扩展功能
文章信息
- 陈毅, 刘全生
- CHEN Yi, LIU Quan-sheng
- 鼠类超声通讯在鼠害防治中的应用
- Application of ultrasonic communication in rodent management and control
- 中国媒介生物学及控制杂志, 2016, 27(4): 407-410
- Chin J Vector Biol & Control, 2016, 27(4): 407-410
- 10.11853/j.issn.1003.8280.2016.04.026
-
文章历史
- 收稿日期: 2016-04-06
- 网络出版时间: 2016-06-03 12:00
1954年Anderson[1]首次发现成年大鼠发出超声波(ultrasonic vocalizations,USV),开始鼠类超声通讯的研究。目前研究表明大多数鼠类均具有发射和接听超声波的能力[2]。随后产生大量应用超声波驱赶害鼠的产品[3-4],如今形成了较大市场。该文从鼠类超声波的声学特征、生物功能及其在驱鼠器中的应用等进行综述和探讨,为鼠类超声波通讯的理论研究及产品研发提供建议和指导。
1 鼠类超声通讯的特征及功能蝙蝠使用超声波主要用于空间探测和捕食猎物,而鼠类主要进行社会交流通讯[5]。鼠类可发射超声波表明社会等级[6]、传递自身情绪[7]、加强社会亲密度[8]、吸引异性及协调繁殖行为[9]等。此外,鼠类还可利用超声波为同种个体提供有效的警戒信号,从而提前躲避天敌[10]。不同生理时期或不同社会环境条件下,鼠类超声信号的结构类型不同。根据超声波的结构特征及功能,可将鼠类发射的超声波分为5种[2, 11]。
1.1 分离诱导超声波(Isolation-induced USV)新生幼鼠与母鼠或同窝幼鼠分开独处时发出此类超声波。已有研究表明所有鼠类幼体均可发出此类超声波[2],大鼠和小鼠发射的分离诱导超声波的结构特征不同,大鼠幼体持续时间为0.080~0.140 s,主频为30~65 kHz[12];小鼠幼体的持续时间则为0.010~0.140 s,主频为40~90 kHz[2]。分离诱导超声波反映一种消极的情感状态[13],抗焦虑药物如苯二酚或对γ-氨基丁酸(GABA)受体产生积极调节的药物均能减少发射分离诱导超声波[14]。此外,分离诱导超声波还具有一定的社会交流通讯作用,母鼠察觉巢外幼鼠发出该叫声后离开巢穴并衔回巢外的幼鼠,但无法发现已死亡或被麻醉而无法发出声音的幼鼠[15]。
1.2 雌性诱导超声波(Female-induced USV)成年雄性小鼠在求偶或与雌鼠交配期间所发射的超声波即雌性诱导超声波[16]。此外,雌性小鼠的尿液可单独诱导雄性小鼠发出该超声波[17],但雄性小鼠在遇到其他雄性小鼠、雌性大鼠或人类的尿液时则无该反应[18]。雌性诱导超声波的主频值较高,多为70 kHz左右[19]。该声音反映了一种正面积极的情感状态,通过苯丙胺诱导同样使小鼠发出此类超声波[18],自闭症模型小鼠发射雌性诱导超声波的水平则显著下降[20-21]。声音回放实验表明,雌性诱导超声波具有吸引雌性的重要作用[8]。雄鼠的社会地位或与异性接触的社会经历均会影响其雌性诱导超声波的发射,如劣势鼠会减少发射此类超声波[22],而早先的异性接触经历可大大增加此类超声波的发射水平[23]。
1.3 恐惧诱导超声波(Aversive 22 kHz USV)成年大鼠相互打斗[24]、遭遇天敌[25]、突发噪音[26]或被迫电击[27]等厌恶刺激时会发出此声音,又称22 kHz叫声或厌恶超声波,其主频为18~32 kHz,且声音时程较长,约为0.3~4.0 s[27-28]。该叫声的产生是一种情绪反应而非疼痛反应[11]。此外,大鼠发射22 kHz声音的频次随对周围环境不适感加剧而增加[27]。大鼠幼年常遭遇被迫游泳,或被置于升降平台等压力环境中,成年后更易发出22 kHz的叫声[29],不仅发生在真实遭受不适经历时,接触相似的刺激(如光暗刺激)时也会出现[27],反映了一种类似于焦虑、抑郁负面消极的情感状态。大鼠在遭遇天敌(如猫)时是否发出22 kHz叫声取决于周围有无其他同种个体,周围缺少“听众”时大鼠不会发出22 kHz的叫声,说明该声音可将危险警示信号传递给同种个体[25]。Wöhr和Schwarting[30]实验未能重现此“听众效应”,但却发现22 kHz叫声可引起僵滞行为等焦虑相关行为,同样表明22 kHz的叫声具有警示功能。声音回放实验显示22 kHz叫声可抑制大鼠的活动行为[31],并激发大脑恐惧调节区域(杏仁体和中心灰质)的神经活性[32]。此外,大鼠通过学习可将22 kHz叫声和厌恶刺激联系起来并形成记忆[33-34],且22 kHz叫声在大鼠社群恐慌情绪的传播中有重要作用[35]。
1.4 欲求诱导超声波(Appetitive 50 kHz USV)成年或亚成年大鼠在相互打闹[36]、挠痒[37]、进行社会性探索[38]及交配行为[39]过程中则会发出此类超声波,又称为50 kHz叫声或欲求超声波,其主频范围为32~96 kHz,时程较短,多为0.03~0.05 s[38]。该叫声反映的是一种类似快乐的正面积极的情感状态[40],可作为奖励状态的敏感指标[41],大鼠在接触到与交配[42]、玩耍[43]和食物[44]等相关联的刺激(如光暗刺激)时同样发出50 kHz叫声。此外,发射50 kHz叫声较多的大鼠会更多地与其他个体进行接触交流,说明50 kHz叫声包含一种富有亲和力的交流功能,在建立和维持紧密的社会关系过程中起着十分重要的作用[45]。声音回放研究表明50 kHz叫声可引起大鼠的社会趋向行为并致使其发出应答超声波[46],50 kHz叫声的频次与周围环境中所遗留的其他个体的尿液量呈显著正相关,说明50 kHz叫声的发生受潜在社会接触的驱使[38]。22 kHz叫声抑制接听者的活动行为,而50 kHz叫声可激起大鼠的社会探究行为[31, 47],暴露在50 kHz叫声的大鼠运动活性为无声条件下或对比噪音实验的3倍[46]。
