[1] |
Beaty BJ, Black W, Eisen L, et al. The intensifying storm: Domestication of Aedes aegypti, urbanization of arboviruses, and emerging insecticide resistance[M]//Mack A. Global health impacts of vector-borne diseases: Workshop summary. Washington: National Academies Press, 2016: 64-66.
|
|
[2] |
李春敏, 董学书, 杨明东. 云南省埃及伊蚊地理分布与季节消长[J]. 中国媒介生物学及控制杂志, 2018, 29(4): 394-396, 399. Li CM, Dong XS, Yang MD. Geographical distribution and seasonal variations of Aedes aegypti in Yunnan province[J]. Chin J Vector Biol Control, 2018, 29(4): 394-396, 399. DOI:10.11853/j.issn.1003.8280.2018.04.019 |
|
[3] | |
|
[4] |
张海林. 云南省登革热和基孔肯雅热跨境传播、本地流行、发展趋势及对策[J]. 中国媒介生物学及控制杂志, 2021, 32(1): 12-20. Zhang HL. Cross-border spread, indigenous transmission, development trend, and control strategy for dengue fever and chikungunya fever in Yunnan province, China[J]. Chin J Vector Biol Control, 2021, 32(1): 12-20. DOI:10.11853/j.issn.1003.8280.2021.01.002 |
|
[5] |
兰学梅, 魏春, 朱进, 等. 中国-老挝登革热重点地区埃及伊蚊孳生习性及杀虫剂抗性水平比较研究[J]. 中国媒介生物学及控制杂志, 2023, 34(2): 238-243. Lan XM, Wei C, Zhu J, et al. A comparative study of breeding habits and insecticide resistance of Aedes aegypti in key areas of dengue fever in China and Laos[J]. Chin J Vector Biol Control, 2023, 34(2): 238-243. DOI:10.11853/j.issn.1003.8280.2023.02.016 |
|
[6] |
郑宇婷, 杨春梅, 杨明东, 等. 云南边境地区登革热媒介伊蚊生态学及抗药性监测[J]. 中国媒介生物学及控制杂志, 2022, 33(1): 38-43. Zheng YT, Yang CM, Yang MD, et al. Ecological and insecticide resistance surveillance of dengue vector Aedes in Yunnan border region of China[J]. Chin J Vector Biol Control, 2022, 33(1): 38-43. DOI:10.11853/j.issn.1003.8280.2022.01.007 |
|
[7] |
宋晓, 史琦琪, 程鹏, 等. 病媒昆虫的抗药性分子机制研究进展[J]. 中国媒介生物学及控制杂志, 2018, 29(6): 657-661, 665. Song X, Shi QQ, Cheng P, et al. Research progress in molecular mechanisms of vector insect's resistance to insecticides[J]. Chin J Vector Biol Control, 2018, 29(6): 657-661, 665. DOI:10.11853/j.issn.1003.8280.2018.06.029 |
|
[8] |
Dang K, Doggett SL, Veera Singham G, et al. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae)[J]. Parasit Vectors, 2017, 10(1): 318. DOI:10.1186/s13071-017-2232-3 |
|
[9] |
Chen ML, Du YZ, Nomura Y, et al. Chronology of sodium channel mutations associated with pyrethroid resistance in Aedes aegypti[J]. Arch Insect Biochem Physiol, 2020, 104(2): E21686. DOI:10.1002/arch.21686 |
|
[10] |
Li CX, Kaufman PE, Xue RD, et al. Relationship between insecticide resistance and kdr mutations in the dengue vector Aedes aegypti in Southern China[J]. Parasit Vectors, 2015, 8: 325. DOI:10.1186/s13071-015-0933-z |
|
[11] |
师灿南. 景洪市登革热媒介伊蚊对常用杀虫剂的抗药性及机制初步研究[D]. 北京: 中国疾病预防控制中心, 2017. Shi CN. Insecticides resistance and its underlying mechanisms for dengue vectors Aedes albopictus and Ae. aegypti in Jinghong city, Yunnan province[D]. Beijing: Chinese Center for Disease Control and Prevention, 2017. (in Chinese)
|
|
[12] |
石清明. 云南省埃及伊蚊种群遗传特征研究[D]. 北京: 中国人民解放军军事医学科学院, 2017. Shi QM. Genetic characteristics of Aedes aegypti (Diptera: Culicidae) in Yunnan province[D]. Beijing: Academy of Military Sciences of Chinese Peopleʼs Liberation Army, 2017. (in Chinese)
|
|
[13] |
王戈. 云南省中老和中缅边境地区埃及伊蚊种群遗传特征研究[D]. 北京: 中国人民解放军军事医学科学院, 2023. DOI: 10.27193/d.cnki.gjsky.2022.000140. Wang G. Study on population genetic characteristics of Aedes aegypti in China-Laos and China-Myanmar border areas of Yunnan province[D]. Beijing: Military Academy of Sciences, 2023. DOI: 10.27193/d.cnki.gjsky.2022.000140.(in Chinese)
|
|
[14] |
兰学梅, 杨明东, 杨锐, 等. 云南省埃及伊蚊对拟除虫菊酯类抗性群体的击倒抗性基因突变分析[J]. 中国人兽共患病学报, 2020, 36(12): 993-999. Lan XM, Yang MD, Yang R, et al. Analysis of knockdown resistance gene mutations in pyrethroid insecticide resistant populations of Aedes aegypti in Yunnan province[J]. Chin J Zoonoses, 2020, 36(12): 993-999. DOI:10.3969/j.issn.1002-2694.2020.00.163 |
|
[15] |
陆宝麟. 中国动物志 昆虫纲 第八卷 双翅目: 蚊科(上卷)[M]. 北京: 科学技出版社, 1997: 221-223. Lu BL. Fauna sinica. Insecta, Volume 8. Diptera: Culicidae Ⅰ[M]. Beijing: Science Press, 1997: 221-223.
