Preparation and immunogenicity of a polyclonal antibody against outer membrane protein OspC and flagellin FlaB of Borrelia burgdorferi
莱姆病(Lymedisease)病原体是呈革兰阴性的伯氏疏螺旋体(又称莱姆病螺旋体, Borrelia burgdorferi), 有多种基因型, 其中有3个致病基因型, 即B. burgdorferi sensu stricto(美洲型)、B. garinii
(亚洲和欧洲型)和B. afeli(欧洲型)[1-2]。莱姆病可引起皮肤、关节、心血管和中枢神经系统组织等多系统感染, 其发生率呈逐年增长趋势,被世界卫生组织列为应重点防治研究的新发现传染病之一[2-4]。流行病学调查表明,莱姆病在我国至少29个省(自治区、直辖市)有分布, 是我国重要的虫媒传染病之一[5-7]。近年来, 莱姆病合并其他感染的疫情, 如恙虫病、斑点热有所发现, 严重危害人民健康[7-9]。由于莱姆病症状容易与其他疾病混淆, 故从临床分离出伯氏疏螺旋体是莱姆病诊断的“金标准”。然而,这种分离效率低, 成本高, 耗时长,不利于疾病的诊断治疗, 因而免疫学诊断的研究极为重要[10-11]。
膜蛋白OspC是伯氏疏螺旋体主要的外膜蛋白之一,与病原体毒力直接相关, 是病原体侵染哺乳动物的关键致病因子, 具有强抗原性和较好的免疫特异性[11-15]。在感染伯氏疏螺旋体引起的免疫中, 鞭毛蛋白FlaB始终贯穿于病程始终, 且其抗体是在感染后最早出现的, 具有很强的免疫原性[16-18]。FlaB、OspC在莱姆病的早期诊断、免疫预防和致病过程中起着重要的作用。因而我们将外膜蛋白OspC和鞭毛蛋白FlaB进行了表达,制备了多克隆抗体,由于中国莱姆病病原体与欧、美国家莱姆病病原体在基因型上有着明显差异, 我们应用制备的多克隆抗体检测了这2种基因型的伯氏疏螺旋体, 并进行了免疫原性研究, 该研究结果为OspC和FlaB多克隆抗体能否作为良好的诊断试剂提供了基础。
1 材料与方法
1.1 菌株及培养 B. garinii BgNMJW1株, 由军事医学科学院微生物流行病研究所分离并保存。伯氏疏螺旋体培养条件:BSK-Y培养基, 微需氧, 32 C 10~14d, 暗视野显微镜下可见伯氏疏螺旋体。
1.2 DNA的提取 伯氏疏螺旋体DNA的提取按照Qiagen公司的DNeasy Blood & Tissue Kit基因组DNA提取试剂盒使用说明进行。
1.3 引物设计 参照美国国立生物技术信息中心(NCBI)上的序列设计引物, 引物序列由生工生物工程(上海)股份有限公司合成。扩增OspC和FlaB全基因的引物序列为: OspC-ORF, 正、反向引物分别为5'-GGATCCATGAAAAAGAATACATTAAGTGC-3'和5' -CTCG AGTTAAGGTTTTTTGGACTTTCTG-3'; FlaB-ORF, 正、反向引物分别为5'-GGATCCATGAT TATCAATCATAATACATC-3'和5' -CTCGAGTTAT CTAAGCAATGACAAAAC-3'。
1.4 主要试剂 限制性内切酶、T4DNA连接酶、TaqDNA聚合酶、小量质粒提取试剂盒等购自TaKaKa公司, 异丙基硫代半乳糖苷(IPTG)、福氏佐剂等购自SIGMA。pEASY blunt simple Vector载体购自Transgen biotech公司。
1.5 目的片段的克隆 经纯化的PCR产物与pEASYbluntsimple载体连接后, 转化到TG1感受态细胞中, 涂布于含氨苄西林的LB固体平板后, 培养.过夜, 挑取阳性克隆进一步做酶切鉴定。鉴定阳性的进-步克隆到表达载体pGEX-6p-1中。
1.6 蛋白的表达纯化 将目的基因克隆人表达载体pGEX-6p-1, 转人表达菌株Rosetta, 经IPTG诱导产生融合蛋白, 并经谷胱甘肽转移酶(GST)柱蛋白纯化或割胶纯化。纯化后的蛋白用于免疫新西兰大白兔得到多克隆抗血清。
1.7 多克隆抗体的制备 取14~16周龄的健康新西兰大白兔, 免疫前取血作为阴性对照。并将收集纯化的蛋白抗原与福氏完全佐剂进行乳化, 于新西兰大白免背部皮下进行多点注射。3周后, 再次用纯化的蛋白抗原与福氏不完全佐剂进行乳化, 再次对该新西兰大白兔进行肌肉注射以及皮下多点注射。2周后, 再次加强免疫。加强免疫后, 收集抗血清。
1.8 免疫原性检测 将B. garinii和B. burgdorferi 2种基因型的伯氏疏螺旋体全菌煮沸后进行聚丙烯酰胺凝胶电泳(SDS-PAGE)蛋白电泳, 按照Bio-Rad公司的半干转膜仪说明书进行转膜, 然后进行清洗, 封闭30min后, 加人制备的多克隆抗体孵育1h, 清洗后加人辣根过氧化物标记的羊抗兔二二抗孵育1 h, 清洗后进行显色。
