中国媒介生物学及控制杂志  2024, Vol. 35 Issue (3): 381-388

扩展功能

文章信息

曾予, 刘志云, 段立科, 侯学霞, 张琳, 贺丽娟, 郝琴
ZENG Yu, LIU Zhi-yun, DUAN Li-ke, HOU Xue-xia, ZHANG Lin, HE Li-juan, HAO Qin
江西省吉安市微小扇头蜱携带病原菌检测及其分型研究
Detection and genotyping of pathogenic bacteria carried by Rhipicephalus microplus in Ji'an, Jiangxi Province, China
中国媒介生物学及控制杂志, 2024, 35(3): 381-388
Chin J Vector Biol & Control, 2024, 35(3): 381-388
10.11853/j.issn.1003.8280.2024.03.022

文章历史

收稿日期: 2024-01-08
江西省吉安市微小扇头蜱携带病原菌检测及其分型研究
曾予1 , 刘志云2 , 段立科1 , 侯学霞1 , 张琳1 , 贺丽娟1 , 郝琴1     
1 传染病溯源预警与智能决策全国重点实验室, 中国疾病预防控制中心传染病预防控制所螺旋体病控制室, 北京 102206;
2 吉安市中心人民医院(上海市东方医院吉安医院)检验科, 江西 吉安 343000
摘要: 目的 了解江西省吉安市寄生蜱种类及其病原菌携带情况。方法 2022年6月-2023年6月在吉安市永新、吉安和永丰县的牛体表采集417只寄生蜱,通过形态学和16S rDNA特异基因对其进行种类鉴定。并采用普通PCR和巢式PCR检测蜱体内6类蜱传病原菌携带状况,包括伯氏疏螺旋体(B.b)、米氏疏螺旋体(B.m)、斑点热群立克次体(SFGR)、查菲埃立克体(EC)、贝纳柯克斯体(C.b)和嗜吞噬细胞无形体(AP),对阳性产物进行测序分析。结果 417只寄生蜱均为微小扇头蜱,其中有58只蜱携带蜱传病原菌,总阳性率为13.91%。3县中,永新县检出B.b、SFGR和C.b,其中B.b的阳性率最高,为8.99%;吉安县检出B.b、EC和C.b,其中C.b的阳性率最高,为9.21%;永丰县检出B.b、SFGR、C.b和AP,其中SFGR的阳性率最高,为10.32%。此外,3县蜱均存在多种蜱传病原菌的复合感染现象,均表现为B.b与其他蜱传病原菌的复合感染。系统进化分析表明,吉安市寄生蜱携带Borrelia yangzensisB. gariniiB. barvariensis 3种基因型的B.b以及Rickettsia slovacaCandidatus Rickettsia jingxinensis 2种SFGR。结论 吉安市不同县寄生蜱携带的病原菌种类和优势基因型各不相同,且存在多种病原菌复合感染现象,提示当地蜱携带病原菌的情况复杂。应进一步开展蜱传疾病的调查和监测工作,为有效防控蜱传疾病提供科学依据。
关键词:     蜱传病原菌    核酸检测    序列分析    
Detection and genotyping of pathogenic bacteria carried by Rhipicephalus microplus in Ji'an, Jiangxi Province, China
ZENG Yu1 , LIU Zhi-yun2 , DUAN Li-ke1 , HOU Xue-xia1 , ZHANG Lin1 , HE Li-juan1 , HAO Qin1     
1 Department of Spirochetosis Control, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China;
2 Inspection Department of Ji'an Central People's Hospital (Ji'an Hospital of Shanghai East Hospital), Ji'an, Jiangxi 343000, China
Abstract: Objective To investigate parasitic ticks and their pathogenic bacteria in Ji'an City, Jiangxi Province, China. Methods A total of 417 parasitic ticks were collected from the body surface of cattle in Yongxin County, Ji'an County, and Yongfeng County of Ji'an City from June 2022 to June 2023. Tick species was identified by morphological examination and 16S rDNA gene analysis. The collected ticks were examined with traditional PCR and nested PCR for six species of tick-borne pathogens, including Borrelia burgdorferi (B.b), B. miyamotoi (B.m), spotted fever group Rickettsia (SFGR), Ehrlichia chaffeensis (EC), Coxiella burnetii (C.b), and Anaplasma phagocytophilum (AP). Positive samples were sequenced. Results All the 417 ticks were identified as Rhipicephalus microplus, and 58 of them tested positive for the pathogens described, with a positive rate of 13.91%. In Yongxin County, B.b, SFGR, and C.b were detected, and the positive rate of B.b was highest (8.99%). In Ji'an County, B.b, EC, and C.b were detected, and the positive rate of C.b was highest (9.21%). In Yongfeng County, B.b, SFGR, C.b, and AP were detected, and the positive rate of SFGR was highest (10.32%). Additionally, co-infections with B. b and other tick-borne pathogens were present in all the three counties. The phylogenetic analysis showed that the parasitic ticks of Ji'an carried three genotypes of B.b (B. yangzensis, B. garinii, and B. barvariensis) and two types of SFGR (R. slovaca and Candidatus R. jingxinensis). Conclusions The species and predominant genotypes of pathogenic bacteria carried by parasitic ticks vary in different counties of Ji'an, and there is a phenomenon of co-infections with multiple bacteria, indicating that pathogenic bacteria carriage in local ticks is complex. Further study and surveillance should be conducted to prevent and control tick-borne diseases in Jiangxi Province.
Key words: Tick    Tick-borne pathogens    Nucleic acid testing    Sequence analysis    