1.5 互动诱导超声波(Interaction-induced USV)亚成年小鼠在追逐打闹期间会频繁地发出互动诱导超声波,Wöhr和Schwarting[11]甚至认为雌性诱导超声波也是互动诱导超声波的一种。互动诱导超声波的主频变化范围较大,但多为60~80 kHz[48]。一般认为互动诱导超声波有助于加强社会联系,因其出现与社会活动行为的发生具有很强的正相关性[48]。研究发现自闭症模型小鼠很少发出互动诱导超声波[49],且随雄鼠性成熟而更多地表现出攻击行为,这种叫声的发生率会越来越少[48],故互动诱导超声波具有群体亲和功能。对于雌性小鼠,互动诱导超声波的发生会一直持续到成年,且成年雌性小鼠之间的互动叫声一般由原居小鼠发出,表明该叫声中还包含领地信号[50]。
2 超声波在鼠害防治中的应用超声波驱鼠器即利用鼠类可以发射和接收超声波的特性,以电子技术发射一定频率和功率的超声波实现驱鼠目的。由于超声波的频率在人类的可听范围以外,故其对人类基本不会产生影响[51]。鼠类的听力值为0.2~90.0 kHz[52],超声波对其听觉或前庭觉等造成一定影响,干扰鼠的正常活动;鼠类等皮毛动物的体表对超声波的吸收率是人类的200倍[53],当鼠靠近声压较强〔最强声压(SPL)达152 dB〕的超声源时严重损伤身体组织,甚至死亡[51]。因此,超声可以对鼠类产生一定驱避作用。
超声波驱鼠器从最初的单调声波(sine wave frequency/pure tone)[54],到变频声波(varied frequencies)[55],再到高声强超声波(high-intensity,ultrasonic sound)[56]已有50余年[4],品种繁多、功效参差和样式各异,部分产品甚至将超声与次声或者光线相结合等[57],其能量强度不同,通常在70~140 dB(距声源30 cm处测量值)范围内[58]。此外,大多数驱鼠器所发射的超声波连续且无间歇。然而,其与自然环境中鼠类所发的超声波仍有很大区别。此类产品在实验条件下虽有一定效果,但实际应用效果往往是短暂的,鼠易产生适应性[59-60],且适用对象具有很强的局限性,如仅驱避一定年龄范围内的鼠类[58]。因此,需要注重不同鼠种敏感超声波的筛选,并保证产品的高保真回放,从而提高超声波驱鼠器控制害鼠的效果。
目前,多数研究表明超声波驱鼠器对害鼠有一定的驱避效果[61-63],且国内曾尝试开发使用超声波驱鼠器控制鼠类,但未得到广泛应用。主要原因是对鼠类超声通讯的内在机制尚不清楚。近年来,随着对鼠类超声行为研究的深入,发现鼠类在遭受恐吓、惊慌或极度不适等环境条件时,会发出具有特殊结构类型的超声波,如大鼠的厌恶超声波,其频率、持续时间等声音参数及波形结构较固定,而部分超声波叫声在鼠类同种个体间又有示警功能[10],尤其是厌恶超声会引起大鼠的僵滞行为,传达一种有效的警戒信号[64]。因此,该类超声波可能对害鼠具有更强的驱逐作用。另外,具有亲和能力的超声波可对鼠类产生一定的吸引力,用于诱捕害鼠。通过驱诱结合策略,达到更好的防制效果。有研究指出超声波驱鼠器和粘鼠板等鼠类防控措施联合使用,可提高鼠害的预防控制效果[65]。总之,要重视研发革新,探讨鼠类对超声波的行为和生理反应及其内在机制,确定不同鼠种对各结构特征超声波的敏感性、耐受性和持效性等,为新型高效超声驱鼠产品的研发和应用提供科学依据。
致谢: 张礼标老师在文章写作中给予指导和帮助,特此志谢[1] | Anderson JW. The production of ultrasonic sounds by laboratory rats and other mammals[J]. Science, 1954, 119 (3101) : 808–809 .DOI:10.1126/science.119.3101.808. |
[2] | Costantini F, D'amato FR. Ultrasonic vocalizations in mice and rats:social contexts and functions[J]. Acta Zool Sin, 2006, 52 (4) : 619–633 . |
[3] | Marsh BT, Jackson WB, Beck JR. Use of ultrasonics in elevator rat control[J]. Grain Age, 1962, 3 (11) : 27–31 . |
[4] | Lavoie GK, Glahn JF. Ultrasound as a deterrent to Rattus norvegicus[J]. J Stored Prod Res, 1977, 13 (1) : 23–28 .DOI:10.1016/0022-474X(77)90004-2. |
[5] | Briggs JR, Kalcounis-Rueppell MC. Similar acoustic structure and behavioural context of vocalizations produced by male and female California mice in the wild[J]. Anim Behav, 2011, 82 (6) : 1263–1273 .DOI:10.1016/j.anbehav.2011.09.003. |
[6] | Inagaki H, Kuwahara M, Kikusui T, et al. The influence of social environmental condition on the production of stress-induced 22 kHz calls in adult male Wistar rats[J]. Physiol Behav, 2005, 84 (1) : 17–22 .DOI:10.1016/j.physbeh.2004.10.006. |
[7] | Brudzynski SM. Ultrasonic calls of rats as indicator variables of negative or positive states:acetylcholine-dopamine interaction and acoustic coding[J]. Behav Brain Res, 2007, 182 (2) : 261–273 .DOI:10.1016/j.bbr.2007.03.004. |
