扩展功能
文章信息
- 邓思佳, 胡鞠萍, 朱国鼎
- DENG Si-jia, HU Ju-ping, ZHU Guo-ding
- 真菌在蚊虫防控中的应用研究进展
- Research progress of the application of fungi in mosquito control
- 中国媒介生物学及控制杂志, 2023, 34(6): 819-823
- Chin J Vector Biol & Control, 2023, 34(6): 819-823
- 10.11853/j.issn.1003.8280.2023.06.021
-
文章历史
- 收稿日期: 2023-07-18
2 南京医科大学公共卫生学院, 江苏 南京 211166
2 School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
蚊虫被认为是世界上最重要的病媒生物类群之一[1],是疟疾、登革热、基孔肯雅热、寨卡病毒病、西尼罗病毒病和黄热病等严重人类传染病的重要传播媒介[2-4]。由于大多数蚊媒传染病缺乏有效的疫苗,媒介控制仍然是预防蚊媒传染病的最有效途径之一[3]。蚊虫控制的方法主要包括化学防治、生物防治及物理防治等[1],其中基于杀虫剂的化学防治是目前防治蚊媒疾病的主要手段[5],但蚊虫产生的抗药性及其在环境中的副作用已被广泛关注[6-7],如环境污染以及对人类和非目标生物体的毒性等[8],因此需要开发可替代的、生态友好的、可持续的病媒控制工具[5]。
近年来,研究者对昆虫病原真菌(entomopathogenic fungi)的认识不断加深,研究发现真菌可以通过毒素和真菌生长、抑制蚊虫的免疫系统等多种方式影响蚊虫的生长、繁殖和传播疾病的能力。同时真菌具备杀虫谱广和无化学污染等优点,因此,昆虫病原真菌是一种很有前途的控制蚊虫的生物控制工具[9],有较好的应用前景。
1 与蚊虫防控有关的真菌种类 1.1 白僵菌(Beauveria spp.)白僵菌最早于19世纪由Agostino Bassi从家蚕(Bombyx mori)尸体中分离出来[10],是一种普遍存在于自然界土壤中的昆虫病原真菌[11],可产生各种能够引起外源性感染的毒素[12],导致昆虫死亡。其感染范围包括蚊幼虫和成虫及其他多种昆虫[13]:如埃及伊蚊(Aedes aegypti)成虫对白僵菌的易感性最早于20世纪60年代末被报道[14-15]。Lai等[16]通过RNA测序技术(RNA-Seq)对斯氏按蚊(Anopheles stephensi)感染球孢白僵菌(B. bassiana)后不同时间的基因表达谱进行了分析,更加深入地了解了昆虫病原真菌的感染策略,包括角质层降解和免疫逃逸等一系列过程。在实验室水平下,白僵菌的分生孢子(conidia)、芽生孢子(blastospores)及其次生代谢产物可以对蚊虫种群进行有效控制[11, 17]。目前白僵菌衍生的杀虫剂已作为有效的农业害虫控制手段在世界范围内注册并得到商业化开发[11, 18]。
1.2 绿僵菌(Metarhizium spp.)绿僵菌是一类种类高度丰富的真菌[19],因其对环境友好、易于批量生产等特点而得到广泛研究[20]。它们多数具有植物内生性和腐生性,能够与植物互惠互利,同时具备“解毒”本领,研究发现绿僵菌可将土壤和水体中剧毒的甲基汞等转化为低毒易降解的零价汞[21];绿僵菌也是一种天然杀蚊真菌,能通过感染蚊虫来控制和减少蚊虫的数量,从而降低蚊虫传播疾病的风险,可以在一定程度上减少或替代化学杀虫剂的使用[22]:Bart Knols团队证明雌性冈比亚按蚊(An. gambiae)感染绿僵菌后平均寿命与对照组相比缩短了4~6 d;同时该团队模拟若全年使用,疟疾被传播的程度将减少75%[23]。也有研究发现罗伯茨绿僵菌(M. robertsii)通过表观遗传KMT2-Cre1-Hyd4通路调控侵染结构附着胞分化形成和杀蚊毒力的分子机制[24],同时进一步发现ASH1-PEX16通路在调控附着胞膨压产生中起至关重要的作用[25]。因此绿僵菌在杀灭蚊虫方面具有良好的潜在价值。
1.3 大链壶菌(Lagenidium giganteum)大链壶菌(卵菌纲)是蚊虫的水生病原体,它产生的游动孢子可以附着并穿透幼蚊的角壁,然后在血腔中定植[26],随后菌丝消耗蚊虫营养直至完全取代蚊的组织,只留下角质层;蚊死后,菌丝产生含有游动孢子的无性实体结构,继续引发新的感染[13],也就是说,被大链壶菌感染并死亡的蚊虫仍然具有传染性。但是,大链壶菌不易感染某些按蚊如冈比亚按蚊[27],并且对环境敏感,温度和水中盐浓度会影响其杀虫效果[28-29]。一种以大链壶菌为基础的生物杀虫剂曾经在美国上市并广泛使用,但是因其对健康犬有害,已被停止售卖和使用[30-31]。
