中国媒介生物学及控制杂志  2016, Vol. 27 Issue (5): 436-442

扩展功能

文章信息

岳巧云, 邱德义, 单振菊, 汪小东, 胡佳, 张文庆
YUE Qiao-yun, QIU De-yi, SHAN Zhen-ju, WANG Xiao-dong, HU Jia, ZHANG Wen-qing
基于DNA条形码和子宫骨片形态特征的8种雌性麻蝇种类鉴定
Identification of 8 female Sarcopha flies based on mitochondrial DNA and signum morphological characteristics
中国媒介生物学及控制杂志, 2016, 27(5): 436-442
Chin J Vector Biol & Control, 2016, 27(5): 436-442
10.11853/j.issn.1003.8280.2016.05.004

文章历史

收稿日期: 2016-06-16
网络出版时间: 2016-08-11
基于DNA条形码和子宫骨片形态特征的8种雌性麻蝇种类鉴定
岳巧云1,2, 邱德义2, 单振菊2, 汪小东2, 胡佳2, 张文庆1     
1 中山大学有害生物控制与资源利用国家重点实验室, 广东 广州 510275;
2 中山出入境检验检疫局检验检疫技术中心, 广东 中山 528403
摘要: 目的 建立一种准确鉴定雌性麻蝇物种的可靠方法。 方法 2011年10月25日至2013年10月27日,共收集35对正在交配的8种麻蝇及57只雄性个体并获取其DNA条形码序列,依据雄性麻蝇的尾器特征进行种类鉴定;从GenBank下载11条该8种麻蝇序列,比较种内所有个体、雌雄个体及不同种类间DNA条形码序列的差异度。雌性个体的种类根据与其交配的雄性个体,并结合DNA条形码确定,详细描述8种雌性麻蝇子宫骨片的主要形态特征,并依据其物证编写种类鉴定检索表。 结果 8种麻蝇的同种雌雄个体间DNA条形码序列差异范围为0~1.37%,与同种个体间的差异范围相符,且<2%的DNA条形码种类鉴定的界限,不同种类间DNA条形码差异范围为4.56%~8.81%,与种内不同个体间有明显差异。不同种类雌性麻蝇的子宫骨片结构具有种的特异性,可作为雌性麻蝇种类鉴定的依据。 结论 DNA条形码可准确地鉴定雌性个体,并进一步发展雌性的某种独特的形态特性,为实现雌性个体的直接形态鉴定提供依据。
关键词: 雌性麻蝇     DNA条形码     子宫骨片形态特征    
Identification of 8 female Sarcopha flies based on mitochondrial DNA and signum morphological characteristics
YUE Qiao-yun1,2, QIU De-yi2, SHAN Zhen-ju2, WANG Xiao-dong2, HU Jia2, ZHANG Wen-qing1     
1 State Key Laboratory of Pest Control and Resources Utilization, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, China;
2 Zhongshan Entry-Exit Inspection and Quarantine Technology Center
Abstract: Objective To establish a method to accurately identify the species of the female Sarcopha. Methods Thirty five mating pairs of eight Sarcopha species and 57 single male individuals of these 8 species were collected from October 25 in 2011 to October 27 in 2013. Their DNA barcodes were sequenced and 11 DNA barcodes sequences of these 8 species were also downloaded from the GenBank. Males were identified according to their genitalia, DNA barcodes differences between the intra-species, inter-sexes and inter-species were compared. Females were identified according to their mating males and the DNA barcodes, female's signum morphological characteristics of these eight species were illustrated and a key based on it was constructed. Results Inter-sexes DNA barcodes differences were 0-1.37% of these 8 species, and were comparable to the intra-species variations, and were lower than the 2% species limitation. The inter-species DNA barcodes differences were 4.56%-8.81%, there are distinct gaps between the intra-species and inter-species. The signum morphological characteristics were species-specific and could be used to identify the females. Conclusion DNA barcoding is a practical tool to identify the female Sarcopha. Species-specific morphological characters of the female could be developed based on the identification result of DNA barcoding, then provides references for the direct morphological identification of the females.
Key words: Female Sarcopha flies     DNA barcoding     Signum morphological characteristics    

麻蝇是一种潜在的病原生物的传播媒介[1-2]。传统麻蝇的鉴定主要根据其形态特征,特别是雄性个体的外生殖器,被视为种类鉴定的金标准[3-6]。而雌性麻蝇的形态鉴定非常复杂,不同种类雌性麻蝇个体间外部形态极为相似,仅根据其外部形态很难准确地鉴定[7]

