扩展功能
文章信息
- 朱雷, 陶明勇, 王哲, 黄仁杰, 宋凯, 任晓宾, 孙昼
- ZHU Lei, TAO Ming-yong, WANG Zhe, HUANG Ren-jie, SONG Kai, REN Xiao-bin, SUN Zhou
- 杭州市2014-2023年发热伴血小板减少综合征流行特征及感染来源分析
- Epidemic characteristics and infection sources of severe fever with thrombocytopenia syndrome in Hangzhou, China from 2014 to 2023
- 中国媒介生物学及控制杂志, 2024, 35(6): 671-675
- Chin J Vector Biol & Control, 2024, 35(6): 671-675
- 10.11853/j.issn.1003.8280.2024.06.008
-
文章历史
- 收稿日期: 2024-02-02
发热伴血小板减少综合征(severe fever with thrombocytopenia syndrome,SFTS)是我国于2009年发现的新发病毒性传染病,其病原体是大别班达病毒(Dabie Banda virus,DBV),又称发热伴血小板减少综合征病毒(Severe fever with thrombocytopenia syndrome virus,SFTSV)[1-2]。SFTS多分布于山区和丘陵地带,全年均可发病,病死率较高[3]。杭州市自2014年报告首例SFTS以来,发病数逐年升高,发病范围逐年扩大,严重威胁人民群众的生命健康。本研究通过分析2014-2023年杭州市报告的SFTS病例的流行病学特征及感染来源,为科学制定SFTS的防控策略提供基础数据。
1 材料与方法 1.1 资料来源依据“现住地址”和“发病日期”,从“中国疾病预防控制信息系统”的“传染病报告信息管理系统”中获取2014-2023年杭州市SFTS的病例资料。本研究SFTS病例包括所有疑似病例和确诊病例。人口数据来自于中国疾病预防控制信息系统的基本信息系统及杭州市统计局公布数据。
1.2 诊断标准诊断标准参照原国家卫生部印发的《发热伴血小板减少综合征防治指南(2010版)》,根据流行病学史、临床表现及实验室检测结果对病例综合诊断。
1.3 统计学方法本研究运用Excel 2010软件对数据进行描述性分析,ArcGIS 10.2软件用于空间地图绘制,R 4.3.0软件进行Mann-Kendall Z趋势检验,SPSS 26.0软件对病死率及病例人群分布进行比较,P < 0.05为差异有统计学意义。
2 结果 2.1 发病概况2014-2023年,杭州市共报告SFTS病例90例,均为确诊病例,发病率为0.08/10万。发病率居前3位的年份分别为2018年(0.13/10万,14例)、2022年(0.11/10万,14例)和2023年(0.30/10万,37例)。趋势性检验显示,杭州市SFTS 2014-2023年发病率整体呈整体上升趋势(Z=1.789,P=0.037),2023年SFTS发病率快速升高,见图 1。累计报告SFTS死亡病例14例,平均病死率为15.56%(14/90)。
2.2 流行特征 2.2.1 人群分布90例SFTS病例中男女性别比为1∶0.96,其中男性46例,女性44例。病例居住地情况:农村86例(95.56%),城市4例(4.44%);以≥45岁中老年人为高发人群,占发病总数的92.45%(86/90)。职业分布以农民为主,占发病总数的81.11%(73/90),其次为离退人员占7.78%(7/90),其他人群发病均较少,见表 1。
2.2.2 时间分布杭州市SFTS除1月无病例报告以外,其余月份均有病例报告。随时间推移,杭州市SFTS发病季节,从早期的多在夏季发病,逐年扩增到全年均有发病。发病时间主要集中在3-11月,以春、夏、秋3季为多,占发病总数的96.67%(87/90),12月至次年2月发病数较少,均 < 5例。见图 2。
2.2.3 地区分布2014-2023年杭州市报告SFTS病例的地区从1个逐年扩增至8个县(区、市),SFTS发病区域明显扩大,见图 3。近10年来,SFTS发病数最多的为淳安县(50例),其次为临安区(26例),2个县(区)发病数占总发病数的84.44%(76/90),其余县(区、市)发病数均 < 5。2014-2022年,SFTS发病数最多的地区均为淳安县。2023年临安区SFTS发病数(18例)首次超过淳安县(14例)。
2.3 感染来源90例SFTS病例中有5例为接触SFTS死亡病例血液、体液或分泌物导致感染。其中,4例参加SFTS死亡病例葬礼,在无防护的情况下为死者更衣、入殓,其间因接触死者血液及其污染物而感染;1例为照护SFTS病例期间,因接触患者血液而感染。其余85例SFTS病例发病前2周均前往过山地或丘陵地区,活动类型为田间劳作、采茶、打山核桃、采板栗、游玩、钓鱼、测绘等;49例患者家中养有家禽(鸡)、家畜(犬、猫、羊、猪)或家中见过鼠类活动。85例SFTS病例发病前2周明确有蜱虫叮咬史者18例,占21.18%(18/85);否认有蜱虫叮咬史者37例,占43.53%(37/85);不详者30例,占35.29%(30/85)。
3 讨论自2010年以来,我国华中、华东较多省份报告SFTS病例[3-4]。杭州市2014-2023年共报告90例SFTS病例,平均发病率低于全国及浙江省既往SFTS平均发病率[5-6],平均病死率高于浙江省既往SFTS平均病死率[5]。但2022和2023年杭州市SFTS发病数和发病率均明显上升,该上升趋势与全国各省及浙江省各地市SFTS发病趋势一致[5-7],主要原因可能有以下两点:一方面是对SFTS防控宣传与培训力度加大,医务人员对SFTS疾病诊疗的敏感性增加;另一方面是SFTSV随着自然界宿主(鸟类、兽类等)的扩散传播,疾病自然疫源地也在逐步扩大[6, 8]。