1.4 贵阳腐霉(Pythium guiyangense)1994年苏晓庆[32]从花园土壤里分离并鉴定出一个新腐霉种,定名为贵阳腐霉。它的灭蚊方式和大链壶菌相似,均是向水中释放无性繁殖的游动孢子,主动寻找和入侵蚊虫[33]。该菌灭蚊谱广泛、易于培养、安全性高,具有一定的优势。但贵阳腐霉的毒力不稳定,菌种的保存方法还需进一步改善[34]。为解决其早期杀虫缓慢和效果不稳定的问题,苏晓庆[33]将苏云金芽孢杆菌以色列亚种(Bacillus thuringiensis israelensis,Bti)和贵阳腐霉按一定比例进行复配,设计了海藻酸钙微胶囊和菌丝体悬液2种新剂型用于蚊虫的生物防治。
2 真菌在蚊虫防控中的作用方式绝大多数昆虫病原真菌属于绿僵菌属和白僵菌属[35-36],这些真菌在蚊虫生物防治和阻断病原传播上具有巨大优势。研究表明昆虫病原真菌可以有效地杀死成蚊和幼蚊[37-38],并且高毒力的绿僵菌会使雌蚊的繁殖力下降至近乎零[39],同时宿主和真菌之间也存在对营养物质的竞争[14],这些均会直接或间接地影响蚊虫的寿命。
2.1 真菌产物的毒性作用与化学杀虫剂相比,昆虫病原真菌产生的毒素具有一定优势,它们在实验室或自然环境条件下均可以杀死蚊虫,对非目标生物体的毒性较低,并且其稳定性在极端寒冷或炎热的条件下依旧能维持数月[40-42]。Vivekanandhan等[42]实验表明绿僵菌的粗代谢产物对埃及伊蚊、斯氏按蚊和致倦库蚊(Culex pipiens quinquefasciatus)均有显著的毒性,经傅里叶红外光谱(Fourier transform infrared,FT-IR)分析发现其代谢物中存在酚类、生物胺类和羧酸类物质,可能参与了对蚊的毒性作用。同时有研究发现白僵菌-28菌丝提取物对致倦库蚊的幼虫和蛹均具有毒性,并且这些提取物特别是正十六烷酸会对蚊幼虫的中肠产生严重的组织损伤[11]。
真菌的毒力和持久性以及分生孢子的生产力,可作为其开发为杀虫药剂的衡量标准[6, 43]。Lee等[1]利用从韩国分离的30株白僵菌对白纹伊蚊(Ae. albopictus)和淡色库蚊(Cx. pipiens pallens)的致病性和毒力进行了研究,确定了白僵菌CN6T1W2和JN5R1W1的毒力高于其他菌株,同时白僵菌JN5R1W1在培养基上的分生孢子产量高于CN6T1W2菌株。
2.2 分生孢子和芽生孢子的毒性作用真菌在与蚊虫接触后,其孢子开始发育并入侵蚊虫体内,随后真菌繁殖并杀灭蚊虫,这一过程大概需要2周的时间[37]。这种具有感染力的孢子包括分生孢子和芽生孢子,分别在固体和液体基质上产生[35],前者形状均匀,12~20 d内在固体基质上产生疏水孢子;后者是薄壁、多形性的亲水孢子,在2~3 d内产生[44-45]。
以绿僵菌为例,它可以直接穿透蚊虫的角质层,并不局限于经口感染宿主[46]。其感染过程主要包括黏附、萌发、附着胞形成、渗透、血淋巴定植和菌丝产孢6个阶段[20],其中分生孢子的黏附是决定其是否能成功侵染宿主的关键阶段[20, 47]:绿僵菌通过分生孢子感染埃及伊蚊卵后产生大量的新生分生孢子在后代中传播[48],同时分生孢子可对埃及伊蚊幼虫表现出杀虫活性,虽然无法附着在幼虫角质层表面,但是因为其容易被摄食,分生孢子表面的孢子结合蛋白酶Pr1能在蚊虫肠道中应激诱导宿主死亡[26, 44, 49],同时被摄入的分生孢子不发芽和定植血腔,仍然局限于肠腔[26]。芽生孢子与分生孢子略有不同,Paula等[35]研究表明芽生孢子在蚊虫生命周期的水生阶段比分生孢子更具毒性。
同时两者的作用也有相似之处。蚊虫经白僵菌分生孢子和芽生孢子处理后均可延缓幼虫向蛹的发育[50]。Shoukat等[51]实验结果表明经球孢白僵菌半数致死浓度(LC50)和亚致死浓度(LC20)处理后,白纹伊蚊的幼虫期和蛹期延长,雌、雄成虫的寿命缩短,并且显著地改变了F1代的生育能力。
除此之外,真菌孢子与其他化合物联用也能增强对蚊虫的杀虫效果。Paula等[52]研究结果表明绿僵菌与杀虫剂吡虫啉的结合能够增加对埃及伊蚊的毒力:与仅暴露于分生孢子的蚊虫相比,暴露于联合处理组的蚊虫在药物处理后6和12 h后的存活率显著降低。同时,在芽生孢子悬浮液中添加葵花籽油也可显著提高毒力的维持时间[35]。真菌与印楝油联合使用也可以有效地保持真菌的半衰期和毒力,使幼蚊存活率显著降低[53]。Bitencourt等[54]研究了绿僵菌、白僵菌和一种肖乳香属植物Schinus molle精油对埃及伊蚊幼虫的防治效果,结果表明绿僵菌和精油联用可对幼蚊产生较强的杀虫效果,而白僵菌与精油组合则杀虫效果不佳。