[8] | Hammerschmidt K, Radyushkin K, Ehrenreich H, et al. Female mice respond to male ultrasonic'songs'with approach behaviour[J]. Biol Lett, 2009, 5 (5) : 589–592 .DOI:10.1098/rsbl.2009.0317. |
[9] | Musolf K, Hoffmann F, Penn DJ. Ultrasonic courtship vocalizations in wild house mice, Mus musculus musculus[J]. Anim Behav, 2010, 79 (3) : 757–764 .DOI:10.1016/j.anbehav.2009.12.034. |
[10] | Nyby J, Whitney G. Ultrasonic communication of adult myomorph rodents[J]. Neurosci Biobehav Rev, 1978, 2 (1) : 1–14 .DOI:10.1016/0149-7634(78)90003-9. |
[11] | Wöhr M, Schwarting RKW. Affective communication in rodents: ultrasonic vocalizations as a tool for research on emotion and motivation[J]. Cell Tissue Res, 2013, 354 (1) : 81–97 .DOI:10.1007/s00441-013-1607-9. |
[12] | Brudzynski SM, Kehoe P, Callahan M. Sonographic structure of isolation-induced ultrasonic calls of rat pups[J]. Dev Psychobiol, 1999, 34 (3) : 195–204 .DOI:10.1002/(ISSN)1098-2302. |
[13] | Zippelius HM, Schleidt WM. Ultraschall-Laute bei jungen Möusen[J]. Naturwissenschaften, 1956, 43 (21) : 502. |
[14] | Takahashi A, Yap JJ, Bohager DZ, et al. Glutamatergic and GABAergic modulations of ultrasonic vocalizations during maternal separation distress in mouse pups[J]. Psychopharmacology, 2009, 204 (1) : 61–71 .DOI:10.1007/s00213-008-1437-8. |
[15] | Sewell GD. Ultrasonic communication in rodents[J]. Nature, 1970, 227 (5256) : 410. |
[16] | Sewell GD. Ultrasound in adult rodents[J]. Nature, 1967, 215 (5100) : 512. |
[17] | Whitney G, Alpern M, Dizinno G, et al. Female odors evoke ultrasounds from male mice[J]. Anim Learn Behav, 1974, 2 (1) : 13–18 .DOI:10.3758/BF03199109. |
[18] | Wang HR, Liang SY, Burgdorf J, et al. Ultrasonic vocalizations induced by sex and amphetamine in M2, M4, M5 muscarinic and D2 dopamine receptor knockout mice[J]. PLoS One, 2008, 3 (4) : e1893.DOI:10.1371/journal.pone.0001893. |
[19] | White NR, Prasad M, Barfield RJ, et al. 40-and 70-kHz vocalizations of mice (Mus musculus) during copulation[J]. Physiol Behav, 1998, 63 (4) : 467–473 .DOI:10.1016/S0031-9384(97)00484-8. |
[20] | Jamain S, Radyushkin K, Hammerschmidt K, et al. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism[J]. Proc Natl Acad Sci USA, 2008, 105 (5) : 1710–1715 .DOI:10.1073/pnas.0711555105. |
[21] | Radyushkin K, Hammerschmidt K, Boretius S, et al. Neuroligin-3-deficient mice:model of a monogenic heritable form of autism with an olfactory deficit[J]. Genes Brain Behav, 2009, 8 (4) : 416–425 .DOI:10.1111/gbb.2009.8.issue-4. |
[22] | D'amato FR. Courtship ultrasonic vocalizations and social status in mice[J]. Anim Behav, 1991, 41 (5) : 875–885 .DOI:10.1016/S0003-3472(05)80354-9. |