蜱是一种专性吸血的节肢动物,属于蛛形纲(Arachnida)蜱螨亚纲(Acari)寄螨总目(Parasitiformes)蜱目(Ixodida),可分为软蜱科(Argrasidae)、硬蜱科(Ixodidae)和纳蜱科(Nuttalliellidae)[1]。我国仅发现软蜱科和硬蜱科,已鉴定并命名的蜱有9属124种[2]。蜱可携带细菌、病毒、原虫等多种病原体,可通过叮咬向人类或动物传播病原体,发挥媒介作用,流行病学意义仅次于蚊,对人类和动物健康产生巨大危害[3]。蜱传疾病的感染风险与季节、蜱种分布、蜱携带病原体的种类和丰度、人类预防保护措施和人体易感性息息相关。近年来,由于全球气候变化、经济全球化、人口增长、移民增加和动物迁徙等原因,蜱的栖息地和活动区域逐渐扩大,人感染蜱传疾病的机会增加[4-5],新发蜱传疾病也不断涌现[6],蜱传疾病逐渐成为世界上重要的公共卫生问题。

1982年以来,我国已发现多种蜱传病原体。至今,已有多个研究团队在我国各地区开展蜱及蜱携带病原体的分布调查[7-11],但部分地区仍缺乏相关研究。江西省吉安市位于中国东南部,长江中下游南岸,属亚热带温暖湿润季风气候,植被茂盛,野生动物种类繁多,适合蜱类生存。已有研究表明,江西省存在18种蜱,分属于2科6属[12]。为了解蜱在江西省吉安市的分布情况及病原菌携带情况,本研究从该地区收集了417只寄生蜱,对其进行蜱种鉴定及6种蜱传病原菌特征基因的检测,以便为当地蜱传疾病防控提供科学依据。

1 材料与方法 1.1 样本采集

2022年6月-2023年6月,在江西省吉安市永新、永丰和吉安县共6个村的家养牛体表收集寄生蜱417只,每只牛体表收集蜱不超过15只。各县、乡镇的地理位置和采集蜱数量见图 1表 1

图 1 江西省吉安市3县寄生蜱的地区分布 Figure 1 Regional distribution of parasitic ticks in three counties of Ji'an, Jiangxi Province
表 1 江西省吉安市3县寄生蜱采样点特征 Table 1 Characteristics of sampling sites of parasitic ticks in three counties of Ji'an, Jiangxi Province
1.2 主要试剂与仪器 1.2.1 主要试剂

DNA提取试剂盒(货号AU19014)购自无锡百泰克生物技术有限公司;用于PCR检测的2×Premix TapTM(货号RR901A)和100 bp DNA ladder(货号3422A)购自日本TaKaRa公司。

1.2.2 主要仪器

PCR仪(德国SensoQuest公司)、电泳仪器(北京君意东方电泳设备有限公司)、凝胶成像仪(美国Bio-Rad公司)、研磨仪(北京国科融智生物技术有限公司)、全自动核酸提取仪(无锡百泰克生物技术有限公司)。