2.3 真菌对蚊虫免疫系统的抑制作用研究发现真菌病原体与蚊虫中肠微生物群相互作用,造成菌群失调,影响中肠的免疫反应:通过下调中肠抗菌肽(antimicrobial peptide,AMP)和双氧化酶加速蚊的死亡[55]。如白僵菌可与蚊虫肠道微生物群相互作用导致黏质沙雷菌(Serratia marcescens)在中肠过度生长,并转移到血腔,从而加速蚊虫死亡[55]。蚊虫被病原体入侵后,免疫防御系统会发生黑化反应,其中酚氧化酶(POs)是催化黑色素形成的关键酶。有研究表明埃及伊蚊的抗真菌反应与PO3有关[56]。白僵菌与肠道和血细胞相互作用会影响埃及伊蚊的免疫[9]。Bitencourt等[9]证明埃及伊蚊被白僵菌CG 206分离株感染24 h后,总血细胞浓度降低且幼蚊中抗菌肽的表达下调但酚氧化酶活性未改变,使幼蚊免疫反应降低,更易被真菌感染。此外,白僵菌可在蚊细胞中输出一种类似微小RNA的物质(bba-milR1),并与Argonaute 1(AGO1)结合来控制宿主的RNA干扰机制,可减弱宿主免疫并促进其感染[57]:bba-milR1在真菌穿透蚊虫表皮的过程中高表达,并通过沉默蚊虫Toll受体的配体Spätzle 4(Spz4)表达抑制宿主免疫功能。
3 转基因真菌在蚊虫防控中的应用天然绿僵菌菌株通常对蚊虫的影响为1~2周可达到90%以上的死亡率,但是由于其缓慢的杀伤速度和不可预测的效力使其不能作为独立的蚊虫控制剂[58],例如当疟原虫进入蚊虫体内直至宿主获得传播疟疾的能力通常需要10~14 d的时间。而真菌孢子需要一定时间才能通过表皮感染蚊虫并将其杀灭[59],所以如果其感染真菌过晚,它仍有在死亡前传播疟疾的机会。因此需要一定的技术手段来改进和完善真菌的毒力作用。Fang等[60]利用基因工程技术使金龟子绿僵菌(M. anisopliae)表达中肠肽1(SM1)和一种抗菌毒素(scorpine)来阻止疟原虫子孢子附着蚊的唾液腺,在发挥绿僵菌生物杀虫剂作用的同时,减少了感染晚期的蚊虫传播疾病的风险。因此基因工程真菌可成为提高生物防治效果的有力工具[61]。
转基因技术可以使真菌仅需要很少的孢子就能引起蚊虫致命的感染,来自马里兰大学等团队的研究人员在平沙绿僵菌(M. pingshaense)的菌株中注射了一种来自蜘蛛毒液的毒素基因,当它接触蚊血淋巴时就会启动,在实验室条件下,它可以更快地杀死蚊虫,并且仅1~2个孢子就可以使蚊致死[62]。与上述结果相似的还有Lovett等[61]设计的Mp-Hybrid菌株,在1个启动子控制下表达钙离子/钾离子阻断剂,Mp-Hybrid真菌不仅杀死蚊速度更快,所需孢子剂量更低,而且与杀虫剂一起使用时可以最大限度地发挥药效并控制耐药性真菌。真菌经基因改造后增加毒力的同时还能抑制蚊虫的免疫反应,Cui等[3]成功构建出表达伊蚊免疫抑制性微小RNA(miRNAs)的白僵菌,证明了工程白僵菌菌株能够在感染蚊虫过程中产生大量miRNAs(miR-8和miR-375)并将其跨界转运到宿主细胞内,并通过靶向多个宿主基因抑制蚊虫免疫反应,从而显著提高真菌对埃及伊蚊的毒力。这种基于病原体介导的RNAi(pathogen-medeiated RNAi,pmRNAi)方法为提高真菌杀虫剂的杀伤效果提供了一种创新策略。同时有研究表明白僵菌还可通过基因改造表达苏云金芽孢杆菌毒素Cyt2Ba,与野生型菌株相比显著降低了白纹伊蚊的存活率和繁殖力,提高了白僵菌杀灭蚊虫的效果[63]。
与转基因蚊虫本身相比,转基因真菌的方式更加简便快速且灵活[58],并且转基因菌株比转基因序列更容易引入蚊种群[64],因此转基因菌株在未来的蚊虫防控方面可能更具潜力。
4 总结与展望在过去十几年间,真菌在蚊虫防控方面取得了很大的进展,利用昆虫病原真菌不仅可以减少蚊虫的数量,还可以降低传播虫媒病毒和其他病原体的媒介能力[16, 65],展现出了较大的应用潜力。有研究表明白僵菌感染蚊虫后可通过激活蚊的Toll受体和酪氨酸激酶/信号转导子及转录激活子(Janus kinase/signal transducers and activators of transcription,JAK-STAT)免疫信号通路控制的效应基因,间接介导蚊虫的抗登革病毒效应[66]。白僵菌还可使含有卵巢肿瘤(OTU)结构域的蛋白酶OTU7B与蛋白TRAF4相互作用来抑制埃及伊蚊的免疫信号传导,从而使其对白僵菌的感染更加敏感[67]。Garza-Hernández等[14]通过研究暴露于绿僵菌并以混有登革Ⅱ型病毒(DENV-2)血液为食的埃及伊蚊,发现被混合感染的蚊致死率为78%,并且在存活蚊虫中,能够传播DENV-2的蚊虫数量相较于单独感染DENV-2的蚊虫数量减少了5倍,说明绿僵菌的感染能够降低埃及伊蚊对DENV-2的媒介传播能力。