DNA条形码技术利用线粒体细胞色素C氧化酶亚基Ⅰ(COⅠ),为多细胞动物种类鉴定的参考标志[8]。自2003年Hebert等[9]提出DNA条形码概念以来,COⅠ基因已广泛地应用于多种动物的种类鉴定[10-13],且非常有效[14-15]。DNA条形码正在实施一个全球性的iBOL计划[16]。相同物种雌雄个体DNA条形码序列变异并未超过种内变异范围,通过比对雌雄性个体的DNA序列,可以准确地鉴定雌性个体。尽管大多研究者建议完全取消形态学鉴定,但其依然被使用且在短时期内无法被取代[17]。“整合分类学”[18-19]或DNA条形码数据与形态特征相结合的分类学方法,将促进传统分类学的研究发展[20]

1 材料与方法 1.1 蝇的收集

2011年10月25日至2013年10月27日,以腐鱼作诱饵用诱捕笼或者昆虫网共采集8种麻蝇127只,包括35对正在交配的蝇类〔其中6对白头亚麻蝇(Parasarcophaga albiceps),2对拉萨细麻蝇(Pierretia lhasae),4对波突亚麻蝇(P. jaroschevskyi),4对绯角亚麻蝇(P. ruficornis),7对多突亚麻蝇(P. polystylata),4对野亚麻蝇(P. similis),4对酱亚麻蝇(P. dux)和4对短角亚麻蝇(P. brevicornis)〕。将麻蝇置95%乙醇中或制成针插标本,标本存放在国家质检总局医学媒介生物监测重点实验室(中山)。

1.2 DNA条形码鉴定

每只蝇各取1条后足放入1.5 ml离心管中,用200 μl PBS缓冲液洗2次,置入95%乙醇中。拔掉后腿的蝇标本做成针插的凭证标本,做好唯一性标识,保存于国家质检总局医学媒介生物监测重点实验室(中山),备用。基因组DNA的提取、扩增、PCR产物纯化及测序按文献[21]操作。扩增引物:LCO1490:5′-GGT CAA CAA ATC ATA AAG ATA TTG G-3′;HCO2198:5′-TAA ACT TCA GGG TGA CCA AAA AAT CA-3′[22]。由宝生物工程(大连)有限公司合成。EX-Taq DNA 聚合酶、dNTP 及其他PCR 试剂均购自宝生物工程(大连)有限公司。

8种雌性麻蝇的35对配对个体70条COⅠ序列,57条雄性个体的COⅠ序列和11条来自GenBank的性别未知个体的序列,共138条构建Neighbor-Joining(NJ)树。138条序列的凭证标本采集信息、雌雄及GenBank序列号见表 1。GenBank中无拉萨细麻蝇和波突亚麻蝇的序列,均为原始获得。利用Mega 6.0软件构建 NJ树,重复步数为5 000。

表 1 138条分析序列信息 Table 1 Details of the 138 sequences used in the analysis
1.3 形态学鉴定

雄性个体的种类鉴定依据《中国蝇类》检索表进行鉴定,并经过专家确认。雌性个体的种类通过与之交配的雄性个体进行确认。分类术语依照文献[3, 5, 23]

2 结果 2.1 8种雌性麻蝇的DNA条形码鉴定

所有个体COⅠ片段均为658 bp,无终止密码子、插入或缺失片段,可无间断地翻译成219个氨基酸,各碱基的平均含量为A(30.0%)、T(38.0%)、G(15.9%)、C(16.1%),(A+T)的平均含量为68.0%,高于(G+C)的含量(32.0%),与其他线粒体序列的碱基含量基本一致[24-26]

8种麻蝇中配对的雌性和雄性个体间最大的种内差异为1.37%,<2%,同种雌雄性个体间的碱基差异范围与同种间个体间的差异范围一致,不同种间的变异范围为4.56%~8.81%,高于种类鉴定界限(2%),种内个体间与种间有明显的差异间隔。8个种的同种两性间和种间的碱基对差异见表 2图 1

表 2 8种麻蝇的DNA条形码种内不同个体、雌雄个体间和种间的序列差异 Table 2 The differences of the intra-species,inter-sexes,and inter-species of the studied 8 species
图 1 种内个体间、雌雄个体间及种间DNA条形码序列碱基差异度比较 Figure 1 Intra-species,inter-sexes and inter-species differences of the DNA barcodes
2.2 8种麻蝇138只个体的DNA条形码序列NJ树构建

所有雌雄性个体和同种内未知雌雄的个体聚在同一个分支,置信度为100%,结果与形态学分类完全一致,见图 2

图 2 8种麻蝇138只个体的DNA条形码序列构建的NJ树 Figure 2 Neighbor-Joining based on the DNA barcodes of the 138 individuals of 8 species
2.3 基于子宫骨片的8种雌性麻蝇的种类检索表