杭州市SFTS病例分布情况呈现以下特点:一是SFTS发病季节,从夏季发病逐年扩增至全年均有发病,流行高峰出现在5-9月,与全国南方地区及浙江省的既往研究基本一致[3, 5-6],主要原因可能是SFTS发病与气温、湿度呈正相关[8],杭州市春、夏、秋3季气温、湿度较大,蜱虫密度、活性较高,加之人群户外活动频繁,暴露感染概率较大。二是SFTS发病人群以中老年农民为主。农村地区留守人群多为中老年人群,日常田间劳作加之家中饲养动物,蜱虫暴露概率更大,感染风险更高。此外,杭州市近5年城市居民也发生了SFTS病例,多为外出郊游、爬山、露营过程中被蜱虫叮咬所致。三是杭州市SFTS发病范围由西向东逐年扩大,这与全国各省份的发病趋势相同[6]。早期杭州市SFTS疫情主要集中在本市西部丘陵、山地,以淳安县发病数居首位。2023年临安区SFTS发病数激增并超过淳安县。临安区位于淳安县西北部,属于天目山区,其发病数的增加可能与杭州市SFTS自然疫源地范围的扩大相关[8]。
SFTS病例感染来源分析显示有5例病例因接触SFTS病例而感染,是因为SFTS重症病例或死亡病例会渗出大量血液及分泌物,携带大量DBV,接触者在无防护情况下会导致直接接触感染或因气溶胶传播而感染[9-12]。除此以外,发现仅有少部分SFTS病例发病前2周有明确的蜱虫叮咬史,可能有以下几点原因导致,一是蜱虫叮咬人时,被叮咬者不易发现,查体时亦未能找到明显的伤口;二是除蜱以外,既往研究[2, 13-14]在其他节肢动物(如螨虫等)标本中也检测到DBV,因此SFTS病例存在被其他虫媒叮咬而感染的可能;三是DBV宿主广泛,人群在无防护情况下接触感染动物的血液、分泌物及排泄物也可能造成感染[15-19]。
综上所述,杭州市自2014年报告首例SFTS病例以来,发病地区在逐渐扩大,报告的病例数也明显增加。为有效防控SFTS,应结合该病的流行特征和感染来源分析结果,着重在SFTS高发地区对从事生产、生活或旅游的重点人群开展宣传教育,做好个人防护,防止蜱虫等节肢动物叮咬。在SFTS防控宣传工作中,除针对重点地区农民群众之外,对城市居民的健康宣传也不容忽视。在对患者救治、护理和死亡病例转运、举行葬礼过程中,医护人员、亲属应做好个人防护,防止接触感染DBV。
利益冲突 无
[1] |
Yu XJ, Liang MF, Zhang SY, et al. Fever with thrombocytopenia associated with a novel Bunyavirus in China[J]. N Engl J Med, 2011, 364(16): 1523-1532. DOI:10.1056/NEJMoa1010095 |
[2] |
Casel MA, Park SJ, Choi YK. Severe fever with thrombocytopenia syndrome virus: Emerging novel Phlebovirus and their control strategy[J]. Exp Mol Med, 2021, 53(5): 713-722. DOI:10.1038/s12276-021-00610-1 |
[3] |
施旭光, 孙继民, 刘营, 等. 2015-2019年浙江省发热伴血小板减少综合征流行特征分析[J]. 疾病监测, 2021, 36(5): 431-435. Shi XG, Sun JM, Liu Y, et al. Epidemiological characteristics of fever with thrombocytopenia syndrome in Zhejiang, 2015-2019[J]. Dis Surveill, 2021, 36(5): 431-435. DOI:10.3784/jbje.202101070014 |
[4] |
黄晓霞, 李阿茜, 李德新, 等. 2018年中国发热伴血小板减少综合征流行特征分析[J]. 中国病毒病杂志, 2020, 10(6): 417-420. Huang XX, Li AQ, Li DX, et al. Epidemiological analysis of severe fever with thrombocytopenia syndrome in 2018, China[J]. Chin J Viral Dis, 2020, 10(6): 417-420. |
[5] |
张乾通, 孙继民, 凌锋, 等. 浙江省2021年发热伴血小板减少综合征报告病例及蜱媒监测结果分析[J]. 中国媒介生物学及控制杂志, 2022, 33(4): 485-488. Zhang QT, Sun JM, Ling F, et al. Analysis of reported cases of fever with thrombocytopenia syndrome and tick vectors surveillance results in Zhejiang Province of China in 2021[J]. Chin J Vector Biol Control, 2022, 33(4): 485-488. DOI:10.11853/j.issn.1003.8280.2022.04.008 |
[6] |
陈秋兰, 朱曼桐, 陈宁, 等. 2011-2021年全国发热伴血小板减少综合征流行特征分析[J]. 中华流行病学杂志, 2022, 43(6): 852-859. Chen QL, Zhu MT, Chen N, et al. Epidemiological characteristics of severe fever with thtrombocytopenia syndrome in China, 2011-2021[J]. Chin J Epidemiol, 2022, 43(6): 852-859. DOI:10.3760/cma.j.cn112338-20220325-00228 |
[7] |
滕雪娇, 邓舒, 赵玉秋, 等. 2011-2022年安徽省发热伴血小板减少综合征流行特征分析[J]. 疾病监测, 2024, 39(1): 48-52. Teng XJ, Deng S, Zhao YQ, et al. Epidemiological characteristics of severe fever with thrombocytopenia syndrome in Anhui, 2011-2022[J]. Dis Surveill, 2024, 39(1): 48-52. DOI:10.3784/jbjc.202304180165 |
[8] |
