扩展功能
文章信息
- 史琦琪, 程鹏, 公茂庆
- SHI Qi-qi, CHENG Peng, GONG Mao-qing
- 蚊虫抗药性分子机制研究进展
- Progress in molecular mechanisms of mosquito resistance to insecticides
- 中国媒介生物学及控制杂志, 2016, 27(5): 515-519
- Chin J Vector Biol & Control, 2016, 27(5): 515-519
- 10.11853/j.issn.1003.8280.2016.05.028
-
文章历史
- 收稿日期: 2016-04-12
- 网络出版时间: 2016-08-11
蚊虫传播多种疾病,是重点防治的医学昆虫之一。化学防治是虫媒病防制的主要策略[1],然而大量、连续使用化学杀虫剂导致蚊虫抗药性的产生和发展,成为全世界病媒生物防制工作的突出问题[2]。蚊虫抗药性机制包括代谢抗性、靶标抗性、表皮抗性和行为抗性[3]。但蚊虫抗药性产生的本质是由基因改变造成的,包括基因扩增、基因表达及基因结构的改变。因此,基于分子生物学的抗性研究,对阐明蚊虫抗药性及抗药性监测等具有重要意义。现就近几年蚊虫抗药性分子机制的研究进展进行综述。
1 代谢抗性的分子进展 1.1 细胞色素P450氧化酶系(P450s)P450s是亚铁血红素——硫醇盐蛋白的超家族,参与内源性物质和外源性物质(药物、环境化合物等)的代谢解毒,是代谢抗性最主要的机制之一,蚊虫体内对拟除虫菊酯类杀虫剂的解毒作用,P450s 较其他解毒酶的作用更明显[4]。研究证实,拟除虫菊酯类杀虫剂的抗性蚊虫较敏感蚊虫体内P450s活性和含量有不同程度的增加[5]。最早克隆的昆虫P450s基因是家蝇的CYP6A1,后通过多种PCR检测到某些P450s基因在抗性品系中高表达,如CYP6A1、CYP6D1、CYP6A2、CYP6A9、CYP6B2、CYP9A1和CYP4E2等[6]。Ibrahim等[7]报道在非洲地区野外采集的对拟除虫菊酯类杀虫剂抗性的致死按蚊(Anopheles funestus),体内CYP6P9a和CYP6P9b高表达,并通过定点突变和功能分析证实CYP6P9b基因的3个关键氨基酸改变(Val109Ile、Asp335Glu和Asn384Ser)是造成该蚊产生高抗性的重要原因。P450s基因的持续性高表达不仅造成蚊虫对拟除虫菊酯类杀虫剂的单一抗性,还对其他类杀虫剂产生交叉抗性。Müller等[8]报道野外采集的对氯菊酯类杀虫剂抗性的冈比亚按蚊(An. gambiae),CYP6P3基因显著高表达,并且其相应的蛋白可代谢氯菊酯和溴氰菊酯。Mitchell等[9]报道加纳的冈比亚按蚊种群,对拟除虫菊酯类杀虫剂和DDT产生交叉抗性,由其CYP6M2的高表达引起。Riveron等[10]报道,在赞比亚对拟除虫菊酯类杀虫剂高抗性的致死按蚊种群,CYP6M7表达水平高于CYP6P9a和CYP6P9b,且前者比后两者更具多样性的多态性,如突变位点及数目(226个)、单倍型及数目(51个)、高度核苷酸变异等。Liu等[11]证实对拟除虫菊酯类杀虫剂产生抗性的致倦库蚊(Culex pipiens quinquefasciatus),体内CYP6AA7、CYP9J40、CYP9J34和CYP9M10在不同生长阶段均显著表达,且其表达水平和抗性程度紧密相关。Toé等[12]报道在西非对拟除虫菊酯类杀虫剂抗性的Anopheles coluzzi体内,CYP4G16、CYP6P1、CYP9J5、CYP6Z3、CYP9M1和CYP6P4高表达。Stevenson等[13]报道抗性蚊种内存在CYP9JS过转录,其中CYP9J24、CYP9J26、CYP9J28和CYP9J32与拟除虫菊酯类杀虫剂抗性关系密切。Kasai等[14]通过实时定量荧光PCR(qRT-PCR)检测到埃及伊蚊(Aedes aegypti)体内的2个P450亚型:CYP96M6和CYP6BB2,其P450表达水平和氯菊酯降解速率一一对应。另外,Riveron等[15]用微阵列和qRT-PCR对氯菊酯抗性的致死按蚊进行全基因转录组学分析,证明CYP6P9a和CYP6P9b是过表达最高的基因。一些直系同源基因(CYP6P3、CYP6P7、CYP6P9、CYP6M2和CYP6AA5)可降解拟除虫菊酯类杀虫剂。Itokawa等[16]报道在对拟除虫菊酯类杀虫剂抗性的致倦库蚊体内,CYP9M10过表达,CYP9M10顺式作用元件的结构突变造成基因复制、高转录与其有较大关联,中心启动子——TATA box G-27A单核苷酸的改变可能与此相关。Bariami等[17]通过qRT-PCR确定了P450的CYP9J和ATP结合盒转运蛋白(ATP binding cassette transporter,ABC)基因的高转录水平。在加勒比海地区的拟除虫菊酯类杀虫剂的抗性蚊种内,追踪到CYP9J26和ABCB4高表达。充分证明P450s基因的点突变、过转录和高表达是造成蚊虫P450s解毒代谢增强的重要机制。
