[1] |
Yang RF. Plague: recognition, treatment, and prevention[J]. J Clin Microbiol, 2018, 56(1): e01519-17. DOI:10.1128/JCM.01519-17 |
|
[2] |
丛显斌, 刘振才. 中国鼠疫及其防治(2001-2010)[M]. 长春: 吉林科学技术出版社, 2014: 2-4. Cong XB, Liu ZC. Chinese plague and control[M]. Changchun: Jilin Science and Technology Press, 2014: 2-4.
|
|
[3] |
张渝疆, 戴翔, 阿不力米提, 等. 准噶尔盆地鼠疫调查[J]. 中华流行病学杂志, 2008, 29(2): 136-144. Zhang YJ, Dai X, Abulimiti, et al. Study on the situation of plague in Junggar basin of China[J]. Chin J Epidemiol, 2008, 29(2): 136-144. DOI:10.3321/j.issn:0254-6450.2008.02.008 |
|
[4] |
Zhang YJ, Dai X, Wang XH, et al. Dynamics of Yersinia pestis and its antibody response in great gerbils ( Rhombomys opimus) by subcutaneous infection[J]. PLoS One, 2012, 7(10): e46820. DOI:10.1371/journal.pone.0046820 |
|
[5] |
张渝疆, 阿扎提, 雒涛, 等. 准噶尔盆地鼠疫自然疫源地大沙鼠寄生蚤群落结构及其鼠疫流行病学分析[J]. 中华流行病学杂志, 2013, 34(11): 1096-1100. Zhang YJ, Azati, Luo T, et al. Community structure of great gerbils( Rhombomys opimus) parasitic fleas in Junggar basin focus and related epizootiological characteristics on plague[J]. Chin J Epidemiol, 2013, 34(11): 1096-1100. DOI:10.3760/cma.j.issn.0254-6450.2013.011.012 |
|
[6] |
Zhang YJ, Dai X, Wang QG, et al. Transmission efficiency of the plague pathogen ( Y. pestis) by the flea, Xenopsylla skrjabini, to mice and great gerbils[J]. Parasit Vectors, 2015, 8(1): 256. DOI:10.1186/s13071-015-0852-z |
|
[7] |
张渝疆. 基于自然生态模式的鼠疫媒介效能研究新思考[J]. 中华地方病学杂志, 2017, 36(6): 391-394. Zhang YJ. A new thinking of the study on plague vector efficiency based on the natural ecological model[J]. Chin J Endemiol, 2017, 36(6): 391-394. DOI:10.3760/cma.j.issn.2095-4255.2017.06.001 |
|
[8] |
纪树立, 贺建国, 孙玺, 等. 鼠疫[M]. 北京: 人民卫生出版社, 1988: 186-187. Ji SL, He JG, Sun X, et al. Plague[M]. Beijing: People's Medical Publishing House, 1988: 186-187.
|
|
[9] |
Fine PEM. Epidemiological principles of vector-mediated transmission[M]//McKelvey JJ Jr, Eldridge BF, Maramorosch K, et al. Vectors disease agents. New York: Praeger, 1981: 77-91.
|
|
[10] |
Macdonald G. Epidemiologic models in studies of vector-borne diseases: the R. E. Dyer Lecture[J]. Public Health Rep, 1961, 76(9): 753-764. DOI:10.2307/4591271 |
|
[11] |
Eisen RJ, Eisen L, Gage KL. Studies of vector competency and efficiency of north American fleas for Yersinia pestis: state of the field and future research needs[J]. J Med Entomol, 2009, 46(4): 737-744. DOI:10.1603/033.046.0403 |
|
[12] |
Yang RF, Cui YJ, Bi YJ. Perspectives on Yersinia pestis: a model for studying zoonotic pathogens[M]//Yang RF, Anisimov A. Yersinia pestis: retrospective and perspective. Dordrecht: Springer, 2016: 377-391. DOI: 10.1007/978-94-024-0890-4_14.
