扩展功能
文章信息
- 宋晓, 史琦琪, 程鹏, 公茂庆
- SONG Xiao, SHI Qi-qi, CHENG Peng, GONG Mao-qing
- 病媒昆虫的抗药性分子机制研究进展
- Research progress in molecular mechanisms of vector insect's resistance to insecticides
- 中国媒介生物学及控制杂志, 2018, 29(6): 657-661, 665
- Chin J Vector Biol & Control, 2018, 29(6): 657-661, 665
- 10.11853/j.issn.1003.8280.2018.06.029
-
文章历史
- 收稿日期: 2018-07-31
- 网络出版时间: 2018-10-16 08:33
媒介昆虫严重危害人类健康,据统计,约2/3的传染病如疟疾、登革热、丝虫病、流行性乙型脑炎、黑热病、斑疹伤寒、菌痢等疾病由病媒昆虫传播。常见的病媒昆虫主要有蚊、蝇、白蛉、虱、蚤、蜚蠊等。长期以来,化学杀虫剂因高效、经济、操作方便,为媒介昆虫治理做出了巨大贡献,但昆虫抗药性问题也随之产生,并成为全球公共卫生及媒介昆虫治理的重大难题[1]。目前,已有600多种昆虫对杀虫剂产生了不同程度的抗性,成为虫媒防治的一大障碍[2]。昆虫抗药性机制主要包括代谢抗性、靶标抗性、表皮抗性和行为抗性4种[3]。其中代谢抗性与靶标抗性在昆虫中普遍存在且尤为重要,为深入全面地理解此两大抗性机制,现对其近年来的研究进展综述如下。
1 代谢抗性研究进展代谢抗性指昆虫体内解毒酶活性增强,对杀虫剂代谢加速而产生的抗药性,其中所涉及的解毒酶系主要包括3大类:细胞色素P450酶系(cytochrome P450,P450s)、谷胱甘肽-S-转移酶(glutathione S-transferases,GSTs)、非特异性酯酶(esterases,ESTs)。
1.1 细胞色素P450酶系(P450s)P450s是生物体内广泛分布的多功能氧化酶系的末端氧化酶,主要参与外源性和内源性化合物的合成与分解代谢。P450s对杀虫剂解毒作用的增强是导致昆虫对各类杀虫剂产生抗性的主要原因,而这种抗药性机制主要源于P450s基因过表达或酶活性增高[4-5]。高表达可通过转录水平来实现,表现为转录效率的提高,由顺式作用元件或负性调控因子碱基的插入、缺失或结构突变所导致[6-7]。另有研究报道,P450s所介导的抗药性机制可能也与基因突变导致氨基酸替换有关[8]。
研究表明,CYP6A1是首次从家蝇(Musca domestica)抗性品系中克隆出的P450s基因,随后在其他病媒昆虫体内也检测到P450s的高表达。如德国小蠊(Blattella germanica)的CYP4G19[9]、致死按蚊(Anopheles funestus)的CYP6P9a、CYP6P9b及CYP6M7[8, 10]、冈比亚按蚊(An. gambiae)的CYP6M2及CYP4G16[11]、埃及伊蚊(Aedes aegypti)的CYP6BB2、CYP6M11、CYP9J23[12]、淡色库蚊(Culex pipiens pallens)的CYP6AA9[13]等。许多研究显示,P450s在昆虫抗药性中的关键作用是通过升高酶活性或表达水平增高使杀虫剂快速降解为低毒或易于排泄的物质。例如,Kasai等[14]通过实时荧光定量PCR(qRT-PCR)与微阵列综合分析,发现埃及伊蚊氯菊酯抗性种群体内CYP9M6与CYP6BB2高表达,可将氯菊酯快速降解为4′HO-氯菊酯,使埃及伊蚊对杀虫剂的抗性显著增强。Gong等[5]从致倦库蚊(Culex pipiens quinquefasciatus)HAmC9G8抗性种群中构建包含CYP9M10/CPR与CYP6AA7/CPR的杆状病毒重组表达体,经酶活性测试及MTT细胞毒性试验显示,活性增高的CYP9M10/CPR与CYP6AA7/CPR可将氯菊酯及其代谢物降解为低毒物质。此外,Itokawa等[15]使用转录激活样因子核酸酶(transcription activator-like effector nucleases,TALEN)与短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR/Cas9)2种基因编辑技术来诱导致倦库蚊抗性种群体内CYP9M10的拷贝基因发生移码突变使其正常功能被破坏,结果显示蚊虫对拟除虫菊酯类杀虫剂的抗性下降了100多倍,证明CYP9M10是造成高抗性的主要原因。
研究发现,P450s的持续性高表达使昆虫对不同种类的杀虫剂产生了交叉抗性。如:Nardini等[16]报道来自刚果的冈比亚按蚊与致死按蚊体内CYP6M2与CYP6P1高表达,对DDT和溴氰菊酯均表现出高抗性。不同昆虫即使对同一种杀虫剂产生抗性,其发挥抗性作用的P450s也可能不同。例如,Højland和Kristensen[17]最近报道的家蝇对新烟碱类杀虫剂(吡虫啉)产生抗性,与CYP4g98、CYP6g4基因的显著表达紧密相关,而Kasai等[14]报道的黑腹果蝇(Drosophila melanogaster)对吡虫啉的抗性则是由CYP6G1高表达所引起。另外,Ibrahim等[8]对非洲抗拟除虫菊酯类杀虫剂的致死按蚊进行检测,发现蚊体内CYP6P9a与CYP6P9b高表达,随后通过基因定点突变和荧光探针对高表达基因进行分析研究,结果显示CYP6P9b基因中存在3个关键氨基酸的突变(Val-109-Ile、Asn-384-Ser与Asp-335-Glu),导致蚊虫对杀虫剂的代谢效率明显提高。由此证明P450s的点突变、高表达是导致昆虫对杀虫剂解毒代谢增强从而产生高抗性的主要机制之一。