1. 子宫骨片强烈骨化,结构空间立体感强,外形呈两熊合抱状,中部具1个膜状小窝(图 3a

注: a. 拉萨细麻蝇〔S (P). lhasae〕; b. 绯角亚麻蝇〔S (P). ruficornis〕; c. 多突亚麻蝇〔S (P). polystylata〕; d. 野亚麻蝇〔S (P). similis〕; e. 白头亚麻蝇 〔S (P). albiceps〕; f. 短角亚麻蝇〔S (P). brevicornis〕; g. 波突亚麻蝇〔S (P). jaroschevskyi〕; h. 酱亚麻蝇〔S (P). dux〕。 图 3 8种麻蝇的子宫骨片形态特征 Figure 3 Signum morphological characteristics of 8 species

…………………………拉萨细麻蝇S(P). lhasae子宫骨片扁平或具轻微的立体感,绝不呈现上述外形………………………………………………2

2. 子宫骨片骨化较弱,较柔软色浅………………3

子宫骨片强烈骨化,深色或浅色………………4

3. 子宫骨片三角状,前端部分内卷(图 3b

……………………绯角亚麻蝇S (P). ruficornis子宫骨片梯形,后缘中部具有1个突起(图 3c

……………………多突亚麻蝇S (P). polystylata

4. 子宫骨片浅色,瓶状,微拱起(图 3d

……………………………野亚麻蝇S (P). similis

子宫骨片深褐色或者黑色,交替出现浅色骨化带……5

5. 子宫骨片具数条清晰的浅色骨化带……………6

子宫骨片黑褐色,不具浅色骨化带,2片(图 3e

………………………白头亚麻蝇S (P). albiceps

6. 子宫骨片长明显长于宽,基部骤窄,具3个骨化条带和1个板状的基部宽带,第1条骨化带最宽,基部的板状带骨化强烈(图 3f

……………………短角亚麻蝇S (P). brevicornis

子宫骨片宽度大于长度,具6条骨化带,其中1条或者3条断裂(图 3g3h)………………………7

7. 子宫骨片具3条完整的骨化带和3条断裂的骨化带,最后1条骨化带呈“V”形,子宫骨片前缘的凹陷宽浅(图 3g)……波突亚麻蝇S (P). jaroschevskyi

子宫骨片具5条完整骨化带和1条断裂骨化带,前缘具有1个乳状突起(图 3h

…………………………………酱亚麻蝇S (P). dux

3 讨论

雄性外生殖器的形态特征是麻蝇种类鉴定的金标准,但雌性麻蝇的形态鉴定存在困难,Povoln--和Verves[23]首次指出不同种雌性麻蝇间的子宫骨片形态特征差异较大,为根据子宫骨片的特征鉴定雌性麻蝇提供了可能。目前仅少数研究提及子宫骨片的特征但并无明确的表述[5, 27]

8种麻蝇DNA条形码的种内最大差异远低于2%的限值,而种间最小差异高达4.56%,明显高于2%的限值,与麻蝇种间差异高于3%的报道一致[28]。麻蝇分布广泛且种类繁多,该文限于在中国收集的8种麻蝇,将子宫骨片普遍作为雌性麻蝇种类鉴定的依据,应加强研究其他种类雌性麻蝇子宫骨片的结构。