1.2 谷胱甘肽S-转移酶(GSTs)GSTs是多功能解毒酶系,参与许多内外源有毒物质的代谢。目前,蚊虫GSTs分为7个亚族,其中Delta和Epsilon是蚊虫特异性亚族,已鉴定的蚊虫抗药性相关基因主要分属于这2个亚族[18]。GSTs参与蚊虫对有机磷类、拟除虫菊酯类和有机氯等杀虫剂的抗性形成。Riveron等[19]报道冈比亚按蚊的DDT抗性品系,体内GSTE2基因表达量是敏感品系的5倍,该酶参与冈比亚按蚊体内90%以上的DDT解毒反应。在非洲中、西部,DDT和氯菊酯交叉抗性的致死按蚊中也发现GSTE2高水平表达,并通过全基因转录组的功能分析、结构种群遗传学的研究,证实其高表达是由GSTE2的单氨基酸(L119F)改变联合转录增加造成。在科托努的DDT抗性品系内,发现GETE2和GSTD3基因的过表达量分别是DDT敏感品系的4.4和3.5倍,在马朗维尔分别是1.5和2.5倍[20]。Jones等[21]报道,布基纳法索城区DDT抗性的阿拉伯按蚊(An. arabiensis),体内GSTD3表达上调。再次证明GSTs基因表达上调是导致GSTs解毒代谢增强的重要机制。
1.3 非专一性酯酶(ESTs)ESTs在蚊虫对有机磷类、氨基甲酸酯类和拟除虫菊酯类杀虫剂的抗性中发挥重要作用。尤其是羧酸酯酶(CCEs)。编码ESTs的基因点突变、扩增和表达量增加是蚊虫产生抗性的重要分子机制。Yan等[22]用数字基因表达谱分析(digital gene expression tag profiling,DGE)技术证实,对对硫磷抗性的致倦库蚊SG品系,体内α酯酶基因和保幼激素酯酶(juvenile hormone esterases,JH esterases)基因在其整个生长阶段均表达上调,且表达上调是由其基因扩增引起。Zhang等[23]报道在淡色库蚊(Cx. pipiens pallens)的酯酶超基因座中有13个等位基因与其抗性相关,分别是EsterA1(A1)、Ester2(A2-B2)、Ester4 (A4-B4)、Ester5 (A5-B5)、Ester8 (A8-B8)、Ester9 (A9-B9)、EsterB1 (B1)、EsterB6 (B6)、EsterB7 (B7)、EsterB10 (B10)、Ester11 (A11-B11)、EsterB12 (B12)和EsterA13 (A13),且这些等位基因在全球均有分布。Cui等[24]报道在中国野外采集的尖音库蚊(Cx. pipiens)种群内,检测到酯酶等位基因不寻常的多态性,EsterB1、Ester2、Ester8、Ester9、EsterB10和Ester11共存于同一蚊种群,杀虫剂的交替使用、独立处理区域的蚊种迁移是产生抗性酯酶等位基因多态性的原因,证明酯酶等位基因的多态性是全球蚊虫抗性发展的重要机制之一。近年来,Faucon等[25]报道,在泰国拟除虫菊酯类杀虫剂抗性的埃及伊蚊体内,属于1个单基因簇的3个CCEs(CCEae3a、CCEae4a和CCEae6a)变异。Poupardin等[26]发现在泰国埃及伊蚊种群中,扩增水平最高的是有机磷酸酯类和拟除虫菊酯类杀虫剂抗性的那空沙旺(NS)种群,微阵列分析显示NS种群的CCEae3a比敏感种群表达上调60多倍,CCEae6a也表达上调,CCEae3a的测序和模拟结构预测显示,在NS种群,几种氨基酸的多态性对其抗性表型增加也有一定作用。进一步证明编码ESTs的基因扩增造成表达上调,是ESTs解毒代谢增强的重要机制。
2 靶标抗性的分子进展 2.1 乙酰胆碱酯酶(AchE)有机磷和氨基甲酸酯类杀虫剂的靶标是AchE。蚊虫对有机磷和氨基甲酸酯类杀虫剂的靶标抗性是由于编码AchE的基因突变所致。有研究报道,在非洲加纳南部,有机磷和氨基甲酸酯类杀虫剂交叉抗性的冈比亚按蚊和Anopheles coluzzi,体内ace-1基因突变、拷贝数目变异(CNV)或等位基因119G和119S突变[27-28]。Liebman等[29]检测秘鲁的淡色库蚊第119密码子的第2位点突变出现在第1位点突变前,提示淡色库蚊种群,等位基因的突变可能是固定向前移动的。Zhao等[30]对5个致倦库蚊(敌敌畏和残杀威抗性)的中国品系检测,并对1个ace-1基因克隆和测序,发现5个位点的氨基酸突变(V185M:GTG 变为 ATG;G247S:GGC 变为AGC;A328S:GCC 变为TCC;A391T:GCC 变为 ACC;T682A:ACA 变为 GCA),对突变频率和抗性水平(LC50)进行相关性分析,证实2个突变:G247S 和A328S与残杀威抗性相关。虽V185M突变与敌敌畏、残杀威抗性无关,但其RS基因型频率与残杀威抗性相关,而且Hardy-Weinberg equilibrium实验显示,A328S、V185M和G247S基因突变连锁出现。充分证明这3个基因突变对残杀威抗性的产生起协同作用。T682A突变和残杀威抗性呈负相关。因此,编码AchE的基因突变是造成蚊虫对有机磷类和氨基甲酸酯类杀虫剂靶标抗性的重要机制。