1.3 蜱研磨和DNA的提取

将每只蜱用75%乙醇溶液浸泡、洗涤2次,每次5~10 min,之后用超纯水洗净残留的乙醇。将清洗后的蜱放入装有3~5颗磁珠的研磨管中,每管加入200 ml 1×磷酸盐缓冲液(PBS),放入研磨仪充分研磨。研磨程序为1 800 r/min,研磨30 s,间歇10 s,6个循环。采用DNA提取试剂盒和全自动核酸提取仪提取研磨后的蜱DNA。

1.4 蜱种鉴定

将蜱按照种、性别及生活史阶段进行初步分类[13]。采用普通PCR法扩增蜱的16S rDNA序列[14],所用引物及扩增条件见表 2。将阳性产物进行一代测序,在美国国立生物技术信息中心(NCBI)网站上利用基于局部比对算法的搜索工具(BLAST)比对产物序列和参考序列的相似性,并结合形态学特征鉴定蜱种。

表 2 PCR法检测蜱16S rDNA及蜱传病原菌特征基因所用引物序列和反应条件 Table 2 PCR primer sequences and reaction conditions for detecting tick 16S rDNA and specific genes of tick-borne bacteria
1.5 蜱携带病原菌检测及系统进化分析

采用巢式PCR或普通PCR法(特征基因、引物及反应条件见表 2)检测417只蜱中6类蜱传病原菌的特征基因,包括伯氏疏螺旋体(Borrelia burgdorferiB.b[15]、米氏疏螺旋体(B. miyamotoiB.m[16]、斑点热群立克次体(spotted fever group Rickettsia,SFGR)[17-18]、查菲埃立克体(Ehrlichia chaffeensis,EC)[19-20]、贝纳柯克斯体(Coxiella burnetiiC.b[21]和嗜吞噬细胞无形体(Anaplasma phagocytophilum,AP)[22],并利用1.5%琼脂糖凝胶电泳分离PCR产物。将阳性产物进行一代测序。采用MEGA 11软件,使用Clustal W法将阳性产物序列与NCBI的参考序列进行比对,并在bootstrap值为1 000的条件下采用邻接法(neighbor- joining method,NJ法)对序列进行系统进化分析。

2 结果 2.1 蜱种鉴定

经形态学和16S rDNA分子生物学鉴定(序列分析结果见图 2),417只蜱均为微小扇头蜱(Rhipicephalus microplus)。采获蜱数量、性别、发育阶段、饱血状态在各县的分布见表 3

注:●代表采集自永新县的样本;■代表采集自吉安县的样本;▲代表采集自永丰县的样本。 图 2 江西省吉安市3县采获寄生蜱16S rDNA序列系统进化分析 Figure 2 Phylogenetic analysis of 16S rDNA gene sequences of parasitic ticks collected from three counties of Ji'an, Jiangxi Province
表 3 江西省吉安市3县采获寄生蜱生物学特征分布 Table 3 The morphological characteristics of parasitic ticks collected from three counties of Ji'an, Jiangxi Province
2.2 蜱携带病原菌情况

417只寄生蜱中共检出5类病原菌,分别是B.b、SFGR、EC、C.b和AP。3县各病原菌的检出情况见表 4。系统进化分析结果表明,不同县的B.b图 3)和SFGR(图 4)基因型分布有所不同(表 5)。在永丰县的26份SFGR阳性样本中,除YF43和YF59外,其余24份样本仅以OmpA基因(图 4A)无法确定其基因型,因此进一步扩增其gltA基因(图 4B)。3县均存在蜱的复合感染,见表 6