尽管如此,真菌的开发和利用还存在一些限制,一是单独使用天然真菌对于蚊虫杀灭的起效时间较长,毒力作用不强;二是可用于杀灭蚊虫的真菌种类较少;三是蚊虫自身也会抵御真菌的感染。因此未来需要探索更多更具杀虫效果的真菌菌株,并进一步研究和改进真菌的性能,如采用真菌与化学杀虫剂联合使用等手段,提高真菌杀虫效果,同时可以探索如何增强真菌的适应性和生存能力,例如通过改变其生长环境和生长条件,以提高其在应用到野外环境时的生存能力和杀虫效果等。此外,在研究天然真菌的基础之上更多地进行转基因技术的研究以获得符合需求的杀蚊真菌。总之,真菌在蚊虫防控方面的应用潜力较大。需要通过不断地研究和探索,开发出更安全、高效的杀蚊真菌和使用方法,为蚊传疾病防控新技术的研发和应用提供科学思路。
利益冲突 无
[1] |
Lee JY, Woo RM, Choi CJ, et al. Beauveria bassiana for the simultaneous control of Aedes albopictus and Culex pipiens mosquito adults shows high conidia persistence and productivity[J]. AMB Express, 2019, 9(1): 206. DOI:10.1186/s13568-019-0933-z |
[2] |
Grubaugh ND, Fauver JR, Rückert C, et al. Mosquitoes transmit unique West Nile virus populations during each feeding episode[J]. Cell Rep, 2017, 19(4): 709-718. DOI:10.1016/j.celrep.2017.03.076 |
[3] |
Cui CL, Wang Y, Li YF, et al. Expression of mosquito miRNAs in entomopathogenic fungus induces pathogen-mediated host RNA interference and increases fungal efficacy[J]. Cell Rep, 2022, 41(4): 111527. DOI:10.1016/j.celrep.2022.111527 |
[4] |
Weaver SC, Charlier C, Vasilakis N, et al. Zika, chikungunya, and other emerging vector-borne viral diseases[J]. Annu Rev Med, 2018, 69: 395-408. DOI:10.1146/annurev-med-050715-105122 |
[5] |
Wang Y, Cui CL, Wang GD, et al. Insects defend against fungal infection by employing microRNAs to silence virulence-related genes[J]. Proc Natl Acad Sci USA, 2021, 118(19): e2023802118. DOI:10.1073/pnas.2023802118 |
[6] |
Lopez-Perez M, Rodriguez-Gomez D, Loera O. Production of conidia of Beauveria bassiana in solid-state culture: Current status and future perspectives[J]. Crit Rev Biotechnol, 2015, 35(3): 334-341. DOI:10.3109/07388551.2013.857293 |
[7] |
Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease[J]. Annu Rev Entomol, 2000, 45: 371-391. DOI:10.1146/annurev.ento.45.1.371 |
[8] |
Damalas CA, Eleftherohorinos IG. Pesticide exposure, safety issues, and risk assessment indicators[J]. Int J Environ Res Public Health, 2011, 8(5): 1402-1419. DOI:10.3390/ijerph8051402 |
[9] |
de Oliveira Barbosa Bitencourt R, Corrêa TA, Santos-Mallet J, et al. Beauveria bassiana interacts with gut and hemocytes to manipulate Aedes aegypti immunity[J]. Parasit Vectors, 2023, 16(1): 17. DOI:10.1186/s13071-023-05655-x |