1.2 谷胱甘肽-S-转移酶(GSTs)GSTs是一种多功能超家族解毒酶系,在生物体内广泛分布。GSTs在昆虫体内主要催化还原型谷胱甘肽(glutathione,GSH)的巯基与亲电子类毒性物质(杀虫剂、过氧化物等)发生轭合反应,将毒性较低的轭合物排出胞外以达到解毒目的。胞质GSTs可分为3类:第1类为Delta亚族,第2类包括4个亚族(Sigma、Omega、Theta和Zeta),第3类为Epsilon亚族,其中第1类Delta和第3类Epsilon亚族是昆虫特异性亚族。研究表明,以GSTs为基础的昆虫抗药性机制主要是由于GSTs基因高表达使昆虫对杀虫剂的解毒代谢增强[18],还有研究显示,GSTs等位基因突变所导致的GSTs酶活力增加也是昆虫对杀虫剂产生抗性的关键因素之一[19]。
研究报道,昆虫在GSTs的作用下对多种杀虫剂(有机磷、有机氯、拟除虫菊酯类)产生了高水平的抗性。例如,Hu等[20]通过qRT-PCR对亚太地区广泛分布的东方果蝇(Bactrocera dorsalis)体内的17个GSTs基因进行检测,发现接触马拉硫磷后9个GSTs表达上调,而经高效氯氰菊酯处理后3个GSTs基因(BdGSTe4、BdGSTe9与BdGSTt1)高表达,使东方果蝇对有机磷类、拟除虫菊酯类杀虫剂的解毒代谢能力明显增强。Djègbè等[21]通过RT-PCR对贝宁的冈比亚按蚊进行检测,发现来自科拖努的冈比亚按蚊DDT抗性种群体内GSTE2与GSTD3高表达,分别是敏感品系的4.4和3.5倍,马朗维尔抗性种群体内GSTE2与GSTD3的表达量分别是敏感品系的1.2和2.5倍。Aravindan等[22]通过研究发现Delta亚族的GSTD6与DDT具有较高的交互亲和力,促进了冈比亚按蚊对有机氯类杀虫剂的抗性形成。另外,昆虫对杀虫剂的抗药性也可能是GSTs高转录联合氨基酸突变的结果。Riveron等[23]报道来自非洲西部的致死按蚊对氯菊酯以及DDT有着高水平的交叉抗性,通过全基因组转录微阵列技术对GSTs进行分析研究,结果显示GSTE2转录水平明显增高,同时基因多态性分析发现GSTE2点突变造成了单个氨基酸的替换(L119F),共同促进了蚊虫抗药性的形成,并且这种联合抗药性机制通过转基因技术在果蝇体内也被证实。进一步表明GSTs基因高表达、氨基酸突变是导致昆虫抗药性产生的重要机制。
1.3 非特异性酯酶(ESTs)ESTs是昆虫体内另一种重要的解毒酶系,可通过水解酯类化合物(杀虫剂等)的酯键将其解毒代谢并排出体外。昆虫体内的ESTs主要有3类,其中羧酸酯酶(carboxylesterases,CCEs,CarEs)在杀虫剂的抗性中发挥重要作用。酯酶主要对含有酯键的有机磷类、拟除虫菊酯类以及氨基甲酸酯类杀虫剂进行解毒代谢。研究表明,ESTs所介导的昆虫抗药性分子机制是由ESTs表达量增加[12]与基因突变[24]引起,而酯酶基因扩增是导致ESTs表达上调的主要原因[25]。
Grigoraki等[26]在白纹伊蚊(Aedes albopictus)双硫磷抗性种群中观察到CCEae3a与CCEae6a两个基因共同扩增引起羧酸酯酶高表达,增强了蚊虫对有机磷类杀虫剂的抗性。最近,又从16个国家采集385只白纹伊蚊进行分析研究,发现一部分来自美国佛罗里达与希腊圣斯特凡诺斯的TemGR双硫磷抗性种群体内CCEae3a与CCEae6a共同扩增,另外一些来自佛罗里达的TemGR抗性种群中只观察到CCEae3a扩增,表明CCEae3a的单独扩增引起的酯酶含量增加也会导致蚊虫对杀虫剂产生高抗性[27]。Wang等[28]发现对马拉硫磷产生高抗的东方果蝇体内BdCarE2基因高表达,用CarEs抑制剂对其进行增效实验分析,结果显示MR抗性种群对马拉硫磷的抗性明显下降,进一步的毒力实验也验证了MR种群比MS敏感品系对马拉硫磷具有更高的抗药性,证明了BdCarE2基因在果蝇对有机磷类杀虫剂的解毒代谢中发挥着重要作用。另外,de Carvalho等[29]通过PCR-限制性片段长度多态性(PCR-RFLP)对传播蝇蛆病的螺旋蝇(Cochliomyia hominivorax)进行探测分析,观察到其E3基因中存有Gly-137-Asp突变,推测可能与有机磷类杀虫剂的抗药性有关。以上研究表明ESTs基因扩增引起的酯酶高表达是昆虫对杀虫剂产生抗性的关键机制。
2 靶标抗性研究进展靶标抗性是指昆虫对各类杀虫剂作用的靶标位点敏感度降低而引起的抗性,主要包括3大类:乙酰胆碱酯酶(acetylcholinestrase,AChE)、电压门控钠离子通道(voltage-gated sodium channel,VGSC)和γ-氨基丁酸(γ-aminobutyric acid,GABA)受体。
2.1 乙酰胆碱酯酶(AChE)AChE是一种重要的丝氨酸水解酶,其主要功能是在神经传导中将神经递质乙酰胆碱(acetylcholine,ACh)催化水解成乙酸和胆碱,及时终止神经冲动以维持正常的神经传导。同时,AChE也是有机磷和氨基甲酸酯类杀虫剂的作用靶标,而AChE基因突变所导致的靶标敏感性下降是昆虫抗药性产生的重要机制。