孙继民. 发热伴血小板减少综合征时空预测研究[D]. 北京: 中国疾病预防控制中心, 2018. Sun JM. Study on spatiotemporal prediction of fever with thrombocytopenia syndrome[D]. Beijing: Chinese Center for Disease Control and Prevention, 2018. (in Chinese) |
[9] |
Moon J, Lee H, Jeon JH, et al. Aerosol transmission of Severe fever with thrombocytopenia syndrome virus during resuscitation[J]. Infect Control Hosp Epidemiol, 2019, 40(2): 238-241. DOI:10.1017/ice.2018.330 |
[10] |
Yoo JR, Lee KH, Heo ST. Surveillance results for family members of patients with severe fever with thrombocytopenia syndrome[J]. Zoonoses Public Health, 2018, 65(8): 903-907. DOI:10.1111/zph.12481 |
[11] |
Yang ZD, Hu JG, Lu QB, et al. The prospective evaluation of viral loads in patients with severe fever with thrombocytopenia syndrome[J]. J Clin Virol, 2016, 78: 123-128. DOI:10.1016/j.jcv.2016.03.017 |
[12] |
Wen YP, Fang YZ, Cao FF, et al. A person-to-person transmission cluster of severe fever with thrombocytopenia syndrome characterized by mixed viral infections with familial and nosocomial clustering[J]. Heliyon, 2024, 10(2): e24502. DOI:10.1016/j.heliyon.2024.e24502 |
[13] |
Liu Q, He B, Huang SY, et al. Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis[J]. Lancet Infect Dis, 2014, 14(8): 763-772. DOI:10.1016/S1473-3099(14)70718-2 |
[14] |
王庆奎, 葛恒明, 胡建利, 等. 江苏省东海县2010-2011年发热伴血小板减少综合征媒介及宿主动物监测研究[J]. 中国媒介生物学及控制杂志, 2013, 24(4): 313-316. Wang QK, Ge HM, Hu JL, et al. Surveillance of vectors and host animals of Severe fever with thrombocytopenia syndrome virus in Donghai, China in 2010-2011[J]. Chin J Vector Biol Control, 2013, 24(4): 313-316. DOI:10.11853/j.issn.1003.4692.2013.04.009 |
[15] |
Chen C, Li P, Li KF, et al. Animals as amplification hosts in the spread of Severe fever with thrombocytopenia syndrome virus: A systematic review and meta-analysis[J]. Int J Infect Dis, 2019, 79: 77-84. DOI:10.1016/j.ijid.2018.11.017 |
[16] |
Saito T, Fukushima K, Umeki K, et al. Severe fever with thrombocytopenia syndrome in Japan and public health communication[J]. Emerg Infect Dis, 2015, 21(3): 487-489. DOI:10.3201/eid2103.140831 |
[17] |
Liu JW, Zhao L, Luo LM, et al. Molecular evolution and spatial transmission of Severe fever with thrombocytopenia syndrome virus based on complete genome sequences[J]. PLoS One, 2016, 11(3): e0151677. DOI:10.1371/journal.pone.0151677 |
[18] |
Chmelar J, Calvo E, Pedra JHF, et al. Tick salivary secretion as a source of antihemostatics[J]. J Proteomics, 2012, 75(13): 3842-3854. DOI:10.1016/j.jprot.2012.04.026 |
[19] |
Kirino Y, Ishijima K, Miura M, et al. Seroprevalence of Severe fever with thrombocytopenia syndrome virus in small-animal veterinarians and nurses in the Japanese prefecture with the highest case load[J]. Viruses, 2021, 13(2): 229. DOI:10.3390/v13020229 |