表 4 江西省吉安市3县采获寄生蜱中蜱传病原菌检出结果 Table 4 Detection results of tick-borne bacteria in parasitic ticks from three counties of Ji'an, Jiangxi Province
注:●代表采集自永新县的样本;■代表采集自吉安县的样本;▲代表采集自永丰县的样本;Borrelia yangtzensis曾被划分为B. valaisiana相关株[23-25] 图 3 江西省吉安市3县采获寄生蜱中伯氏疏螺旋体5S-23S基因间隔区系统进化分析 Figure 3 Phylogeny analysis of 5S-23S rRNA intergenic spacer region of Borrelia burgdorferi of parasitic tick collected from three counties of Ji'an, Jiangxi Province
注:●代表采集自永新县的样本;▲代表采集自永丰县的样本。 图 4 江西省吉安市3县采获寄生蜱中斑点热群立克次体特征基因系统进化分析 Figure 4 Phylogeny analysis of specific gene sequences of spotted fever group Rickettsia of parasitic tick collected from three counties of Ji'an, Jiangxi Province
表 5 江西省吉安市3县采获寄生蜱携带伯氏疏螺旋体和斑点热群立克次体基因型分析结果 Table 5 Genotypes of Borrelia burgdorferi and spotted fever group Rickettsia carried by parasitic ticks from three counties of Ji'an, Jiangxi Province
表 6 江西省吉安市3县采获寄生蜱中蜱传病原菌复合感染结果 Table 6 Co-infections with tick-borne pathogens in parasitic ticks from three counties of Ji'an, Jiangxi Province
3 讨论

近年来,蜱传疾病感染逐渐成为全球关注的话题。江西省吉安市位于我国华东地区,属亚热带湿润性气候,野生动物种类繁多,植被茂盛,适合蜱类生存和繁殖,具蜱传疾病流行的风险。为了解蜱在吉安市的分布情况及病原体携带情况,本研究从吉安市永新、吉安和永丰县的家养牛体表采集了417只寄生蜱,并对其进行蜱种鉴定和6类蜱传病原菌特异基因检测。结果表明,417只寄生蜱均为微小扇头蜱,其中有58只蜱携带蜱传病原菌,阳性率为13.91%。检出的病原菌分别为B.bC.b、SFGR、EC和AP。

结果表明,不同县寄生蜱携带的病原菌种类各不相同。永新县优势病原菌为B.b,阳性率为8.99%;吉安县为C.b,阳性率为9.21%;永丰县为SFGR,阳性率为10.32%。此外,EC仅在吉安县寄生蜱中检出,而AP仅在永丰县寄生蜱中检出。

B.b是引起莱姆病的病原体,该病为多器官、多系统疾病,临床症状复杂多样,可表现为皮肤损伤、神经系统损伤、关节炎等[26]。该病原体在永新、吉安和永丰县均检出,但优势基因型存在差异。永新县的优势基因型为B. yangtzensis(图 3中为B. valasiana,该种已被认定为B. yangzensis的同物异名[23-25]);吉安县的优势基因型为B. garinii;永丰县的优势基因型为B. bavariensisB. bavariensis曾属于B. garinii,于2009年被提议独立并命名[27]。两者的区别在于宿主动物不同,B. garinii主要为鸟类,而B. bavariensis主要为啮齿动物[27-28]。两者对人均致病,而B. yangtzensis目前未被证明有明确致病性[28],但曾有研究团队在病人体内检测出B. yangtzensis基因片段[29-30],这提示其具有潜在致病力。以上结果表明吉安市存在莱姆病流行的风险。

B.b外,SFGR在不同县的优势基因型也存在差异。该病原体是引起斑点热的一类立克次体,患者可出现发热、皮疹和其他症状[31]。本研究中,永新和永丰县检出SFGR,永新县的优势基因型为R. slovaca型,该型曾在我国新疆维吾尔自治区、甘肃省等地区的蜱内检出[32-33]。该型已被证实具有明确致病性,患者可出现头皮焦痂和淋巴结肿大等症状[34-35]。永丰县的优势基因型为Candidatus Rickettsia jingxinensis型,该型曾在我国上海市、江苏省等地区的蜱内检出[36-37]。目前尚未报道该型具有致病性,其致病能力还需进一步研究调查。吉安市检出SFGR的阳性率较高,后续应关注斑点热在当地的流行情况,开展深入调查,做好防控。

本研究在吉安市3个县的寄生蜱中均发现病原菌的复合感染现象,阳性率为0.96%(4/417)。且4例复合感染均表现为伯氏疏螺旋体与其他蜱传病原菌的混合感染,表明伯氏疏螺旋体在吉安地区的蜱中广泛存在,应予以重视。