Smissaert[30]发现二斑叶螨(Tetranychus urticae)敏感品系AChE活性为抗性种群的3倍,并对ace-1基因突变导致杀虫剂抗性进行首次报道。随后,在许多病媒昆虫中也检测到对杀虫剂不敏感的AChE变构。Feng等[31]对我国广西壮族自治区9个市区的中华按蚊(Anopheles sinesis)野生群体进行采样,经PCR-RFLP分析发现,有机磷及氨基甲酸酯类杀虫剂抗性种群体内ace-1基因存在G119S突变,谷氨酸被丝氨酸所取代,增强了蚊虫对杀虫剂的抗药性。Guo等[32]对乌干达冈比亚按蚊种群进行转录组测序(RNA-seq)分析,发现蚊虫抗性种群ace1基因上也存有G119S突变,抗性突变频率为33%~44%,且晚幼及蛹期高于成虫期。Walsh等[33]在家蝇AChE结构中检测到5种基因突变所导致的氨基酸替换(Val-180-Leu、Gly-262-Ala、Gly-262-Val、Phe-327-Tyr和Gly-365-Ala),使其对有机磷类及氨基甲酸酯类杀虫剂产生的抗性高达100倍。另有研究表明,单个点突变不表现抗性或只表现为较低抗性,而几种不同突变的组合则可产生高水平抗性。例如,Zhao等[34]在抗DDVP与残杀威的野生型致倦库蚊体内检测到5种氨基酸突变(G247S、V185M、T682A、A328S和A391T),对突变频率与抗性水平进行相关分析,发现V185M氨基酸突变与残杀威、DDVP抗性无关,T682A突变与残杀威抗性呈负相关。但经遗传平衡(Hardy-Weinberg equilibrium,HWE)检测,发现A328S突变(GCC→TCC)、V185M突变(GTG→ATG)以及G247S突变(GGC→AGC)连锁出现导致残杀威抗性的形成。这些结果表明AChE的单个或多个基因联合突变是昆虫对各类杀虫剂产生靶标抗性的主要机制之一。
2.2 电压门控钠离子通道(VGSC)VGSC是拟除虫菊酯类、有机氯类杀虫剂的主要靶标位点,它们可延迟钠离子通道活阀门的关闭而导致VGSC的持续活化,扰乱昆虫正常的生理过程直至死亡。然而钠离子通道基因突变可降低其对杀虫剂的亲和性,从而产生靶标抗性或击倒抗性(knockdown resistance,kdr)[35-36]。有研究报道,抗拟除虫菊酯家蝇品系体内存在3种类型的突变:kdr-his(L1014H)、kdr(L1014F)与super-kdr(M918T+L1014F),且抗性水平依次递增[37-38]。Kasai等[39]也在家蝇体内鉴定出另外一些突变(V243M、T929I、G1942D、G2004S与D600N+M918T+L1014F),对拟除虫菊酯类杀虫剂表现出较强的抗性。Gomes等[40]对比哈尔地区黑热病的重要传播媒介银足白蛉(Phlebotomus argentipes)进行VGSC基因测序,发现1014F/F突变纯合子与1014F/S突变杂合子使其对DDT产生了高抗性。Firooziyan等[41]在伊朗体虱(Pediculus humanus humanus)与头虱(P. humanus capitis)中共发现9种氨基酸突变,其中包括与kdr相关的M815I-T917I- L920F突变,另外还包括6种新的突变:位于α亚基IIS1-2接环处的P813H突变以及IIS5区域的I927F、L928A、R929V、L930M和L932M突变。其中I927F、P813H和L932M突变仅在体虱中存在,在头虱中经氨基酸序列分析发现4种不同的单体型,频率最高的单体型Ⅰ(41.66%)伴随着M815I、T917I和L920F3种突变,这些突变使VGSC对拟除虫菊酯类杀虫剂的亲和性大为降低。Yellapu等[42]在冈比亚按蚊VGSC中检测到L1014S、L1014F、L1014H 3种氨基酸突变导致的构象改变,阻碍了其与DDT以及拟除虫菊酯类杀虫剂的结合,从而促进了抗药性的产生。Silva Martins等[43]也在乌干达致倦库蚊抗性种群中发现L1014F突变(突变频率为62%)。另外,在埃及伊蚊体内也追踪到V1016G、S989P和F1534C突变以及三重突变杂合子(V1016G+S989P+F1534C),促进了蚊虫对拟除虫菊酯类杀虫剂的抗性发展[44-46]。这些结果表明,由于昆虫体内VGSC基因突变而导致其对杀虫剂的亲和性降低是抗药性产生的重要机制。
2.3 γ-氨基丁酸受体(GABA)GABA是昆虫中枢神经系统中主要的抑制性神经递质,GABA受体为γ-氨基丁酸门控氯离子通道,也是某些杀虫剂(环戊二烯类、苯基吡咄类、阿维菌素类等)的重要靶标之一。而昆虫对杀虫剂的抗性主要由GABA受体上Rdl基因突变所致[47-48]。
Ffrench-Constant等[49]通过PCR扩增及DNA测序发现,与敏感品系cDNA相比,果蝇抗性种群RdlMD-RR等位基因单个碱基对的差异引起了氨基酸突变(A302S),直接导致果蝇对环戊二烯类杀虫剂产生高抗性,之后在其他昆虫体内也检测到与果蝇Rdl基因相似的突变。Low等[50]在马来西亚白纹伊蚊GABA受体中首次观察到A302S突变,经WHO敏感性生物测试,蚊虫对狄氏剂表现出低水平抗性,后经PCR-RFLP发现A302S突变主要以杂合基因形式存在(RS:48.8%),另外还包括一小部分纯合抗性突变(RR:13.4%)。Taylor-Wells等[51]研究报道GABA受体Rdl亚基第2跨膜结构域出现的A296G突变与氟虫腈、狄氏剂抗性紧密相关,对马来西亚冈比亚按蚊抗性种群体内Rdlc DNA序列进行分子克隆,观察到A296G突变与T345M突变(位于第3跨膜结构域)共存。将A296G、T345M、A296G+T345M在爪蟾卵母细胞中共表达,随后采用双电极电压钳测量其对氟虫腈、溴氰菊脂、吡虫啉等杀虫剂的敏感性,发现这些杀虫剂可减弱GABA所激发的电流,然而A296G和A296G+T345M突变可减少甚至彻底消除杀虫剂对GABA的拮抗作用。另外,T345M突变单独存在时并不会介导冈比亚按蚊对杀虫剂的抗药性,但可平衡A296G突变所引起的结构变化来共同促进抗性的形成。这些研究均表明,GABA受体上Rdl基因突变是导致昆虫对拟除虫菊酯类和烟碱类杀虫剂产生靶标抗性的重要机制。
