扩展功能
文章信息
- 于志军, 刘书广, 董娜, 杜铭硕, 刘敬泽
- YU Zhi-jun, LIU Shu-guang, DONG Na, DU Ming-shuo, LIU Jing-ze
- 蜱类基础生物学研究进展
- Research progress on fundamental biology of ticks
- 中国媒介生物学及控制杂志, 2018, 29(2): 205-208
- Chin J Vector Biol & Control, 2018, 29(2): 205-208
- 10.11853/j.issn.1003.8280.2018.02.025
-
文章历史
- 收稿日期: 2017-10-27
- 网络出版时间: 2018-02-09 10:46
蜱是重要的媒介生物,呈世界性广泛分布,宿主多样,可寄生于哺乳类、鸟类、爬行类和两栖类等多种动物,其叮咬宿主吸血并使宿主产生多种免疫反应,同时传播多种病原体而导致疾病[1]。蜱类传播的病原体包括病毒(如森林脑炎病毒和汉坦病毒)、立克次体(如贝氏柯克斯体和北亚蜱媒斑疹热立克次体)、细菌(如土拉弗朗西斯菌和布鲁氏菌)、螺旋体(如伯氏疏螺旋体)、原虫(如巴贝西虫和泰勒虫)及毒素(如蜱传麻痹症)等,为节肢动物中传播病原体种类最多的媒介节肢动物,对人类健康、畜牧业生产及野生动物危害极大[2]。
一直以来,蜱类研究落后于昆虫。近年来,随着新发蜱媒病原体的出现,尤其蜱叮人致死事件的不断发生,蜱类研究备受关注,有关蜱的分类鉴定、生物学及生态学特性研究逐渐增多[3]。随着分子生物学及测序技术的飞速发展,在传统蜱类研究基础上,蜱类生理生化及分子生物学研究逐渐深入。现就近年来蜱类基础生物学研究进展进行综述,以期为后续蜱及蜱媒疾病的综合防控提供理论依据。
1 蜱的分类鉴定与系统学研究蜱的传统分类鉴定主要依据其基本外部形态特征,集中在肉眼观察和光镜水平的宏观形态差异分析。随着电镜技术及分子生物学方法的发展,越来越多的精细形态特征及分子标记有效提升了分类水平。如青海血蜱(Haemaphysalis qinghaiensis)、西藏血蜱(H. tibetensis)和麻点璃眼蜱(Hyalomma rufipes)的扫描电镜观察有效补充了其不同生活史阶段的形态特征[4-6]。长角血蜱(H. longcornis)孤雌生殖和两性生殖种群的扫描电镜观察及16S rDNA序列分析进一步明确了2个生殖种群的相互关系[7]。为深入了解血红扇头蜱(Rhipicephalus sanguineus)和嗜驼璃眼蜱(Hy. dromedarii)对立克次体的媒介特性,Abdullah等[8]分别对其进行了光镜和扫描电镜观察,并分析了其18S rDNA、第二内部转录间隔(IST2)、12S rDNA、细胞色素C氧化酶亚基Ⅰ(COⅠ)和16S rDNA的序列特征。近年来,随着细胞及分子水平的研究,对蜱类系统与进化关系了解更为深入,进而使较多类群的分类地位及系统进化关系发生改变[9],且随着分类水平的不断提高和调查不断深入,有关蜱种记录也逐渐增加,如新纪录种方形血蜱(H. quadriaculeata)[10]、飞鼠硬蜱(Ixodes apronophorus)、帕氏硬蜱(I. pavlovskyi)和前额硬蜱(I. frontalis)等[11]。