2.2 神经轴突钠离子通道(SC)DDT和拟除虫菊酯类杀虫剂的作用部位是SC,延迟SC活阀门的关闭,钠离子持续内流,从而去极化阻断蚊虫的神经传导,直至蚊虫死亡。蚊虫对DDT和拟除虫菊酯类杀虫剂的靶标抗性有交互性,且不受一般增效剂的干扰。至今已证实蚊虫体内共有11种SC基因突变,在拟除虫菊酯类杀虫剂抗性的蚊虫种群内,已检测到几种基因突变组合,多基因突变造成的协同抗性较单基因突变造成的杀虫剂抗性,使杀虫剂作用靶标的敏感度降低500多倍,甚至完全不敏感[31],如L1014F+M918T[32]、T929Ⅰ+M827Ⅰ+L923F[33]、E435K+C785R+L1014F和N1575Y+L1014F等突变组合[31]。Bariami等[17]证实在大开曼岛和古巴地区,对拟除虫菊酯类杀虫剂抗性的埃及伊蚊种群,体内1016I和1534C突变。抗性种群较实验室敏感种群有2%~5%的转录组存在不同表达,抗性蚊种内约20%的过表达基因在加勒比海种群(107个基因)中均存在表达上调。Singh等[34]用单引物引入限制性分析PCR(PIRA-PCR)技术,对印度53个浅色按蚊(An. subpictus)的SC靶标(L1014的ⅡS6结构域)进行DNA测序,显示在亮氨酸1014的第3密码子上,共存着2个非同义突变:A>C和A>T,导致亮氨酸(TTA)被替换成苯丙氨酸(TTT或TTC),等位基因TTA、TTT和TTC的频率分别为0.14、0.19和0.67,因此,编码苯丙氨酸的突变等位基因的频率为0.86。另外,浅色按蚊L1014-kdr基因座中的A>C突变比A>T突变更具有主导意义。由此证明编码SC的点突变造成关键部位的氨基酸置换,是造成蚊虫靶标抗性的主要机制。
2.3 γ-氨基丁酸(GABA)受体-氯离子通道复合体环戊二烯类和阿维菌素类、吡唑类(如锐劲特)、二环磷脂类和二环苯甲酸酯类杀虫剂的作用靶标是GABA受体-氯离子通道复合体。Asih等[35]报道在印度尼西亚的154种疟疾蚊虫样本中,检测到GABA受体基因RDI突变的等位基因,且这些突变均发生在纯合子中,在An. vagus、An. aconitus、An. barbirostris、An. sundaicus及An. nigerrimus体内发现RDI 302S,而302G等位基因在种群中出现频率相对较少,仅在An. farauti中发现。Taylor-Wells等[36]证实GABA受体亚基的第二跨膜结构域RDI与狄氏剂、氟虫腈抗性相关,对冈比亚按蚊(狄氏剂高抗性的)体内的RDI cDNA进行分子克隆,显示A296G突变和第三跨膜结构域的T345M突变共存。氟虫腈、溴氰菊酯和吡虫啉能减少GABA引发的电流。这些杀虫剂对GABA受体的拮抗作用,因A296G突变和A296G+T345M突变而减少,甚至彻底消除。单独T345M突变对此抗性行为无重大影响,T345M是通过抵消A296G的结构性影响而发挥其协同抗性作用。证明GABA受体作为烟碱类和拟除虫菊酯类杀虫剂的潜在次要作用靶标,其基因突变是蚊虫产生靶标抗性的主要机制之一。
3 表皮抗性的分子进展表皮抗性是蚊虫因杀虫剂的表皮穿透率降低,杀虫剂到达靶标部位时间延长,药物有效浓度降低而引起的抗药性。表皮抗性常伴随蚊虫代谢抗性增强。增厚的蚊虫表皮可容纳更多的酯类,延缓酯类杀虫剂的吸入和渗透,降低杀虫剂的穿透率,从而提高自身抗药性。在莫桑比克南部采集的拟除虫菊酯类杀虫剂抗性的致死按蚊种群,其表皮厚度较正常蚊种显著增加[37]。有研究证实,CPF3表达水平升高导致冈比亚按蚊的抗药性,如CPLCG3和CPLCG4等[38-40]。表皮蛋白基因LLD-GRP1、LLD-GRP2和LLD-GRP3在谷硫磷杀虫剂抗性的马铃薯甲虫中被鉴定[41]。最近,Fang等[42]报道在淡色库蚊的溴氰菊酯抗性(DR)品系和敏感(DS)品系中,基于杀虫剂抗性的蛋白质组学和转录组学发现了14种不同的昆虫表皮蛋白(ICPs)。通过qRT-PCR检测到CpCPLCG5基因的表达水平,实验室种群或野外种群DR品系均高于DS品系,同时,其他13种ICPs表达下调。另外,用小干扰RNA(siRNA)敲除CpCPLCG5基因时发现DR品系的敏感性增强,但其他13种ICPs表达上调。由此证明,ICPs表达上调是蚊虫对溴氰菊酯杀虫剂产生表皮抗性的重要机制。