3 结语近年来,由于化学杀虫剂的频繁、不规范使用导致昆虫抗药性显著增强,病媒昆虫的抗药性问题已变得日趋严重,使得对昆虫抗药性机制的研究,成为病媒昆虫抗药性的治理、新型杀虫剂的研发以及媒介传染病防控等工作的重中之重。随着分子生物学、后基因组学、遗传学等技术的迅猛发展,新的抗性基因不断被筛选、分离、测序与鉴定,人们对抗性的形成和发展有了更进一步的理解。由于昆虫种类繁多,分布地区广泛且生理特性多样,抗性机制极其复杂,目前大多数研究仅限于抗药性的产生机制,其中与抗性相关的基因调控机制并未全面阐明,还需各学科、各领域相互融合与渗透,从而为病媒昆虫的综合防治提供更好的理论与科学依据。
[1] |
Xia XF, Sun BT, Gurr GM, et al. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.)[J]. Front Microbiol, 2018, 9: 25. DOI:10.3389/fmicb.2018.00025 |
[2] |
Denholm I, Devine GJ, Williamson MS. Insecticide resistance on the move[J]. Science, 2002, 297(5590): 2222-2223. DOI:10.1126/science.1077266 |
[3] |
Dang K, Doggett SL, Veera Singham G, et al. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae)[J]. Parasit Vectors, 2017, 10(1): 318. DOI:10.1186/s13071-017-2232-3 |
[4] |
Ishak IH, Kamgang B, Ibrahim SS, et al. Pyrethroid resistance in malaysian populations of dengue vector Aedes aegypti is mediated by CYP9 family of cytochrome P450 genes[J]. PLoS Negl Trop Dis, 2017, 11(1): e0005302. DOI:10.1371/journal.pntd.0005302 |
[5] |
Gong YH, Li T, Feng YC, et al. The function of two P450s, CYP9M10 and CYP6AA7, in the permethrin resistance of Culex quinquefasciatus[J]. Sci Rep, 2017, 7(1): 587. DOI:10.1038/s41598-017-00486-0 |
[6] |
Li XC, Schuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics[J]. Annu Rev Entomol, 2007, 52: 231-253. DOI:10.1146/annurev.ento.51.110104.151104 |
[7] |
Itokawa K, Komagata O, Kasai S, et al. A single nucleotide change in a core promoter is involved in the progressive overexpression of the duplicated CYP9M10 haplotype lineage in Culex quinquefasciatus[J]. Insect Biochem Mol Biol, 2015, 66: 96-102. DOI:10.1016/j.ibmb.2015.10.006 |
[8] |
Ibrahim SS, Riveron JM, Bibby J, et al. Allelic variation of cytochrome P450s drives resistance to bednet insecticides in a major malaria vector[J]. PLoS Genet, 2015, 11(10): e1005618. DOI:10.1371/journal.pgen.1005618 |
[9] |
Pridgeon JW, Zhang L, Liu NN. Overexpression of CYP4G19 associated with a pyrethroid-resistant strain of the German cockroach, Blattella germanica (L.)[J]. Gene, 2003, 314: 157-163. DOI:10.1016/S0378-1119(03)00725-X |
[10] |
Barnes KG, Irving H, Chiumia M, et al. Restriction to gene flow is associated with changes in the molecular basis of pyrethroid resistance in the malaria vector Anopheles funestus[J]. Proc Natl Acad Sci USA, 2017, 114(2): 286-291. DOI:10.1073/pnas.1615458114 |
[11] |
Yahouédo GA, Chandre F, Rossignol M, et al. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae[J]. Sci Rep, 2017, 7(1): 11091. DOI:10.1038/s41598-017-11357-z |