2 蜱类生物学及生态学特性蜱类生境多样及其与宿主复杂的相互关系决定蜱类的季节发生动态,共同影响蜱媒疾病的时空变动规律[3]。实验室条件下的生活史研究为深入了解自然条件下蜱的生长发育规律奠定基础,如西藏血蜱[12]、原始花蜱(Amblyomma integrum)[13]、马耳革蜱(Dermacentor nitens)[14]、全沟硬蜱(I. persulcatus)[15]、麦氏耳蜱(Otobius megnini)[16]及巨型诺蜱(Nosomma monstrosum)[17]等有效补充了蜱类实验室条件下的生活史资料。自然条件下的生物学特性结合季节发生动态可更加直接地反映蜱类发育动态,如长角血蜱[18-19]、森林革蜱(D. silvarum)[20-21]和嗜群血蜱(H. concinna)[22-23]等在不同地理分布区域内的生物学和生态学特性研究,为深入了解蜱媒疾病的流行规律提供基础资料,同时为蜱及蜱媒疾病的综合防控提供理论依据。
3 蜱类生理生化研究 3.1 蜱类生理学研究蜱类具有极强的繁殖力,研究蜱类生殖特点并揭示其大量产卵的规律,对于制定综合防控措施有重要意义。卵巢是雌性生殖系统的主要结构,位于直肠囊后部和肠侧枝腹面,弯曲呈“U”形,卵巢上皮密布大量卵母细胞,卵母细胞发育具有同时性和异步性,处于不同发育阶段的卵母细胞通过多细胞结构的柄与卵巢上皮连接[1]。卵黄发生是卵巢发育成熟的关键,由激素调控,但其调控机制还不明确。已有研究表明,蜕皮激素可能调节蜱类的卵黄发生[24],如20-E能刺激希伯来花蜱(A. hebraeum)、长角血蜱和变异革蜱(D. variabilis)卵黄原蛋白的合成,但保幼激素的作用还存在争议,如保幼激素能够刺激非洲钝缘蜱(Ornithodoros moubata)卵黄发生,但对希伯来花蜱和长角血蜱血淋巴卵黄原蛋白含量无明显影响[25-26]。因此,要阐明激素如何调节控制卵黄发生的过程,尚有大量问题和空白点亟待解决。
蜱类脂肪体在蜱类生殖、卵黄原蛋白合成与分泌过程中有重要作用,包括中心脂肪体和外周脂肪体。Denardi等[27]研究部分饱血卡耶花蜱(A. cajennense)雌蜱的脂肪体形态结构,表明卡耶花蜱脂肪体呈弥散状,位于体壁下方和器官周围,因此,建议将蜱类外周脂肪体重新定义为体壁脂肪体,而中心脂肪体则修改为内脏脂肪体。脂肪体细胞中存在大量的脂类和碳水化合物,仅存在少量蛋白,表明脂肪体的主要作用是储存脂类和碳水化合物并将其转化为能量,而不能合成卵黄蛋白[27-28]。
3.2 蜱类功能分子研究蜱是专性吸血的外寄生动物,在长期吸血过程中形成了独特的免疫适应机制,其唾液腺、血淋巴和中肠等组织与器官含有多种免疫调节、抗凝血及抵御细菌感染等维持蜱正常生理代谢的功能物质。随着生物学技术的迅速发展,该领域已经逐渐成为当前蜱类研究的热点。蜱类功能物质的研究不仅丰富了蜱类生物学基础知识,为蜱及蜱媒疾病综合防治提供理论依据,且为新型药物开发提供了新思路[29]。
3.2.1 蜱类免疫调节分子蜱在吸血过程中通过唾液向宿主体内注入具有免疫调控功能的蛋白分子,以抵抗因叮咬引起的宿主免疫反应,其中唾液腺发挥重要作用。近年来,从蜱的唾液腺中分离到较多免疫调控因子。Yu等[30]首次从亚洲璃眼蜱(Hy. asiaticum)唾液腺分离纯化出一种具有B细胞抑制活性的蛋白分子,命名为B细胞抑制因子;具环牛蜱(Boophilus annulatus)cDNA文库中克隆到一种免疫原蛋白的全长cDNA片段(Ba05),并证实在唾液腺中存在蛋白异构体[31]。在蜱血淋巴和唾液腺中还有一种免疫球蛋白结合蛋白,可以与进入蜱血淋巴中的宿主免疫球蛋白结合,从而避免宿主免疫球蛋白对蜱内部器官的损害[32]。从微小扇头蜱〔Rh.(Boophilus)microplus〕鉴定出的半胱氨酸蛋白酶抑制剂,有助于吸血过程中蜱唾液腺分子的免疫识别作用[33]。从长角血蜱中肠和表皮细胞分离的巨噬细胞迁移抑制因子对脊椎动物炎症反应、肿瘤生长和血管发生等均有作用[34]。随着蛋白质组和转录组学方法的介入,将会有更多的功能蛋白被分离纯化[35]。