4 行为抗性的分子进展行为抗性是蚊虫长期面对杀虫剂的人为选择压力,而表现出的一系列避开杀虫剂的行为改变,如长期应用室内滞留喷洒(IRS)和杀虫剂处理过的蚊帐(ITNS),蚊虫由内食性变为外食性,内栖性变为外栖性,嗜血高峰期由深夜变为黄昏前等[43]。Jenkins和Muskavitch[44]用二项选择分析测定,当冈比亚按蚊被引入到照度0 lx的装置中时有强烈的黑暗趋向,当被引入到400 lx区域时,冈比亚按蚊更喜爱中间照明区(100 lx)。此结果证实冈比亚按蚊仍然主动避免最强烈的照明区域,但不一定喜欢完全黑暗区域。斯氏按蚊(An. stephensi)的三元选择分析数据显示,当被引入到400 lx照明区时,雌性斯氏按蚊更喜欢此强度照明区,表明雌性斯氏按蚊需增加光照强度来完成基于视觉的行为,如确定食物源、产卵点和交配群等。而雄性斯氏按蚊更倾向于完全黑暗或者无具体偏好(100或400 lx)。光的偏好对雄性按蚊(冈比亚按蚊和斯氏按蚊)寻找配偶或食物来源并不重要。总体分析显示斯氏按蚊比冈比亚按蚊需更强烈的光照强度以形成视觉感知。通过分析冈比亚按蚊和斯氏按蚊的黄昏期行为变异,利用qRT-PCR评估其长波长、短波长和紫外波长敏感的视蛋白(视紫红质类G蛋白偶联受体)的黄昏期转录表达模式,发现冈比亚按蚊种群和斯氏按蚊种群间的长波长敏感的视蛋白基因数目差异是造成其视觉敏感度差异的真正原因。由此引证,蚊虫基因的CNV是造成蚊虫种群行为抗性的重要机制。
5 结语随着生产生活中各种杀虫剂的大量混合使用,蚊虫的抗药性问题日益突出,已成为一个世界性难题。研究蚊虫抗药性机制对防治病虫害、研制新型杀虫剂及指导农业生产、公共卫生发展具有重要的理论意义。蚊虫种类繁多、分布广泛、形态特征和生理特性多种多样,蚊虫抗性机制的研究是一项复杂而浩大的工程,具体机制尚不完全清楚。蚊虫对多数杀虫剂抗药性的分子机制需分子生物学、分子遗传学、毒理学、生物信息学等相关学科的相互渗透,从而不断深入和完善。
[1] | World Health Organization. Launch of the global plan for insecticide resistance management in malaria vectors (GPIRM)[R]. Geneva:WHO,2012:1-16. |
[2] | Reid MC, McKenzie FE. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors[J]. Malar J, 2016, 15 (1) : 107.DOI:10.1186/s12936-016-1162-4. |
[3] | Zhu F, Lavine L, O'Neal S, et al. Insecticide resistance and management strategies in urban ecosystems[J]. Insects, 2016, 7 (1) : 2.DOI:10.3390/insects7010002. |
[4] | Johnson RM, Wen ZM, Schuler MA, et al. Mediation of pyrethroid insecticide toxicity to honey bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenasea[J]. J Econ Entomol, 2006, 99 (4) : 1046–1050 .DOI:10.1093/jee/99.4.1046. |
[5] | Brooke BD, Kloke G, Hunt RH, et al. Bioassay and biochemical analyses of insecticide resistance in southern African Anopheles funestus (Diptera: Culicidae)[J]. Bull Entomol Res, 2001, 91 (4) : 265–272 .DOI:10.1079/BER2001108. |
[6] | Bergé JB, Feyereisen R, Amichot M. Cytochrome P450 monooxygenases and insecticide resistance in insects[J]. Philos Trans R Soc Lond B Biol Sci, 1998, 353 (1376) : 1701–1705 .DOI:10.1098/rstb.1998.0321. |
[7] | Ibrahim SS, Riveron JM, Bibby J, et al. Allelic variation of cytochrome P450s drives resistance to bednet insecticides in a major malaria vector[J]. PLoS Genet, 2015, 11 (10) : e1005618.DOI:10.1371/journal.pgen.1005618. |