[12] |
Goindin D, Delannay C, Gelasse A, et al. Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies)[J]. Infect Dis Poverty, 2017, 6: 38. DOI:10.1186/s40249-017-0254-x |
[13] |
Lv Y, Wang WJ, Hong SC, et al. Comparative transcriptome analyses of deltamethrin-susceptible and-resistant Culex pipiens pallens by RNA-seq[J]. Mol Genet Genomics, 2016, 291(1): 309-321. DOI:10.1007/s00438-015-1109-4 |
[14] |
Kasai S, Komagata O, Itokawa K, et al. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism[J]. PLoS Negl Trop Dis, 2014, 8(6): e2948. DOI:10.1371/journal.pntd.0002948 |
[15] |
Itokawa K, Komagata O, Kasai S, et al. Testing the causality between CYP9M10 and pyrethroid resistance using the TALEN and CRISPR/Cas9 technologies[J]. Sci Rep, 2016, 6: 24652. DOI:10.1038/srep24652 |
[16] |
Nardini L, Hunt RH, Dahan-Moss YL, et al. Malaria vectors in the Democratic Republic of the Congo: the mechanisms that confer insecticide resistance in Anopheles gambiae and Anopheles funestus[J]. Malar J, 2017, 16(1): 448. DOI:10.1186/s12936-017-2099-y |
[17] |
Højland DH, Kristensen M. Analysis of differentially expressed genes related to resistance in spinosad-and neonicotinoid- resistant Musca domestica L. (Diptera: Muscidae) strains[J]. PLoS One, 2017, 12(1): e0170935. DOI:10.1371/journal.pone.0170935 |
[18] |
Jing TX, Wu YX, Li T, et al. Identification and expression profiles of fifteen delta-class glutathione S-transferase genes from a stored-product pest, Liposcelis entomophila (Enderlein) (Psocoptera: Liposcelididae)[J]. Comp Biochem Physiol B Biochem Mol Biol, 2017, 206: 35-41. DOI:10.1016/j.cbpb.2017.01.008 |
[19] |
Mitchell SN, Rigden DJ, Dowd AJ, et al. Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae[J]. PLoS One, 2014, 9(3): e92662. DOI:10.1371/journal.pone.0092662 |
[20] |
Hu F, Dou W, Wang JJ, et al. Multiple glutathione S-transferase genes: identification and expression in oriental fruit fly, Bactrocera dorsalis[J]. Pest Manag Sci, 2014, 70(2): 295-303. DOI:10.1002/ps.3558 |
[21] |
Djègbè I, Agossa FR, Jones CM, et al. Molecular characterization of DDT resistance in Anopheles gambiae from Benin[J]. Parasit Vectors, 2014, 7: 409. DOI:10.1186/1756-3305-7-409 |
[22] |
Aravindan V, Muthukumaravel S, Gunasekaran K. Interaction affinity of Delta and Epsilon class glutathione-s-transferases (GSTs) to bind with DDT for detoxification and conferring resistance in Anopheles gambiae, a malaria vector[J]. J Vector Borne Dis, 2014, 51(1): 8-15. |
