24] Wolf D, Giese S I, Witte V, et al. Novel (n)PKC kinases phosphorylate Nef for increased HIV transcription, replication and perinuclear targeting. Virology, 2008, 370(1): 45-54.
[25] Aiken C, Konner J, Landau N R, et al. Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell, 1994, 76(5): 853-864.
[26] Kornilova E S. Receptor-mediated endocytosis and cytoskeleton. Biochemistry-Moscow, 2014, 79(9): 865-878.
[27] de Hoog C L, Foster L J, Mann M. RNA and RNA binding proteins participate in early stages of cell spreading through spreading initiation centers. Cell, 2004, 117(5): 649-662.