3.2.2 蜱类抗凝血因子蜱为持续吸血及传播病原体,必须克服宿主的凝血反应,其通过分泌具有抗凝血作用的功能分子实现[36]。有关蜱类抗凝血因子报道较多,在希伯来花蜱血淋巴中鉴定的凝血酶抑制剂Amblin,通过与凝血酶活性位点N端结合而发挥作用[37],而肩突硬蜱(I. scapularis)抗凝因子Salp14在唾液腺中表达分泌[38]。从长角血蜱中肠分离的3个丝氨酸蛋白酶基因(HlSP、HlSP2和HlSP3)的蛋白序列与分离自其他节肢动物的蛋白具有部分同源性,在蜱类血餐消化吸收中具有重要作用[39]。近年来,抗凝血分子不断增多,其作用机制也十分复杂,可直接抑制凝血过程或通过抑制血小板聚集或致聚剂活性而间接发挥作用,促进了抗凝血药物的研究及对血液凝固机制的认识[40]。
3.2.3 蜱类抗微生物因子抗微生物物质在脊椎动物和无脊椎动物中广泛存在,也包括蜱类。从全沟硬蜱中肠分离的抗菌肽Persulcatusin,抑制金黄色葡萄球菌(Staphylococcus aureus)生长[41];分离自微小扇头蜱血细胞中的抗菌肽抑制藤黄微球菌(Micrococcus luteus)和大肠埃希菌(Escherichia coli)的生长[42];从森林革蜱鉴定的防御素可抑制革兰阳性金黄色葡萄球菌、革兰阴性大肠埃希菌和真菌生长[43];从中华硬蜱(I. sinensis)分离出一种特异的抗菌肽抑制大肠埃希菌、金黄色葡萄球菌和白色念珠菌(Canidia albicans)的生长[44];在嗜驼璃眼蜱血淋巴中提取的抗菌多肽,对大肠埃希菌和金黄色葡萄球菌均有较强的抗菌活性,且该分子参与蜱的先天非特异性免疫,在抵抗外界感染方面有非常重要的作用[45]。
4 蜱类防控蜱类是十分重要的自然疫源性疾病传播媒介。许多病原体不仅能在蜱体内发育,而且能够经期或经卵传播,甚至在其体内长期存在并保持感染力,从而使蜱成为许多病原体重要的贮存媒介。蜱具有极强的繁殖力和耐饥力,极少的天敌和捕食者,广泛的宿主和复杂的生境分布为其防治带来极大困难[46]。化学杀虫剂仍是目前最主要且行之有效的防治手段,但化学杀虫剂的使用也存在很多问题,蜱类对化学药品的抗性和造成的药物残留及环境污染已成为普遍关注的问题[47]。生物防治原则上比较理想,目前国内外已在蜱类生物防治中尝试利用可侵染蜱类的病毒[48]、细菌[49]、真菌[50-51]和病原线虫[52]、拟寄生物(如寄生蜂等)及禽类等对其进行防治,但仍处于初步阶段,其功效在生产、应用和稳定性方面有许多问题亟待解决。
疫苗为蜱类防制带来了新希望,其可行性已在微小扇头蜱的防制中得以验证,其具有高效、环保和不产生抗药性的特点,而蜱类保护性抗原鉴定是限制其发展的关键步骤[53]。目前,针对蜱类防制尚无任何单一、理想的解决办法,应结合当地实际情况,在充分了解蜱的宿主、生活史和季节分布的基础上,采用多种方法进行综合防制。
5 展望综上所述,蜱类基础生物学研究虽已取得一定成就,但蜱类作为病原体的重要传播媒介,其随着全球气候变化不断有新发蜱媒病原体出现,对人类健康的危害越来越受重视。因此,应加强对蜱类自然条件下的发生动态研究,以期为后续蜱及蜱媒疾病的综合防控开拓新思路;同时蜱类生理生化及分子生物学相关研究逐渐深入,将为蜱及蜱媒疾病的防控提供新靶标。
[1] |
刘敬泽, 杨晓军. 蜱类学[M]. 北京: 中国林业出版社, 2013, 147-162.