[23] |
Riveron JM, Yunta C, Ibrahim SS, et al. A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector[J]. Genome Biol, 2014, 15(2): R27. DOI:10.1186/gb-2014-15-2-r27 |
[24] |
Carmbell PM, Newcomb RD, Russell RJ, et al. Two different amino acid substitutions in the ali-esterase, E3, confer alternative types of organophosphorus insecticide resistance in the sheep blowfly, Lucilia cuprina[J]. Insect Biochem Mol Biol, 1998, 28(3): 139-150. DOI:10.1016/S0965-1748(97)00109-4 |
[25] |
Shen XM, Liao CY, Lu XP, et al. Involvement of three esterase genes from Panonychus citri (McGregor) in fenpropathrin resistance[J]. Int J Mol Sci, 2016, 17(8): 1361. DOI:10.3390/ijms17081361 |
[26] |
Grigoraki L, Lagnel J, Kioulos I, et al. Transcriptome profiling and genetic study reveal amplified carboxylesterase genes implicated in temephos resistance, in the asian tiger mosquito Aedes albopictus[J]. PLoS Negl Trop Dis, 2015, 9(5): e0003771. DOI:10.1371/journal.pntd.0003771 |
[27] |
Grigoraki L, Pipini D, Labbé P, et al. Carboxylesterase gene amplifications associated with insecticide resistance in Aedes albopictus: geographical distribution and evolutionary origin[J]. PLoS Negl Trop Dis, 2017, 11(4): e0005533. DOI:10.1371/journal.pntd.0005533 |
[28] |
Wang LL, Lu XP, Meng LW, et al. Functional characterization of an α-esterase gene involving malathion detoxification in Bactrocera dorsalis(Hendel)[J]. Pestic Biochem Physiol, 2016, 130: 44-51. DOI:10.1016/j.pestbp.2015.12.001 |
[29] |
de Carvalho RA, Torres TT, de Azeredo-Espin AM. A survey of mutations in the Cochliomyia hominivorax (Diptera: Calliphoridae) esterase E3 gene associated with organophosphate resistance and the molecular identification of mutant alleles[J]. Vet Parasitol, 2006, 140(3/4): 344-351. DOI:10.1016/j.vetpar.2006.04.010 |
[30] |
Smissaert HR. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate[J]. Science, 1964, 143(3602): 129-131. DOI:10.1126/science.143.3602.129 |
[31] |
Feng XY, Yang C, Yang YC, et al. Distribution and frequency of G119S mutation in ace-1 gene within Anopheles sinensis populations from Guangxi, China[J]. Malar J, 2015, 14: 470. DOI:10.1186/s12936-015-1000-0 |
[32] |
Guo DH, Luo JP, Zhou YN, et al. ACE: an efficient and sensitive tool to detect insecticide resistance-associated mutations in insect acetylcholinesterase from RNA-Seq data[J]. BMC Bioinform, 2017, 18: 330. DOI:10.1186/s12859-017-1741-6 |