[23] | Roullet FI, Wöhr M, Crawley JN. Female urine-induced male mice ultrasonic vocalizations, but not scent-marking, is modulated by social experience[J]. Behav Brain Res, 2011, 216 (1) : 19–28 .DOI:10.1016/j.bbr.2010.06.004. |
[24] | Vivian JA, Miczek KA. Morphine attenuates ultrasonic vocalization during agonistic encounters in adult male rats[J]. Psychopharmacology, 1993, 111 (3) : 367–375 .DOI:10.1007/BF02244954. |
[25] | Blanchard RJ, Blanchard DC, Agullana R, et al. Twenty-two kHz alarm cries to presentation of a predator, by laboratory rats living in visible burrow systems[J]. Physiol Behav, 1991, 50 (5) : 967–972 .DOI:10.1016/0031-9384(91)90423-L. |
[26] | Kaltwasser MT. Acoustic signaling in the black rat(Rattus rattus)[J]. J Comp Psychol, 1990, 104 (3) : 227–232 .DOI:10.1037/0735-7036.104.3.227. |
[27] | Wöhr M, Borta A, Schwarting RKW. Overt behavior and ultrasonic vocalization in a fear conditioning paradigm:a dose-response study in the rat[J]. Neurobiol Learn Mem, 2005, 84 (3) : 228–240 .DOI:10.1016/j.nlm.2005.07.004. |
[28] | Borta A, Wöhr M, Schwarting RKW. Rat ultrasonic vocalization in aversively motivated situations and the role of individual differences in anxiety-related behavior[J]. Behav Brain Res, 2006, 166 (2) : 271–280 .DOI:10.1016/j.bbr.2005.08.009. |
[29] | Yee N, Schwarting RKW, Fuchs E, et al. Increased affective ultrasonic communication during fear learning in adult male rats exposed to maternal immune activation[J]. J Psychiatr Res, 2012, 46 (9) : 1199–1205 .DOI:10.1016/j.jpsychires.2012.05.010. |
[30] | Wöhr M, Schwarting RKW. Ultrasonic calling during fear conditioning in the rat:no evidence for an audience effect[J]. Anim Behav, 2008, 76 (3) : 749–760 .DOI:10.1016/j.anbehav.2008.04.017. |
[31] | Wöhr M, Schwarting RKW. Ultrasonic communication in rats: can playback of 50-kHz calls induce approach behavior?[J]. PLoS One, 2007, 2 (12) : e1365.DOI:10.1371/journal.pone.0001365. |
[32] | Sadananda M, Wöhr M, Schwarting RKW. Playback of 22-kHz and 50-kHz ultrasonic vocalizations induces differential c-fos expression in rat brain[J]. Neurosci Lett, 2008, 435 (1) : 17–23 .DOI:10.1016/j.neulet.2008.02.002. |
[33] | Endres T, Widmann K, Fendt M. Are rats predisposed to learn 22 kHz calls as danger-predicting signals?[J]. Behav Brain Res, 2007, 185 (2) : 69–75 .DOI:10.1016/j.bbr.2007.07.012. |
[34] | Bang SJ, Allen TA, Jones LK, et al. Asymmetrical stimulus generalization following differential fear conditioning[J]. Neurobiol Learn Mem, 2008, 90 (1) : 200–216 .DOI:10.1016/j.nlm.2008.02.009. |
[35] | Kim EJ, Kim ES, Covey E, et al. Social transmission of fear in rats:the role of 22-kHz ultrasonic distress vocalization[J]. PLoS One, 2010, 5 (12) : e15077.DOI:10.1371/journal.pone.0015077. |