综合以上结果,吉安市寄生蜱携带病原菌种类多样,情况复杂。应进一步开展蜱传疾病调查和监测工作,全面了解当地蜱传疾病的媒介、宿主及人群的感染状况,为有效防控蜱传疾病提供科学依据。

利益冲突  无

参考文献
[1]
Barker SC, Murrell A. Systematics and evolution of ticks with a list of valid genus and species names[J]. Parasitology, 2004, 129(Suppl 1): S15-36. DOI:10.1017/S0031182004005207
[2]
陈泽, 杨晓军 . 蜱的系统分类学[M]. 北京: 科学出版社, 2021: 126.
Chen Z, Yang XJ. Systematic and taxonomy of Ixodida[M]. Beijing: Science Press, 2021: 126.
[3]
Dantas-Torres F, Chomel BB, Otranto D. Ticks and tick-borne diseases: A One Health perspective[J]. Trends Parasitol, 2012, 28(10): 437-446. DOI:10.1016/j.pt.2012.07.003
[4]
Rochlin I, Benach JL, Furie MB, et al. Rapid invasion and expansion of the Asian longhorned tick (Haemaphysalis longicornis) into a new area on Long Island, New York, USA[J]. Ticks Tick Borne Dis, 2023, 14(2): 102088. DOI:10.1016/j.ttbdis.2022.102088
[5]
de Vries DH, Kinsman J, Cremers AL, et al. Public health preparedness and response synergies between institutional authorities and the community: A qualitative case study of emerging tick-borne diseases in Spain and the Netherlands[J]. BMC Public Health, 2021, 21(1): 1882. DOI:10.1186/s12889-021-11925-z
[6]
刘玮. 中国新发蜱媒病原体概况[J]. 传染病信息, 2017, 30(1): 11-14.
Liu W. Emerging tick borne agents in China[J]. Infect Dis Info, 2017, 30(1): 11-14. DOI:10.3969/j.issn.1007-8134.2017.01.005
[7]
张群芝, 窦会娟, 郭嘉林, 等. 豫南地区蜱类分布及蜱媒病原体调查与分析[J]. 现代预防医学, 2015, 42(19): 3578-3580.
Zhang QZ, Dou HJ, Guo JL, et al. Investigation and analysis of tick distribution and tick vector in Yunan District[J]. Mod Prev Med, 2015, 42(19): 3578-3580.
[8]
孙响, 张桂林, 刘晓明, 等. 新疆和硕地区主要蜱类及蜱媒病原体调查[J]. 中国媒介生物学及控制杂志, 2013, 24(1): 5-7, 10.
Sun X, Zhang GL, Liu XM, et al. Investigation of tick species and tick-borne pathogens in Hoxud County of Xinjiang Uygur Autonomous Region, China[J]. Chin J Vector Biol Control, 2013, 24(1): 5-7, 10.
[9]
吴彤宇, 王伟, 陈树斌, 等. 天津市蜱及蜱媒病原体的初步调查[J]. 中国媒介生物学及控制杂志, 2013, 24(3): 246-248.
Wu TY, Wang W, Chen SB, et al. Preliminary survey of ticks and tick-borne pathogens in Tianjin, China[J]. Chin J Vector Biol Control, 2013, 24(3): 246-248.
[10]
包子豪, 张琳, 侯学霞, 等. 新疆维吾尔自治区喀什地区亚洲璃眼蜱携带病原菌研究[J]. 中国人兽共患病学报, 2023, 39(1): 10-19.
Bao ZH, Zhang L, Hou XX, et al. Hyalomma asiaticum asiaticum tick-borne pathogenic bacteria in Kashgar Prefecture, Xinjiang Uygur Autonomous Region[J]. Chin J Zoonoses, 2023, 39(1): 10-19. DOI:10.3969/j.issn.1002-2694.2022.00.178
[11]
李伊娜, 陈宇飞, 云托娅, 等. 内蒙古自治区中西部口岸地区2020年蜱类优势种及其病原携带情况的调查研究[J]. 中国媒介生物学及控制杂志, 2022, 33(2): 216-220.
Li YN, Chen YF, Yun TY, et al. Dominant species of ticks and tick-borne pathogens in the central and western ports areas of the Inner Mongolia Autonomous Region, China, 2020[J]. Chin J Vector Biol Control, 2022, 33(2): 216-220. DOI:10.11853/j.issn.1003.8280.2022.02.009
[12]
Tian JH, Li K, Zhang SZ, et al. Tick (Acari: Ixodoidea) fauna and zoogeographic division of Jiangxi Province, China[J]. Ticks Tick Borne Dis, 2023, 14(2): 102099. DOI:10.1016/j.ttbdis.2022.102099