|
[2] |
Jongejan F, Uilenberg G. The global importance of ticks[J]. Parasitology, 2004, 129(Suppl): S3-14. |
[3] |
Randolph SE. Tick ecology:processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors[J]. Parasitology, 2004, 129(Suppl): S37-65. |
[4] |
Chen Z, Li YQ, Liu ZJ, et al. Scanning electron microscopy of all parasitic stages of Haemaphysalis qinghaiensis Teng, 1980(Acari:Ixodidae)[J]. Parasitol Res, 2014, 113(6): 2095-2102. DOI:10.1007/s00436-014-3859-z |
[5] |
Jin S, Wang TH, Liu M, et al. Scanning electron microscopy and morphometrics of all parasitic stages of the tick Haemaphysalis tibetensis Hoogstraal, 1965(Acari:Ixodidae)[J]. Syst Appl Acarol, 2016, 21(9): 1202-1209. DOI:10.11158/saa.21.9 |
[6] |
Abdel-Shafy S, El Namaky AH, Allam NAT, et al. Scanning electron microscopy and morphometrics of nymph and larva of the tick Hyalomma rufipes Koch, 1844(Acari:Ixodidae)[J]. J Parasit Dis, 2016, 40(1): 1-10. DOI:10.1007/s12639-014-0450-6 |
[7] |
Chen Z, Yang XJ, Bu FJ, et al. Morphological, biological and molecular characteristics of bisexual and parthenogenetic Haemaphysalis longicornis[J]. Vet Parasitol, 2010, 189(2/4): 344-352. |
[8] |
Abdullah HHAM, El-Molla A, Salib FA, et al. Morphological and molecular identification of the brown dog tick Rhipicephalus sanguineus and the camel tick Hyalomma dromedarii(Acari:Ixodidae)vectors of Rickettsioses in Egypt[J]. Vet World, 2016, 9(10): 1087-1101. DOI:10.14202/vetworld. |
[9] |
陈泽, 李思思, 刘敬泽. 蜱总科新分类系统的科、属检索表[J]. 中国寄生虫学与寄生虫病杂志, 2011, 29(4): 302-304. |
[10] |
Xu RM, Sun Y. The subgenus Garnhamphysalis(Acari:Ixodidae:Haemaphysalis) from China with descriptions of a newly recorded species, Haemaphysalis quadriaculeata[J]. Syst Appl Acarol, 2016, 21(10): 1392-1398. DOI:10.11158/saa.21.10 |
[11] |
Guo Y, Sun Y, Xu RM. The genus Ixodes(Acari:Ixodidae)in China with three new record species[J]. Acta Parasitol, 2016, 61(4): 729-742. |
[12] |
Wang TH, Jin S, Liu M, et al. Life cycle of Haemaphysalis tibetensis Hoogstraal, 1965(Acari:Ixodidae)under laboratory conditions[J]. Syst Appl Acarol, 2017, 22(1): 85-90. DOI:10.11158/saa.22.1 |
[13] |
Bandaranayaka KO, Apanaskevich DA, Rajakaruna RS. Life cycle of Amblyomma integrum (Acari:Ixodidae) under laboratory conditions[J]. Exp Appl Acarol, 2016, 69(3): 335-345. DOI:10.1007/s10493-016-0034-5 |
[14] |
Da Silva Rodrigues V, Garcia MV, Cruz BC, et al. Life cycle and parasitic competence of Dermacentor nitens Neumann, 1897(Acari:Ixodidae)on different animal species[J]. Ticks Tick Borne Dis, 2017, 8(3): 379-384. DOI:10.1016/j.ttbdis.2016.12.014 |
[15] |
Grigoryeva LA, Stanyukovich MK. Life cycle of the taiga tick Ixodes persulcatus(Acari:Ixodidae)in the North-West of Russia[J]. Exp Appl Acarol, 2016, 9(3): 347-357. |
[16] |
Diyes GCP, Rajakaruna RS. Life cycle of Spinose ear tick, Otobius megnini(Acari:Argasidae)infesting the race horses in Nuwara Eliya, Sri Lanka[J]. Acta Trop, 2017, 166: 164-176. DOI:10.1016/j.actatropica.2016.11.026 |
[17] |
Bandaranayaka KO, Apanaskevich DA, Rajakaruna RS. Life cycle of Nosomma monstrosum (Acari:Ixodidae) under laboratory conditions[J]. Exp Appl Acarol, 2016, 69(1): 97-106. DOI:10.1007/s10493-015-0011-4 |
[18] |
Zheng HY, Yu ZJ, Chen Z, et al. Development and biological characteristics of Haemaphysalis longicornis(Acari:Ixodidae) under field conditions[J]. Exp Appl Acarol, 2011, 53(4): 377-388. DOI:10.1007/s10493-010-9415-3 |