[8] | Müller P, Warr E, Stevenson BJ, et al. Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids[J]. PLoS Genet, 2008, 4 (11) : e1000286.DOI:10.1371/journal.pgen.1000286. |
[9] | Mitchell SN, Stevenson BJ, Müller P, et al. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana[J]. Proc Natl Acad Sci USA, 2012, 109 (16) : 6147–6152 .DOI:10.1073/pnas.1203452109. |
[10] | Riveron JM, Ibrahim SS, Chanda E, et al. The highly polymorphic CYP6M7 cytochrome P450 gene partners with the directionally selected CYP6P9a and CYP6P9b genes to expand the pyrethroid resistance front in the malaria vector Anopheles funestus in Africa[J]. BMC Genomics, 2014, 15 (1) : 817.DOI:10.1186/1471-2164-15-817. |
[11] | Liu NN, Li T, Reid WR, et al. Multiple Cytochrome P450 genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes, Culex quinquefasciatus[J]. PLoS One, 2011, 6 (8) : e23403.DOI:10.1371/journal.pone.0023403. |
[12] | Toé KH, N'Falé S, Dabiré RK, et al. The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families[J]. BMC Genomics, 2015, 16 (1) : 146.DOI:10.1186/s12864-015-1342-6. |
[13] | Stevenson BJ, Pignatelli P, Nikou D, et al. Pinpointing P450s associated with pyrethroid metabolism in the dengue vector, Aedes aegypti: developing new tools to combat insecticide resistance[J]. PLoS Negl Trop Dis, 2012, 6 (3) : e1595.DOI:10.1371/journal.pntd.0001595. |
[14] | Kasai S, Komagata O, Itokawa K, et al. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism[J]. PLoS Negl Trop Dis, 2014, 8 (6) : e2948.DOI:10.1371/journal.pntd.0002948. |
[15] | Riveron JM, Irving H, Ndula M, et al. Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus[J]. Proc Natl Acad Sci USA, 2013, 110 (1) : 252–257 .DOI:10.1073/pnas.1216705110. |
[16] | Itokawa K, Komagata O, Kasai S, et al. A single nucleotide change in a core promoter is involved in the progressive overexpression of the duplicated CYP9M10 haplotype lineage in Culex quinquefasciatus[J]. Insect Biochem Mol Biol, 2015 : 96–102 .DOI:10.1016/j.ibmb.2015.10.006. |
[17] | Bariami V, Jones CM, Poupardin R, et al. Gene amplification, ABC transporters and cytochrome P450s: unraveling the molecular basis of pyrethroid resistance in the dengue vector, Aedes aegypti[J]. PLoS Negl Trop Dis, 2012, 6 (6) : e1692.DOI:10.1371/journal.pntd.0001692. |