[36] | Otterbein S, Borta A, Schwarting RKW. Adolescence in rats: monitoring of rough-and-tumble play and its relations to ultrasound vocalization[J]. J Psychophysiol, 2005, 19 (2) : 135–136 . |
[37] | Wöhr M, Kehl M, Borta A, et al. New insights into the relationship of neurogenesis and affect: tickling induces hippocampal cell proliferation in rats emitting appetitive 50-kHz ultrasonic vocalizations[J]. Neuroscience, 2009, 163 (4) : 1024–1030 .DOI:10.1016/j.neuroscience.2009.07.043. |
[38] | Brudzynski SM, Pniak A. Social contacts and production of 50-kHz short ultrasonic calls in adult rats[J]. J Comp Psychol, 2002, 116 (1) : 73–82 .DOI:10.1037/0735-7036.116.1.73. |
[39] | McGinnis MY, Vakulenko M. Characterization of 50-kHz ultrasonic vocalizations in male and female rats[J]. Physiol Behav, 2003, 80 (1) : 81–88 .DOI:10.1016/S0031-9384(03)00227-0. |
[40] | Panksepp J, Burgdorf J. "Laughing"rats and the evolutionary antecedents of human joy?[J]. Physiol Behav, 2003, 79 (3) : 533–547 .DOI:10.1016/S0031-9384(03)00159-8. |
[41] | Knutson B, Burgdorf J, Panksepp J. High-frequency ultrasonic vocalizations index conditioned pharmacological reward in rats[J]. Physiol Behav, 1999, 66 (4) : 639–643 .DOI:10.1016/S0031-9384(98)00337-0. |
[42] | Bialy M, Rydz M, Kaczmarek L. Precontact 50-kHz vocalizations in male rats during acquisition of sexual experience[J]. Behav Neurosci, 2000, 114 (5) : 983–990 .DOI:10.1037/0735-7044.114.5.983. |
[43] | Knutson B, Burgdorf J, Panksepp J. Anticipation of play elicits high-frequency ultrasonic vocalizations in young rats[J]. J Comp Psychol, 1998, 112 (1) : 65–73 .DOI:10.1037/0735-7036.112.1.65. |
[44] | Burgdorf J, Knutson B, Panksepp J. Anticipation of rewarding electrical brain stimulation evokes ultrasonic vocalization in rats[J]. Behav Neurosci, 2000, 114 (2) : 320–327 .DOI:10.1037/0735-7044.114.2.320. |
[45] | Panksepp J, Burgdorf J, Turner C, et al. Modeling ADHD-type arousal with unilateral frontal cortex damage in rats and beneficial effects of play therapy[J]. Brain Cognit, 2003, 52 (1) : 97–105 .DOI:10.1016/S0278-2626(03)00013-7. |
[46] | Wöhr M, Schwarting RKW. Testing social acoustic memory in rats:effects of stimulus configuration and long-term memory on the induction of social approach behavior by appetitive 50-kHz ultrasonic vocalizations[J]. Neurobiol Learn Mem, 2012, 98 (2) : 154–164 .DOI:10.1016/j.nlm.2012.05.004. |
[47] | Wöhr M, Schwarting RKW. Ultrasonic communication in rats: effects of morphine and naloxone on vocal and behavioral responses to playback of 50-kHz vocalizations[J]. Pharmacol Biochem Behav, 2009, 94 (2) : 285–295 .DOI:10.1016/j.pbb.2009.09.008. |