[19] |
Zheng HY, Yu ZJ, Zhou LF, et al. Seasonal abundance and activity of the hard tick Haemaphysalis longicornis (Acari:Ixodidae)in North China[J]. Exp Appl Acarol, 2012, 56(2): 133-141. DOI:10.1007/s10493-011-9505-x |
[20] |
Yu ZJ, Zheng HY, Chen Z, et al. The life cycle and biological characteristics of Dermacentor silvarum Olenev (Acari:Ixodidae)under field conditions[J]. Vet Parasitol, 2010, 168(3/4): 323-328. |
[21] |
Yu ZJ, Zheng HY, Yang XL, et al. Seasonal abundance and activity of the tick Dermacentor silvarum in Northern China[J]. Med Vet Entomol, 2011, 25(1): 25-31. DOI:10.1111/mve.2011.25.issue-1 |
[22] |
Meng H, Xu SQ, Yu ZJ, et al. Abundance and seasonal activity of Haemaphysalis concinna (Acari:Ixodidae) at the border between China and Russia in Northern Inner Mongolia, China[J]. Parasit Vectors, 2016, 9: 1. DOI:10.1186/s13071-015-1291-6 |
[23] |
Meng H, Xu SQ, Yu ZJ, et al. The life cycle and occurrence of Haemaphysalis concinna (Acari:Ixodidae) under field conditions[J]. Ticks Tick Borne Dis, 2014, 5(6): 887-891. DOI:10.1016/j.ttbdis.2014.07.007 |
[24] |
Sonenshine DE, Roe EM. Biology of ticks[M]. 2nd ed. New York: Oxford University Press, 2014, 201-203.
|
[25] |
Seixas A, Friesen KJ, Kaufman WR. Effect of 20-hydroxyecdysone and haemolymph on oogenesis in the ixodid tick Amblyomma hebraeum[J]. J Insect Physiol, 2008, 54(7): 1175-1183. DOI:10.1016/j.jinsphys.2008.05.004 |
[26] |
杨小龙. 长角血蜱卵黄发生及其激素调控[D]. 石家庄: 河北师范大学, 2006.
|
[27] |
Denardi SE, Bechara GH, Camargo-Mathias MI. Fat body cells of Amblyomma cajennense partially engorged females (Acari:Ixodidae) and their role on vitellogenesis process[J]. Exp Parasitol, 2008, 121(3): 213-218. |
[28] |
Ricardo AJ, De Oliveira PR, Bechara GH, et al. Ultrastructural detection of proteins, lipids and carbohydrates in oocytes of Amblyomma triste
(Koch, 1844)(Acari:Ixodidae)during the vitellogenesis process[J]. Tissue Cell, 2007, 39(3): 203-215. DOI:10.1016/j.tice.2007.03.005 |
[29] |
周金林. 蜱的功能分子研究及其应用前景[J]. 动物医学进展, 2004, 25(1): 53-56. |
[30] |
Yu D, Liang JG, Yu HN, et al. A tick B-cell inhibitory protein from salivary glands of the hard tick, Hyalomma asiaticum asiaticum[J]. Biochem Biophy Res Commun, 2006, 343(2): 585-590. DOI:10.1016/j.bbrc.2006.02.188 |
[31] |
Shahein YE. Molecular cloning and expression of a larval immunogenic protein from the cattle tick Boophilus annulatus[J]. Vet Immunol Immunopathol, 2008, 121(3/4): 281-289. |
[32] |
万修红, 周金林. 蜱免疫球蛋白结合蛋白研究进展[J]. 中国兽医寄生虫病, 2006, 14(4): 42-45. |
[33] |
Lima CA, Sasaki SD, Tanaka AS. Bmcystatin, a cysteine proteinase inhibitor characterized from the tick Boophilus microplus[J]. Biochem Biophy Res Communi, 2006, 347(1): 44-50. DOI:10.1016/j.bbrc.2006.06.018 |
[34] |
Umemiya R, Hatta T, Liao M, et al. Haemaphysalis longicornis:molecular characterization of a homologue of the macrophage migration inhibitory factor from the partially fed ticks[J]. Exp Parasitol, 2007, 115(2): 135-142. DOI:10.1016/j.exppara.2006.07.006 |
[35] |
Mudenda L, Pierlé SA, Turse JE, et al. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva[J]. Int J Parasitol, 2014, 44(13): 1029-1037. DOI:10.1016/j.ijpara.2014.07.003 |
[36] |
Ribeiro JMC, Alarcon-Chaidez F, Francischetti IMB, et al. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks[J]. Insect Biochem Mol Biol, 2006, 36(2): 111-129. DOI:10.1016/j.ibmb.2005.11.005 |