[18] | Zhou D, Liu XM, Sun Y, et al. Genomic analysis of detoxification supergene families in the mosquito Anopheles sinensis[J]. PLoS One, 2015, 10 (11) : e0143387.DOI:10.1371/journal.pone.0143387. |
[19] | Riveron JM, Yunta C, Ibrahim SS, et al. A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector[J]. Genome Biol, 2014, 15 (2) : R27.DOI:10.1186/gb-2014-15-2-r27. |
[20] | Djègbè I, Agossa FR, Jones CM, et al. Molecular characterization of DDT resistance in Anopheles gambiae from Benin[J]. Parasit Vectors, 2014 : 409.DOI:10.1186/1756-3305-7-409. |
[21] | Jones CM, Toé HK, Sanou A, et al. Additional selection for insecticide resistance in urban malaria vectors: DDT resistance in Anopheles arabiensis from Bobo-Dioulasso, Burkina Faso[J]. PLoS One, 2012, 7 (9) : e45995.DOI:10.1371/journal.pone.0045995. |
[22] | Yan LZ, Yang PC, Jiang F, et al. Transcriptomic and phylogenetic analysis of Culex pipiens quinquefasciatus for three detoxification gene families[J]. BMC Genomics, 2012 : 609.DOI:10.1186/1471-2164-13-609. |
[23] | Zhang HY, Meng FX, Qiao CL, et al. Identification of resistant carboxylesterase alleles in Culex pipiens complex via PCR-RFLP[J]. Parasit Vectors, 2012 : 209.DOI:10.1186/1756-3305-5-209. |
[24] | Cui F, Lin LY, Qiao CL, et al. Insecticide resistance in Chinese populations of the Culex pipiens complex through esterase overproduction[J]. Entomol Exp Appl, 2006, 120 (3) : 211–220 .DOI:10.1111/eea.2006.120.issue-3. |
[25] | Faucon F, Dusfour I, Gaude T, et al. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing[J]. Genome Res, 2015, 25 (9) : 1347–1359 .DOI:10.1101/gr.189225.115. |
[26] | Poupardin R, Srisukontarat W, Yunta C, et al. Identification of carboxylesterase genes implicated in temephos resistance in the dengue vector Aedes aegypti[J]. PLoS Negl Trop Dis, 2014, 8 (3) : e2743.DOI:10.1371/journal.pntd.0002743. |