参考文献
[1] Greenberg B. Flies and disease: vol. 1,ecology, classification and biotic associations[M]. New Jersey,USA: Princeton University Press, 1971 : 1 -5.
[2] Sukontason KL, Bunchu N, Methanitikorn R, et al. Ultrastructure of adhesive device in fly in the families Calliphoridae, Muscidae and Sarcophagidae, and their implication as mechanical carriers of pathogens[J]. Parasitol Res, 2006, 98 (5) : 477–481 .DOI:10.1007/s00436-005-0100-0.
[3] Pape T. The Sarcophagidae (Diptera) of fennoscandia and denmark: fauna entomologica scandinavica[M]. Leiden, Holland: Dutch Academic Publishing House Brill, 1987 : 1 -203.
[4] Pape TH. Catalogue of the Sarcophagidae of the world (Insecta:Diptera): memoirs on entomology, international, Volume: 8[M]. Gainesville,Florida,USA: American Entomological Institute, 1996 : 3 -7.
[5] 范滋德. 中国常见蝇类检索表[M]. 2版. 北京: 科学出版社, 1992 : 580 -718.
[6] 薛万琦, 赵建铭. 中国蝇类[M]. 沈阳: 辽宁科学技术出版社, 1996 : 1518 -1656.
[7] Byrd JH, Castner JL. Forensic entomology: the utility of arthropods in legal investigations[M]. 2nd ed. London, England: CRC Press Taylor & Francis Group, 2010 : 1 -10.
[8] Hebert PDN, Ratnasingham S, de Waard JR. Barcoding animal life: cytochrome c oxidase subunitⅠ divergences among closely related species[J]. Proc Roy Soc B Biol Sci, 2003, 270 (Suppl 1) : S96–99 .
[9] Hebert PDN, Cywinska A, Ball SL. Biological identifications through DNA barcodes[J]. Proc Roy Soc B Biol Sci, 2003, 270 (1512) : 313–321 .DOI:10.1098/rspb.2002.2218.
[10] Blaxter M, Mann J, Chapman T, et al. Defining operational taxonomic units using DNA barcode data[J]. Philos Trans Roy Soc B Biol Sci, 2005, 360 (1462) : 1935–1943 .DOI:10.1098/rstb.2005.1725.
[11] Evans KM, Wortley AH, Mann DG. An assessment of potential diatom “barcode” genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta)[J]. Protist, 2007, 158 (3) : 349–364 .DOI:10.1016/j.protis.2007.04.001.
[12] Hebert PDN, Penton EH, Burns JM, et al. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator[J]. Proc Natl Acad Sci USA, 2004, 101 (41) : 14812–14817 .DOI:10.1073/pnas.0406166101.
[13] Hajibabaei M, Singer GAC, Clare EL, et al. Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring[J]. BMC Biol, 2007, 5 (1) : 24.DOI:10.1186/1741-7007-5-24.
[14] Yang ZH, Rannala B. Bayesian species delimitation using multilocus sequence data[J]. Proc Natl Acad Sci USA, 2010, 107 (20) : 9264–9269 .DOI:10.1073/pnas.0913022107.
[15] Bergsten J, Bilton DT, Fujisawa T, et al. The effect of geographical scale of sampling on DNA barcoding[J]. Syst Biol, 2012, 61 (5) : 851–869 .DOI:10.1093/sysbio/sys037.
[16] Vernooy R, Haribabu E, Muller MR, et al. Barcoding life to conserve biological diversity: beyond the taxonomic imperative[J]. PLoS Biol, 2010, 8 (7) : e1000417.DOI:10.1371/journal.pbio.1000417.
[17] Tautz D, Arctander P, Minelli A, et al. A plea for DNA taxonomy[J]. Trends Ecol Evol, 2003, 18 (2) : 70–74 .DOI:10.1016/S0169-5347(02)00041-1.
[18] Dayrat B. Towards integrative taxonomy[J]. Biol J Linn Soc, 2005, 85 (3) : 407–415 .DOI:10.1111/bij.2005.85.issue-3.
[19] Padial JM, Miralles A, De la Riva I, et al. Review: the integrative future of taxonomy[J]. Front Zool, 2010, 7 (1) : 16.DOI:10.1186/1742-9994-7-16.
[20] Bergsten J, Brilmyer G, Crampton-Platt A, et al. Sympatry and colour variation disguised well-differentiated sister species: Suphrodytes revised with integrative taxonomy including 5 kbp of housekeeping genes (Coleoptera:Dytiscidae)[J]. DNA Barcodes, 2012 : 1–18 .DOI:10.2478/dna-2012-0001.
[21] Yue QY, Wu KL, Qiu DY, et al. A formal re-description of the cockroach Hebardina concinna anchored on DNA barcodes confirms wing polymorphism and identifies morphological characters for field identification[J]. PLoS One, 2014, 9 (9) : e106789.DOI:10.1371/journal.pone.0106789.
[22] Folmer O, Black M, Hoeh W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates[J]. Mol Mar Biol Biotechnol, 1994, 3 (5) : 294–299 .
[23] Povolný D, Verves Y. The flesh-flies of central Europe (Insecta, Diptera, Sarcophagidae)[J]. Spixiana, 1997 : 1–260 .
[24] Renaud AK, Savage J, Adamowicz SJ. DNA barcoding of northern Nearctic Muscidae (Diptera) reveals high correspondence between morphological and molecular species limits[J]. BMC Ecol, 2012 : 24.DOI:10.1186/1472-6785-12-24.
[25] Rivera J, Currie DC. Identification of Nearctic black flies using DNA barcodes (Diptera:Simuliidae)[J]. Mol Ecol Resour, 2009, 9 (Suppl 1) : S224–236 .
[26] e Schuehli GS, de Carvalho CJB, Wiegmann BM. Molecular phylogenetics of the Muscidae (Diptera: Calyptratae): new ideas in a congruence context[J]. Invertebr Syst, 2007, 21 (3) : 263–278 .DOI:10.1071/IS06026.
[27] 叶宗茂. 麻蝇族3种雌性麻蝇的发现(双翅目:麻蝇科)[J]. 动物分类学报,1985, (1) :107–110.
[28] Wells JD, Pape T, Sperling FA. DNA-based identification and molecular systematics of forensically important Sarcophagidae (Diptera)[J]. J Forensic Sci, 2001, 46 (5) : 1098–1102 .