|
|
[16] |
Endersby-Harshman NM, Ali A, Alhumrani B, et al. Voltage-sensitive sodium channel ( Vssc) mutations associated with pyrethroid insecticide resistance in Aedes aegypti (L.) from two districts of Jeddah, Kingdom of Saudi Arabia: Baseline information for a Wolbachia release program[J]. Parasit Vectors, 2021, 14(1): 361. DOI:10.1186/s13071-021-04867-3 |
|
[17] |
陈丽, 姜进勇. 澜沧江-湄公河流域埃及伊蚊电压门控钠离子通道击倒抗性基因研究进展[J]. 中国病原生物学杂志, 2023, 18(3): 354-357, 363. Chen L, Jiang JY. A review of knockdown resistance in voltage-gated sodium channel of Aedes aegypti in Lancang-Mekong river Basin[J]. J Pathog Biol, 2023, 18(3): 354-357, 363. DOI:10.13350/j.cjpb.230322 |
|
[18] |
Naw H, Võ TC, Lê HG, et al. Knockdown resistance mutations in the voltage-gated sodium channel of Aedes aegypti (Diptera: Culicidae) in Myanmar[J]. Insects, 2022, 13(4): 322. DOI:10.3390/insects13040322 |
|
[19] |
Son-Un P, Choovattanapakorn N, Saingamsook J, et al. Effect of relaxation of deltamethrin pressure on metabolic resistance in a pyrethroid-resistant Aedes aegypti (Diptera: Culicidae) strain harboring fixed P989P and G1016G kdr alleles[J]. J Med Entomol, 2018, 55(4): 975-981. DOI:10.1093/jme/tjy037 |
|
[20] |
Plernsub S, Saingamsook J, Yanola J, et al. Additive effect of knockdown resistance mutations, S989P, V1016G and F1534C, in a heterozygous genotype conferring pyrethroid resistance in Aedes aegypti in Thailand[J]. Parasit Vectors, 2016, 9(1): 417. DOI:10.1186/s13071-016-1713-0 |
|
[21] |
Kawada H, Oo SZM, Thaung S, et al. Co-occurrence of point mutations in the voltage-gated sodium channel of pyrethroid-resistant Aedes aegypti populations in Myanmar[J]. PLoS Negl Trop Dis, 2014, 8(7): E3032. DOI:10.1371/journal.pntd.0003032 |
|
[22] |
Naw H, Su MNC, Võ TC, et al. Overall prevalence and distribution of knockdown resistance (kdr) mutations in Aedes aegypti from Mandalay Region, Myanmar[J]. Korean J Parasitol, 2020, 58(6): 709-714. DOI:10.3347/kjp.2020.58.6.709 |
|
[23] |
Boyer S, Lopes S, Prasetyo D, et al. Resistance of Aedes aegypti (Diptera: Culicidae) populations to deltamethrin, permethrin, and temephos in Cambodia[J]. Asia Pac J Public Health, 2018, 30(2): 158-166. DOI:10.1177/1010539517753876 |
|
[24] |
Shimono T, Kanda S, Lamaningao P, et al. Phenotypic and haplotypic profiles of insecticide resistance in populations of Aedes aegypti larvae (Diptera: Culicidae) from central Lao PDR[J]. Trop Med Health, 2021, 49(1): 32. DOI:10.1186/s41182-021-00321-3 |
|
[25] |
Fan YJ, O'Grady P, Yoshimizu M, et al. Evidence for both sequential mutations and recombination in the evolution of kdr alleles in Aedes aegypti[J]. PLoS Negl Trop Dis, 2020, 14(4): E0008154. DOI:10.1371/journal.pntd.0008154 |
|
[26] |
Del Fiol FS, Balcão VM, Barberato-Fillho S, et al. Obesity: A new adverse effect of antibiotics?[J]. Front Pharmacol, 2018, 9: 1408. DOI:10.3389/fphar.2018.01408 |
|
[27] |
兰学梅, 朱进, 李华昌, 等. 云南省登革热重点地区埃及伊蚊对11种杀虫剂的抗药性调查[J]. 中国媒介生物学及控制杂志, 2019, 30(5): 582-585. Lan XM, Zhu J, Li HC, et al. An investigation of the resistance of Aedes aegypti to 11 insecticides in key areas of dengue fever in Yunnan province, China[J]. Chin J Vector Biol Control, 2019, 30(5): 582-585. DOI:10.11853/j.issn.1003.8280.2019.05.025 |
|