[13]
邓国藩, 姜在阶 . 中国经济昆虫志  第39册  蜱螨亚纲·硬蜱科[M]. 北京: 科学出版社, 1991: 1-359.
Deng GF, Jiang ZJ. Economic insect fauna of China. fasc 39 Acari: Ixodidae[M]. Beijing: Science Press, 1991: 1-359.
[14]
Wang YZ, Mu LM, Zhang K, et al. A broad-range survey of ticks from livestock in northern Xinjiang: Changes in tick distribution and the isolation of Borrelia burgdorferi sensu stricto[J]. Parasit Vectors, 2015, 8: 449. DOI:10.1186/s13071-015-1021-0
[15]
张琳, 苗广青, 侯学霞, 等. 巢式PCR和实时荧光定量PCR在莱姆病宿主动物监测中的应用评价[J]. 中国媒介生物学及控制杂志, 2018, 29(5): 425-427.
Zhang L, Miao GQ, Hou XX, et al. Evaluation of nested PCR and real-time PCR in host surveillance of Lyme disease[J]. Chin J Vector Biol Control, 2018, 29(5): 425-427. DOI:10.11853/j.issn.1003.8280.2018.05.001
[16]
Schwan TG, Schrumpf ME, Hinnebusch BJ, et al. GlpQ: An antigen for serological discrimination between relapsing fever and Lyme borreliosis[J]. J Clin Microbiol, 1996, 34(10): 2483-2492. DOI:10.1128/jcm.34.10.2483-2492.1996
[17]
Eremeeva M, Yu X, Raoult D. Differentiation among spotted fever group rickettsiae species by analysis of restriction fragment length polymorphism of PCR-amplified DNA[J]. J Clin Microbiol, 1994, 32(3): 803-810. DOI:10.1128/jcm.32.3.803-810.1994
[18]
田冰. 发热伴血小板减少综合征疫源地中斑点热群立克次体感染的研究[D]. 沈阳: 中国医科大学, 2020. DOI: 10.27652/d.cnki.gzyku.2020.001498.
Tian B. Investigation of spotted fever group Rickettsia in the epidemic region of severe fever with thrombocytopenia syndrome[D]. Shenyang: China Medical University, 2020. DOI: 10.27652/d.cnki.gzyku.2020.001498.(inChinese)
[19]
Dawson JE, Stallknecht DE, Howerth EW, et al. Susceptibility of white-tailed deer (Odocoileus virginianus) to infection with Ehrlichia chaffeensis, the etiologic agent of human ehrlichiosis[J]. J Clin Microbiol, 1994, 32(11): 2725-2728. DOI:10.1128/jcm.32.11.2725-2728.1994
[20]
Anderson BE, Sumner JW, Dawson JE, et al. Detection of the etiologic agent of human ehrlichiosis by polymerase chain reaction[J]. J Clin Microbiol, 1992, 30(4): 775-780. DOI:10.1128/jcm.30.4.775-780.1992
[21]
Fenollar F, Fournier PE, Raoult D. Molecular detection of Coxiella burnetii in the sera of patients with Q fever endocarditis or vascular infection[J]. J Clin Microbiol, 2004, 42(11): 4919-4924. DOI:10.1128/JCM.42.11.4919-4924.2004
[22]
Overzier E, Pfister K, Thiel C, et al. Anaplasma phagocytophilum in questing Ixodes ricinus ticks: Comparison of prevalences and partial 16S rRNA gene variants in urban, pasture, and natural habitats[J]. Appl Environ Microbiol, 2013, 79(5): 1730-1734. DOI:10.1128/AEM.03300-12
[23]
Masuzawa T, Hashimoto N, Kudeken M, et al. New genomospecies related to Borrelia valaisiana, isolated from mammals in Okinawa archipelago, Japan[J]. J Med Microbiol, 2004, 53(5): 421-426. DOI:10.1099/jmm.0.05337-0
[24]