|
|
[13] |
王启果, 古丽阿依·包开西, 雒涛, 等. 簇鬃客蚤对宿主侵袭能力的实验观察[J]. 疾病预防控制通报, 2013, 28(5): 1-3. Wang QG, Baokaixi G, Luo T, et al. Experimental observations on infestation ability of Xenopsylla skrjabini on hosts[J]. Bull Dis Control Prev, 2013, 28(5): 1-3. DOI:10.13215/j.cnki.jbyfkztb.2013.05.019 |
|
[14] |
热娜·吐尔地, 布仁明德, 戴翔, 等. 新疆准噶尔盆地鼠疫菌生化和毒力测定[J]. 中国人兽共患病学报, 2006, 22(11): 1086-1087. Rena TED, Burenmingde, Dai X, et al. Biochemical and virulence determination of Yersinia pestis from Jungar basin in Xinjiang[J]. Chin J Zoonoses, 2006, 22(11): 1086-1087. DOI:10.3969/j.issn.1002-2694.2006.11.022 |
|
[15] |
Hinnebusch BJ, Jarrett CO, Bland DM. "Fleaing" the plague: adaptations of Yersinia pestis to its insect vector that lead to transmission[J]. Annu Rev Microbiol, 2017, 71: 215-232. DOI:10.1146/annurev-micro-090816-093521 |
|
[16] |
Hinnebusch BJ, Bland DM, Bosio CF, et al. Comparative ability of Oropsylla montana and Xenopsylla cheopis fleas to transmit Yersinia pestis by two different mechanisms[J]. PLoS Negl Trop Dis, 2017, 11(1): e0005276. DOI:10.1371/journal.pntd.0005276 |
|
[17] |
Eisen RJ, Dennis DT, Gage KL. The role of early-phase transmission in the spread of Yersinia pestis[J]. J Med Entomol, 2015, 52(6): 1183-1192. DOI:10.1093/jme/tjv128 |
|
[18] |
Boegler KA, Graham CB, Johnson TL, et al. Infection prevalence, bacterial loads, and transmission efficiency in Oropsylla montana (Siphonaptera: Ceratophyllidae) one day after exposure to varying concentrations of Yersinia pestis in blood[J]. J Med Entomol, 2016, 53(3): 674-680. DOI:10.1093/jme/tjw004 |
|
[19] |
Dewitte A, Bouvenot T, Pierre F, et al. A refined model of how Yersinia pestis produces a transmissible infection in its flea vector[J]. PLoS Pathog, 2020, 16(4): e1008440. DOI:10.1371/journal.ppat.1008440 |
|
[20] |
Webb CT, Brooks CP, Gage KL, et al. Classic flea-borne transmission does not drive plague epizootics in prairie dogs[J]. Proc Natl Acad Sci USA, 2006, 103(16): 6236-6241. DOI:10.1073/pnas.0510090103 |
|
[21] |
Lorange EA, Race BL, Sebbane F, et al. Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis[J]. J Infect Dis, 2005, 191(11): 1907-1912. DOI:10.1086/429931 |
|
[22] |
Bland DM, Jarrett CO, Bosio CF, et al. Infectious blood source alters early foregut infection and regurgitative transmission of Yersinia pestis by rodent fleas[J]. PLoS Pathog, 2018, 14(1): e1006859. DOI:10.1371/journal.ppat.1006859 |
|
[23] |
Eisen RJ, Lowell JL, Montenieri JA, et al. Temporal dynamics of early-phase transmission of Yersinia pestis by unblocked fleas: secondary infectious feeds prolong efficient transmission by Oropsylla montana (Siphonaptera: Ceratophyllidae)[J]. J Med Entomol, 2007, 44(4): 672-677. DOI:10.1093/jmedent/44.4.672 |
|
[24] |
Wilder AP, Eisen RJ, Bearden SW, et al. Oropsylla hirsuta (Siphonaptera: Ceratophyllidae) can support plague epizootics in black-tailed prairie dogs ( Cynomys ludovicianus) by early-phase transmission of Yersinia pestis[J]. Vector-Borne Zoonotic Dis, 2008, 8(3): 359-368. DOI:10.1089/vbz.2007.0181 |
|
[25] |
王启果, 孟卫卫, 雒涛, 等. 簇鬃客蚤生活史实验观察[J]. 中国媒介生物学及控制杂志, 2012, 23(1): 35-38. Wang QG, Meng WW, Luo T, et al. Experimental observations of the life cycle of Xenopsyll askrjabini[J]. Chin J Vector Biol Control, 2012, 23(1): 35-38. |
|
[26] |
Wilder AP, Eisen RJ, Bearden SW, et al. Transmission efficiency of two flea species ( Oropsylla tuberculata cynomuris and Oropsylla hirsuta) involved in plague epizootics among prairie dogs[J]. Ecohealth, 2008, 5(2): 205-212. DOI:10.1007/s10393-008-0165-1 |
|
[27] |
Enscore RE, Babi N, Amatre G, et al. The changing triad of plague in Uganda: invasive black rats ( Rattus rattus), indigenous small mammals, and their fleas[J]. J Vec Ecol, 2020, 45(2): 333-355. DOI:10.1111/JVEC.12404 |
|
[28] |
张晓雪. 有关中国跳蚤与鼠疫菌关系研究的进展[J]. 地方病译丛, 1994, 15(2): 1-4. Zhang XX. Research progress on the relationship between fleas and Yersinia pestis in China[J]. Fore Endemic Dis, 1994, 15(2): 1-4. |
|
[29] |
Lemon A, Sagawa J, Gravelle K, et al. Biovar-related differences apparent in the flea foregut colonization phenotype of distinct Yersinia pestis strains do not impact transmission efficiency[J]. Parasit Vectors, 2020, 13(1): 335. DOI:10.1186/s13071-020-04207-x |
|
[30] |
Bosio CF, Jarrett CO, Scott DP, et al. Comparison of the transmission efficiency and plague progression dynamics associated with two mechanisms by which fleas transmit Yersinia pestis[J]. PLoS Pathog, 2020, 16(12): e1009092. DOI:10.1371/JOURNAL.PPAT.1009092 |
|