[37] |
Lai R, Takeuchi H, Jonczy J, et al. A thrombin inhibitor from the ixodid tick, Amblyomma hebraeum[J]. Gene, 2004, 342(2): 243-249. DOI:10.1016/j.gene.2004.07.012 |
[38] |
Narasimhan S, Montgomery RR, DePonte K, et al. Disruption of Ixodes scapularis anticoagulation by using RNA interference[J]. Proc Natl Acad Sci USA, 2004, 101(5): 1141-1146. DOI:10.1073/pnas.0307669100 |
[39] |
Miyoshi T, Tsuji N, Islam MK, et al. A set of serine proteinase paralogs are required for blood-digestion in the ixodid tick Haemaphysalis longicornis[J]. Parasitol Int, 2008, 57(4): 499-505. DOI:10.1016/j.parint.2008.08.003 |
[40] |
程天印, 周金林. 蜱源抗凝分子及其作用机制[J]. 湖南农业大学学报:自然科学版, 2004, 30(6): 583-587. |
[41] |
Miyoshi N, Saito T, Ohmura T, et al. Functional structure and antimicrobial activity of persulcatusin, an antimicrobial peptide from the hard tick Ixodes persulcatus[J]. Parasit Vectors, 2016, 9: 85. DOI:10.1186/s13071-016-1360-5 |
[42] |
Fogaça AC, Almeida IC, Eberlin MN, et al. Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases[J]. Peptides, 2006, 27(4): 667-674. DOI:10.1016/j.peptides.2005.07.013 |
[43] |
Wang JJ, Bian G, Pan W, et al. Molecular characterization of a defensin gene from a hard tick, Dermacentor silvarum[J]. Parasit Vectors, 2015, 8: 25. DOI:10.1186/s13071-014-0625-0 |
[44] |
Yu D, Sheng ZG, Xu XQ, et al. A novel antimicrobial peptide from salivary glands of the hard tick, Ixodes sinensis[J]. Peptides, 2006, 27(1): 31-35. DOI:10.1016/j.peptides.2005.06.020 |
[45] |
王振宝, 王志强, 巴音查汗. 嗜驼璃眼蜱抗菌肽的电泳分析及抗菌活性研究[J]. 动物医学进展, 2008, 29(11): 12-15. DOI:10.3969/j.issn.1007-5038.2008.11.004 |
[46] |
Webster A, Reck J, Santi L, et al. Integrated control of an acaricide-resistant strain of the cattle tick Rhipicephalus microplus by applying Metarhizium anisopliae associated with cypermethrin and chlorpyriphos under field conditions[J]. Vet Parasitol, 2015, 207(3/4): 302-308. |
[47] |
Ghosh S, Nagar G. Problem of ticks and tick-borne diseases in India with special emphasis on progress in tick control research:a review[J]. J Vector Borne Dis, 2014, 51(4): 259-270. |
[48] |
Assenga SP, You M, Shy CH, et al. The use of a recombinant baculovirus expressing a chitinase from the hard tick Haemaphysalis longicornis and its potential application as a bioacaricide for tick control[J]. Parasitol Res, 2006, 98(2): 111-118. DOI:10.1007/s00436-005-0007-9 |
[49] |
Samish M, Ginsberg H, Glazer I. Biological control of ticks[J]. Parasitology, 2004, 129(Suppl): S389-403. |
[50] |
Samish M, Rot A, Ment D, et al. Efficacy of the entomopathogenic fungus Metarhizium brunneum in controlling the tick Rhipicephalus annulatus under field conditions[J]. Vet Parasitol, 2014, 206(3/4): 258-266. |
[51] |
Wassermann M, Selzer P, Steidle JLM, et al. Biological control of Ixodes ricinus larvae and nymphs with Metarhizium anisopliae blastospores[J]. Ticks Tick Borne Dis, 2016, 7(5): 768-771. DOI:10.1016/j.ttbdis.2016.03.010 |
[52] |
Yang XL, Gao ZH, Yu ZJ, et al. Pathogenicity of five species of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) to the ixodid tick Dermacentor silvarum Olenev(Acari:Ixodidae)[J]. Biocontrol Sci Technol, 2013, 23(12): 1349-1361. DOI:10.1080/09583157.2013.838624 |
[53] |
Merino O, Alberdi P, De La Lastra JMP, et al. Tick vaccines and the control of tick-borne pathogens[J]. Front Cell Infect Microbiol, 2013, 3: 30. |