[33] |
Walsh SB, Dolden TA, Moores GD, et al. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance[J]. Biochem J, 2001, 359(Pt 1): 175-181. DOI:10.1042/bj3590175 |
[34] |
Zhao MH, Dong YD, Ran X, et al. Point mutations associated with organophosphate and carbamate resistance in Chinese strains of Culex pipiens quinquefasciatus (Diptera: Culicidae)[J]. PLoS One, 2014, 9(5): e95260. DOI:10.1371/journal.pone.0095260 |
[35] |
Zoh DD, Ahoua Alou LP, Toure M, et al. The current insecticide resistance status of Anopheles gambiae (s.l.) (Culicidae) in rural and urban areas of Bouaké, Côte d'Ivoire[J]. Parasit Vectors, 2018, 11: 118. DOI:10.1186/s13071-018-2702-2 |
[36] |
Ismail BA, Kafy HT, Sulieman JE, et al. Temporal and spatial trends in insecticide resistance in Anopheles arabiensis in Sudan: outcomes from an evaluation of implications of insecticide resistance for malaria vector control[J]. Parasit Vectors, 2018, 11: 122. DOI:10.1186/s13071-018-2732-9 |
[37] |
Sun H, Tong KP, Kasai S, et al. Overcoming super-knock down resistance (super-kdr) mediated resistance: multi-halogenated benzyl pyrethroids are more toxic to super-kdr than kdr house flies[J]. Insect Mol Biol, 2016, 25(2): 126-137. DOI:10.1111/imb.12206 |
[38] |
Scott JG. Evolution of resistance to pyrethroid insecticides in Musca domestica[J]. Pest Manag Sci, 2017, 73(4): 716-722. DOI:10.1002/ps.4328 |
[39] |
Kasai S, Sun H, Scott JG. Diversity of knockdown resistance alleles in a single house fly population facilitates adaptation to pyrethroid insecticides[J]. Insect Mol Biol, 2017, 26(1): 13-24. DOI:10.1111/imb.12267 |
[40] |
Gomes B, Purkait B, Deb RM, et al. Knockdown resistance mutations predict DDT resistance and pyrethroid tolerance in the visceral leishmaniasis vector Phlebotomus argentipes[J]. PLoS Negl Trop Dis, 2017, 11(4): e0005504. DOI:10.1371/journal.pntd.0005504 |
[41] |
Firooziyan S, Sadaghianifar A, Taghilou B, et al. Identification of novel voltage-gated sodium channel mutations in human head and body lice (Phthiraptera: Pediculidae)[J]. J Med Entomol, 2017, 54(5): 1337-1343. DOI:10.1093/jme/tjx107 |
[42] |
Yellapu NK, Gopal J, Kasinathan G, et al. Molecular modelling studies of kdr mutations in voltage gated sodium channel revealed significant conformational variations contributing to insecticide resistance[J]. J Biomol Struct Dyn, 2018, 36(8): 2058-2069. DOI:10.1080/07391102.2017.1341338 |