[27] | Essandoh J, Yawson AE, Weetman D. Acetylcholinesterase (Ace-1) target site mutation 119S is strongly diagnostic of carbamate and organophosphate resistance in Anopheles gambiae s. s. and Anopheles coluzzii across southern Ghana[J]. Malar, 2013 : 404.DOI:10.1186/1475-2875-12-404. |
[28] | Djogbénou L, Chandre F, Berthomieu A, et al. Evidence of introgression of the ace-1R mutation and of the ace-1 duplication in West African Anopheles gambiae s. s.[J]. PLoS One, 2008, 3 (5) : e2172.DOI:10.1371/journal.pone.0002172. |
[29] | Liebman KA, Pinto J, Valle J, et al. Novel mutations on the ace-1 gene of the malaria vector Anopheles albimanus provide evidence for balancing selection in an area of high insecticide resistance in Peru[J]. Malar J, 2015 : 74.DOI:10.1186/s12936-015-0599-1. |
[30] | Zhao MH, Dong YD, Ran X, et al. Point mutations associated with organophosphate and carbamate resistance in Chinese strains of Culex pipiens quinquefasciatus (Diptera: Culicidae)[J]. PLoS One, 2014, 9 (5) : e95260.DOI:10.1371/journal.pone.0095260. |
[31] | Tan J, Liu Z, Tsai TD, et al. Novel sodium channel gene mutations in Blattella germanica reduce the sensitivity of expressed channels to deltamethrin[J]. Insect Biochem Mol Biol, 2002, 32 (4) : 445–454 .DOI:10.1016/S0965-1748(01)00122-9. |
[32] | Lee SH, Smith TJ, Knipple DC, et al. Mutations in the house fly Vssc1 sodium channel gene associated with super-kdr resistance abolish the pyrethroid sensitivity of Vssc1/tipE sodium channels expressed in Xenopus oocytes[J]. Insect Biochem Mol Biol, 1999, 29 (2) : 185–194 .DOI:10.1016/S0965-1748(98)00122-2. |
[33] | Yoon KS, Kwon DH, Strycharz JP, et al. Biochemical and molecular analysis of deltamethrin resistance in the common bed bug (Hemiptera: Cimicidae)[J]. J Med Entomol, 2008, 45 (6) : 1092–1101 .DOI:10.1603/0022-2585(2008)45[1092:BAMAOD]2.0.CO;2. |
[34] | Singh OP, Dykes CL, Sharma G, et al. L1014F-kdr mutation in Indian Anopheles subpictus (Diptera: Culicidae) arising from two alternative transversions in the voltage-gated sodium channel and a single PIRA-PCR for their detection[J]. J Med Entomol, 2015, 52 (1) : 24–27 .DOI:10.1093/jme/tju013. |