[10] |
Nakahara Y, Shimura S, Ueno C, et al. Purification and characterization of silkworm hemocytes by flow cytometry[J]. Dev Comp Immunol, 2009, 33(4): 439-448. DOI:10.1016/j.dci.2008.09.005 |
[11] |
Vivekanandhan P, Kavitha T, Karthi S, et al. Toxicity of Beauveria bassiana-28 mycelial extracts on larvae of Culex quinquefasciatus mosquito (Diptera: Culicidae)[J]. Int J Environ Res Public Health, 2018, 15(3): 440. DOI:10.3390/ijerph15030440 |
[12] |
Chelico L, Khachatourians GG. Isolation and characterization of nucleotide excision repair deficient mutants of the entomopathogenic fungus, Beauveria bassiana[J]. J Invertebr Pathol, 2008, 98(1): 93-100. DOI:10.1016/j.jip.2007.10.006 |
[13] |
Bartholomay LC, Michel K. Mosquito immunobiology: The intersection of vector health and vector competence[J]. Annu Rev Entomol, 2018, 63: 145-167. DOI:10.1146/annurev-ento-010715-023530 |
[14] |
Garza-Hernández JA, Rodríguez-Pérez MA, Salazar MI, et al. Vectorial capacity of Aedes aegypti for dengue virus type 2 is reduced with co-infection of Metarhizium anisopliae[J]. PLoS Negl Trop Dis, 2013, 7(3): e2013. DOI:10.1371/journal.pntd.0002013 |
[15] |
Clark TB, Kellen WR, Fukuda T, et al. Field and laboratory studies on the pathogenicity of the fungus Beauveria bassiana to three genera of mosquitoes[J]. J Invertebr Pathol, 1968, 11(1): 1-7. DOI:10.1016/0022-2011(68)90047-5 |
[16] |
Lai YL, Chen H, Wei G, et al. In vivo gene expression profiling of the entomopathogenic fungus Beauveria bassiana elucidates its infection stratagems in Anopheles mosquito[J]. Sci China Life Sci, 2017, 60(8): 839-851. DOI:10.1007/s11427-017-9101-3 |
[17] |
Howard AF, N'guessan R, Koenraadt CJ, et al. The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa[J]. Parasit Vectors, 2010, 3(1): 87. DOI:10.1186/1756-3305-3-87 |
[18] |
Hajek AE, Wraight SP, Vandenberg JD. Control of arthropods using pathogenic fungi[M]//Pointing SB, Hyde KD. Bio-exploitation of filamentous fungi. Hong Kong, China: Fungal Diversity Press, 2001: 309-347.