[48] | Panksepp JB, Jochman KA, Kim JU, et al. Affiliative behavior, ultrasonic communication and social reward are influenced by genetic variation in adolescent mice[J]. PLoS One, 2007, 2 (4) : e351.DOI:10.1371/journal.pone.0000351. |
[49] | Scattoni ML, Ricceri L, Crawley JN. Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters[J]. Genes Brain Behav, 2011, 10 (1) : 44–56 .DOI:10.1111/j.1601-183X.2010.00623.x. |
[50] | D'amato FR, Moles A. Ultrasonic vocalizations as an index of social memory in female mice[J]. Behav Neurosci, 2001, 115 (4) : 834–840 .DOI:10.1037/0735-7044.115.4.834. |
[51] | Knight JJ. Effects of airborne ultrasound on man[J]. Ultrasonics, 1968, 6 (1) : 39–41 .DOI:10.1016/0041-624X(68)90016-4. |
[52] | Fay RR. Hearing in vertebrates:a psychophysics databook[M]. Winnetka: Hill-Fay Associates, 1988 : 1 -3. |
[53] | Parrack HO. Effect of air-borne ultrasound on humans[J]. Int Audiol, 1966, 5 (3) : 294–308 .DOI:10.3109/05384916609074198. |
[54] | Kent E, Grossman SP. An ultrasonic UCS[J]. Physiol Behav, 1968, 3 (2) : 361–362 .DOI:10.1016/0031-9384(68)90116-9. |
[55] | Belluzzi JD, Grossman SP. Avoidance learning motivated by high-frequency sound and electric shock[J]. Physiol Behav, 1969, 4 (3) : 371–373 .DOI:10.1016/0031-9384(69)90191-7. |
[56] | Pinel JPJ. High-intensity, ultrasonic sound:a better rat trap[J]. Psychol Rep, 1972, 31 (2) : 427–432 .DOI:10.2466/pr0.1972.31.2.427. |
[57] | Milanovich PJ. Ultrasonic and/or infrasonic animal repellent horn powered by compressed air canister combined with a strobe light:US, 7841291[P]. 2010-11-30. |
[58] | Schumake SA. Electronic rodent repellent devices:a review of efficacy test protocols and regulatory actions[C]. National wildlife research center repellents conference. Lincoln: University of Nebraska, 1995:253-270. |
[59] | Schumake SA, LaVoie GK, Crane K. Efficacy test protocols for evaluation of ultrasonic rodent repellent devices [C]/ Proceedings of the eleventh vertebrate pest conference. Lincoln: University of Nebraska, 1984:85-88. |
[60] | 汪诚信. 电子猫与超声驱鼠器[J]. 中国农村医学,1982, (6) :4–5. |
[61] | 刘宗义, 徐玉萍, 陈虹, 等. 超声波驱鼠、驱蟑效果观察[J]. 中国媒介生物学及控制杂志,1997,8 (2) :134–135. |
[62] | 郭绶衡, 蒋新祥, 胡尚红. 超声波驱鼠器现场驱鼠效果观察[J]. 中国热带医学,2005,5 (4) :917. |
[63] | 李红梅, 于戈, 李兵, 等. 电子驱鼠器在养殖场使用效果观察[J]. 医学动物防制,2008,24 (9) :659–660. |
[64] | Seffer D, Schwarting RKW, Wöhr M. Ultrasonic communication in rats:insights from playback studies[C]/Spink AJ, Grieco F, Krips OE, et al. Proceedings of measuring behavior. Utrecht, The Netherlands:[s.n.], 2012:143-148. |
[65] | 孟凤霞, 刘起勇, 宋秀平, 等. 超声波驱鼠器对鼠活动行为的影响及其应用探讨[J]. 中国媒介生物学及控制杂志,2007,18 (3) :181–184. |