[35] | Asih PBS, Syahrani L, Rozi IEP, et al. Existence of the rdl mutant alleles among the Anopheles malaria vector in Indonesia[J]. Malar J, 2012 : 57.DOI:10.1186/1475-2875-11-57. |
[36] | Taylor-Wells J, Brooke BD, Bermudez I, et al. The neonicotinoid imidacloprid, and the pyrethroid deltamethrin, are antagonists of the insect Rdl GABA receptor[J]. J Neurochem, 2015, 135 (4) : 705–713 .DOI:10.1111/jnc.2015.135.issue-4. |
[37] | Wood OR, Hanrahan S, Coetzee M, et al. Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus[J]. Parasit Vectors, 2010 : 67.DOI:10.1186/1756-3305-3-67. |
[38] | Cornman RS, Togawa T, Dunn WA, et al. Annotation and analysis of a large cuticular protein family with the R & R consensus in Anopheles gambiae[J]. BMC Genomics, 2008 : 22.DOI:10.1186/1471-2164-9-22. |
[39] | Dotson EM, Cornel AJ, Willis JH, et al. A family of pupal-specific cuticular protein genes in the mosquito Anopheles gambiae[J]. Insect Biochem Mol Biol, 1998, 28 (7) : 459–472 .DOI:10.1016/S0965-1748(98)00016-2. |
[40] | Vannini L, Reed TW, Willis JH. Temporal and spatial expression of cuticular proteins of Anopheles gambiae implicated in insecticide resistance or differentiation of M/S incipient species[J]. Parasit Vectors, 2014 : 24.DOI:10.1186/1756-3305-7-24. |
[41] | Zhang J, Goyer C, Pelletier Y. Environmental stresses induce the expression of putative glycine-rich insect cuticular protein genes in adult Leptinotarsa decemlineata (Say)[J]. Insect Mol Biol, 2008, 17 (3) : 209–216 .DOI:10.1111/j.1365-2583.2008.00796.x. |
[42] | Fang FJ, Wang WJ, Zhang DH, et al. The cuticle proteins: a putative role for deltamethrin resistance in Culex pipiens pallens[J]. Parasitol Res, 2015, 114 (12) : 4421–4429 .DOI:10.1007/s00436-015-4683-9. |
[43] | Gatton ML, Chitnis N, Churcher T, et al. The importance of mosquito behavioural adaptations to malaria control in Africa[J]. Evolution, 2013, 67 (4) : 1218–1230 .DOI:10.1111/evo.2013.67.issue-4. |
[44] | Jenkins AM, Muskavitch MA. Crepuscular behavioral variation and profiling of opsin genes in Anopheles gambiae and Anopheles stephensi (Diptera: Culicidae)[J]. J Med Entomol, 2015, 52 (3) : 296–307 .DOI:10.1093/jme/tjv024. |