[43] |
Silva Martins WF, Wilding CS, Steen K, et al. Local selection in the presence of high levels of gene flow: evidence of heterogeneous insecticide selection pressure across Ugandan Culex quinquefasciatus populations[J]. PLoS Negl Trop Dis, 2017, 11(10): e0005917. DOI:10.1371/journal.pntd.0005917 |
[44] |
Al Nazawi AM, Aqili J, Alzahrani M, et al. Combined target site (kdr) mutations play a primary role in highly pyrethroid resistant phenotypes of Aedes aegypti from Saudi Arabia[J]. Parasit Vectors, 2017, 10: 161. DOI:10.1186/s13071-017-2096-6 |
[45] |
Sayono S, Hidayati APN, Fahri S, et al. Distribution of voltage-gated sodium channel (Nav) alleles among the Aedes aegypti populations in central java province and its association with resistance to pyrethroid insecticides[J]. PLoS One, 2016, 11(3): e0150577. DOI:10.1371/journal.pone.0150577 |
[46] |
Plernsub S, Saingamsook J, Yanola J, et al. Temporal frequency of knockdown resistance mutations, F1534C and V1016G, in Aedes aegypti in Chiang Mai city, Thailand and the impact of the mutations on the efficiency of thermal fogging spray with pyrethroids[J]. Acta Trop, 2016, 162: 125-132. DOI:10.1016/j.actatropica.2016.06.019 |
[47] |
Buckingham SD, Ihara M, Sattelle DB, et al. Mechanisms of action, resistance and toxicity of insecticides targeting GABA receptors[J]. Curr Med Chem, 2017, 24(27): 2935-2945. DOI:10.2174/0929867324666170613075736 |
[48] |
Garrood WT, Zimmer CT, Gutbrod O, et al. Influence of the RDL A301S mutation in the brown planthopper Nilaparvata lugens on the activity of phenylpyrazole insecticides[J]. Pestic Biochem Physiol, 2017, 142: 1-8. DOI:10.1016/j.pestbp.2017.01.007 |
[49] |
Ffrench-Constant RH, Steichen JC, Rocheleau TA, et al. A single-amino acid substitution in a gamma-aminobutyric acid subtype A receptor locus is associated with cyclodiene insecticide resistance in Drosophila populations[J]. Proc Natl Acad Sci USA, 1993, 90(5): 1957-1961. DOI:10.1073/pnas.90.5.1957 |
[50] |
Low VL, Vinnie-Siow WY, Lim YAL, et al. First molecular genotyping of A302S mutation in the gamma aminobutyric acid (GABA) receptor in Aedes albopictus from Malaysia[J]. Trop Biomed, 2015, 32(3): 554-556. |
[51] |
Taylor-Wells J, Brooke BD, Bermudez I, et al. The neonicotinoid imidacloprid, and the pyrethroid deltamethrin, are antagonists of the insect Rdl GABA receptor[J]. J Neurochem, 2015, 135(4): 705-713. DOI:10.1111/jnc.13290 |