2 结果
2.1 目的基因的扩增与鉴定 以中国伯氏疏螺旋体B.garinii BgNMJW1基因组DNA为模板, PCR扩增出膜蛋白OspC和鞭毛蛋白FlaB的基因,分子质量分别为633和1011 bp(图 1A、B)。将其纯化回收后克隆至pEASY blunt simple载体中,经酶切鉴定后将目的基因从pEASY载体上酶切纯化回收, 与相同酶切的表达载体pGEX-6p-1连接。转人TG1感受态细胞, 经筛选鉴定阳性克隆, 分别命名为OspC-pGEX-6p-1和FlaB-pGEX-6p-1质粒(图 1C、D)。
2.2 FlaB和OspC的诱导表达 将鉴定好的OspC-pCEX-6p-1和FlaB-pGEX-6p-1质粒, 转化表达菌株Rosetta, 经IPTC诱导产生融合蛋白。由于pGEX-6p-1载体上有GST序列,能表达约26 × 103的GST蛋白, 这段序列和目的蛋白融合, 有利于目的蛋白表达量和可溶成分的增加以及目的蛋白的纯化。经SDS-PAGE鉴定, 经过诱导的携带目的基因载体, 与对照相比, 有明显的目的蛋白表达, 大小分别约为49 × 103和63 × 103(图 2A、B), 与预计的一致, 而不携带目的基因的载体经诱导后在26 × 103有一明显的表达条带。诱导结果表明, 在细菌培养至吸光度(A)值为0.4时, 加入1 mmol/L的IPTG, 在25℃下,诱导10 h时产生的蛋白表达量较大。
2.3 伯氏疏螺旋体鞭毛蛋白FlaB和外膜蛋白OspC的兔抗多克隆抗血清的制备 OspC-pGEX-6p-1-Rosetta菌和FlaB-pGEX-6p-l-Rosetta菌经IPTG诱导产生融合蛋白,蛋白纯化后用于免疫新西兰大白兔得到多克隆抗血清。应用抗血清对B. garinii和B. burgdorferi 2种基因型的伯氏疏螺旋体代表菌株(BgNMJ)W 1和BbB31A3)OspC和FlaB进行蛋白免疫印迹(Westernblot, WB)检测,可得到清晰检测条带。见图 3。
3 讨论 莱姆病是由伯氏疏螺旋体感染引起的, 其主要传播媒介是蜱。伯氏疏螺旋体感染人体后, 感染早期出现慢性游走性红斑, 后期则以关节炎、脑炎和心肌炎为主。不同性别、年龄及种族的人群对伯氏疏螺旋体普遍易感, 由于伯氏疏螺旋体感染后引起的临床表现多样, 而不同基因型螺旋体以及不同感染:阶段都能引起不同的临床症状, 因而, 根据临床表现来诊断菜姆病存在--定困难, 所以菜姆病诊断研究的重点往往是实验室诊断方法。目前常用的实验室诊断方法主要是免疫学检测、分子生物学检测以及病原体的分离培养[10, 19]。
目前使用的各种方法都有优缺点, 病原体伯氏疏螺旋体的分离培养对于培养时间和培养条件都有要求; 而目前特别常用的PCR技术在检测部分组织和体液的灵敏性上不是特别理想[20]; 而建立在螺旋体全细胞制备超声裂解混合物基础上的免疫血清学诊断方法, 也存在特异性较低的问题。另外,在伯氏疏螺旋体生活史的不同阶段, 其抗原的表达量各不相同,一些抗原只在宿主体内特异性表达,而且病原体不同亚种之间也存在着抗原差异, 给筛选血清学诊断抗原带来一些难度。因而, 莱姆病实验室诊断研究的重点集中于筛选一个特异性强和敏感性高的诊断抗原[20-21]。
OspC是伯氏疏螺旋体主要抗原之一。许多研究表明OspC异质性较大, 但特异性较强。在脑脊液中OspC能与OspA共同表达[22]。在感染早期脑脊液可测出IgM, 用WB证实OspC是菜姆病早期诊断抗原之一, 具有强抗原性和较好的免疫特异性, 与ELISA结果相比较, 具有- -致性, 可以识别特异性无症状、先天感染甚至以往感染过的病例。但是如果单独使用OspC作为诊断抗原时, 也发现能与其他某些病原体如EB病毒、梅毒、大肠埃希菌等存在交叉反应。但目前仍然认为OspC在莱姆病的诊断上具有重要意义。如果能将OspC抗原和其他特异性抗原进行优化配伍使用, 可以减少交叉反应,能够大大提高抗原诊断的特异性和灵敏度, 在莱姆病的诊断上将具有更大优势。
在伯氏疏螺旋体感染的免疫反应中,抗FlaB鞭毛蛋白的抗体贯穿于病例病程始终, 并且是最早出现的, 因而对莱姆病早期诊断可以通过检测FlaB抗体实现。莱姆病感染早期以慢性游走性红斑为主, 后期则以关节炎、脑炎和心肌炎为主, 因而早期诊断对莱姆病的治疗和康复有及其重要的意义[19-20]。
由于伯氏疏螺旋体膜蛋白OspC和鞭毛蛋白FlaB在莱姆病的早期诊断、免疫预防和致病过程具有十分重要的作用[23-21], 本研究对外膜蛋白OspC和鞭毛蛋白FIaB进行了表达, 制备了多克隆抗体, 对这2个多克隆抗体进行免疫原性研究, 希望能够筛选出特异性强和敏感性高的菜姆病诊断抗原并进行联合配伍应用, 期待能为菜姆病的研究提供进一步的基础依据。