Chu CY, Liu W, Jiang BG, et al. Novel genospecies of Borrelia burgdorferi sensu lato from rodents and ticks in southwestern China[J]. J Clin Microbiol, 2008, 46(9): 3130-3133. DOI:10.1128/JCM.01195-08
[25]
Margos G, Chu CY, Takano A, et al. Borrelia yangtzensis sp. nov., a rodent-associated species in Asia, is related to Borrelia valaisiana[J]. Int J Syst Evol Microbiol, 2015, 65(11): 3836-3840. DOI:10.1099/ijsem.0.000491
[26]
Steere AC, Strle F, Wormser GP, et al. Lyme borreliosis[J]. Nat Rev Dis Primers, 2016, 2: 16090. DOI:10.1038/nrdp.2016.90
[27]
Margos G, Vollmer SA, Cornet M, et al. A new Borrelia species defined by multilocus sequence analysis of housekeeping genes[J]. Appl Environ Microbiol, 2009, 75(16): 5410-5416. DOI:10.1128/AEM.00116-09
[28]
Wolcott KA, Margos G, Fingerle V, et al. Host association of Borrelia burgdorferi sensu lato: A review[J]. Ticks Tick Borne Dis, 2021, 12(5): 101766. DOI:10.1016/j.ttbdis.2021.101766
[29]
Kim CM, Yun NR, Kim DM. Case report: The first Borrelia yangtzensis infection in a human in Korea[J]. Am J Trop Med Hyg, 2022, 106(1): 45-46. DOI:10.4269/ajtmh.21-0052
[30]
Ni XB, Jia N, Jiang BG, et al. Lyme borreliosis caused by diverse genospecies of Borrelia burgdorferi sensu lato in northeastern China[J]. Clin Microbiol Infect, 2014, 20(8): 808-814. DOI:10.1111/1469-0691.12532
[31]
叶晓东, 郑寿贵, 孙毅, 等. 蜱传斑点热群立克次体研究进展[J]. 中国人兽共患病学报, 2008, 24(4): 368-371.
Ye XD, Zheng SG, Sun Y, et al. Advances in the research of tick-borne spotted fever group rickettsiae[J]. Chin J Zoonoses, 2008, 24(4): 368-371. DOI:10.3969/j.issn.1002-2694.2008.04.021
[32]
Tian ZC, Liu GY, Shen H, et al. First report on the occurrence of Rickettsia slovaca and Rickettsia raoultii in Dermacentor silvarum in China[J]. Parasit Vectors, 2012, 5: 19. DOI:10.1186/1756-3305-5-19
[33]
Cao XQ, Gu XL, Zhang L, et al. Molecular detection of Rickettsia, Anaplasma, and Bartonella in ticks from free-ranging sheep in Gansu Province, China[J]. Ticks Tick Borne Dis, 2023, 14(3): 102137. DOI:10.1016/j.ttbdis.2023.102137
[34]
Raoult D, Berbis P, Roux V, et al. A new tick-transmitted disease due to Rickettsia slovaca[J]. Lancet, 1997, 350(9071): 112-113. DOI:10.1016/S0140-6736(05)61814-4
[35]
马兰. 人感染新斑点热群立克次体的发现及自然疫源地调查研究[D]. 北京: 中国人民解放军军事医学科学院, 2015.
Ma L. Discovery of human infections with novel spotted fever group rickettsiae and investigations on their natural foci[D]. Beijing: Academy of Military Medical Sciences, PLA, 2015. (in Chinese)
[36]
Qi Y, Ai LL, Jiao J, et al. High prevalence of Rickettsia spp. in ticks from wild hedgehogs rather than domestic bovine in Jiangsu Province, eastern China[J]. Front Cell Infect Microbiol, 2022, 12: 954785. DOI:10.3389/fcimb.2022.954785
[37]
Zeng WB, Li ZQ, Jiang TG, et al. Identification of bacterial communities and tick-borne pathogens in Haemaphysalis spp. collected from Shanghai, China[J]. Trop Med Infect Dis, 2022, 7(12): 413. DOI:10.3390/tropicalmed7120413