|
[19] |
St Leger RJ, Wang JB. Metarhizium: Jack of all trades, master of many[J]. Open Biol, 2020, 10(12): 200307. DOI:10.1098/rsob.200307 |
[20] |
Aw KMS, Hue SM. Mode of infection of Metarhizium spp. fungus and their potential as biological control agents[J]. J Fungi, 2017, 3(2): 30. DOI:10.3390/jof3020030 |
[21] |
Wu CC, Tang D, Dai J, et al. Bioremediation of mercury-polluted soil and water by the plant symbiotic fungus Metarhizium robertsii[J]. Proc Natl Acad Sci USA, 2022, 119(47): e2214513119. DOI:10.1073/pnas.2214513119 |
[22] |
农向群, 王广君, 蔡霓, 等. 绿僵菌与植物的多重关系及其在植物保护中的应用潜力[J]. 植物保护, 2022, 48(3): 22-30, 54. Nong XQ, Wang GJ, Cai N, et al. Multiple association of Metarhizium with plants and the application potential in plant protection[J]. Plant Prot, 2022, 48(3): 22-30, 54. DOI:10.16688/j.zwbh.2022215 |
[23] |
Scholte EJ, Ng'habi K, Kihonda J, et al. An entomopathogenic fungus for control of adult African malaria mosquitoes[J]. Science, 2005, 308(5728): 1641-1642. DOI:10.1126/science.1108639 |
[24] |
Lai LY, Cao X, Chen JJ, et al. Coordinated regulation of infection-related morphogenesis by the KMT2-Cre1-Hyd4 regulatory pathway to facilitate fungal infection[J]. Sci Adv, 2020, 6(13): eaaz1659. DOI:10.1126/sciadv.aaz1659 |
[25] |
Wang LL, Lai YL, Chen JJ, et al. The ASH1-PEX16 regulatory pathway controls peroxisome biogenesis for appressorium-mediated insect infection by a fungal pathogen[J]. Proc Natl Acad Sci USA, 2023, 120(4): e2217145120. DOI:10.1073/pnas.2217145120 |
[26] |
Butt TM, Greenfield BP, Greig C, et al. Metarhizium anisopliae pathogenesis of mosquito larvae: A verdict of accidental death[J]. PLoS One, 2013, 8(12): e81686. DOI:10.1371/journal.pone.0081686 |
[27] |
Golkar L, LeBrun RA, Ohayon H, et al. Variation of larval susceptibility to Lagenidium giganteum in three mosquito species[J]. J Invertebr Pathol, 1993, 62(1): 1-8. DOI:10.1006/jipa.1993.1066 |
[28] |
Kramer VI. Laboratory evaluation of Lagenidium giganteum (Oomycetes: Lagenidiales) in water from Contra Costa county, California, mosquito sources[J]. J Am Mosq Control Assoc, 1990, 6(1): 79-83. |
[29] |
Patel KJ, Rueda LM, Axtell RC, et al. Temperature-dependent development of the fungal pathogen Lagenidium giganteum (Oomycetes: Lagenidiales) in larvae of Culex quinquefasciatus (Diptera: Culicidae)[J]. J Med Entomol, 1991, 28(1): 95-100. DOI:10.1093/jmedent/28.1.95 |
[30] |
Grooters AM. Pythiosis, lagenidiosis, and zygomycosis in small animals[J]. Vet Clin North Am Small Anim Pract, 2003, 33(4): 695-720. DOI:10.1016/s0195-5616(03)00034-2 |
[31] |
Vilela R, Taylor JW, Walker ED, et al. Lagenidium giganteum pathogenicity in mammals[J]. Emerg Infect Dis, 2015, 21(2): 290-297. DOI:10.3201/eid2102.141091 |
[32] |
苏晓庆. 分离自蚊幼虫的腐霉一新种及其rDNA的ITS区段分析[J]. 菌物学报, 2006, 25(4): 523-528. Su XQ. A new species of Pythium isolated from mosquito lavae and its ITS region of rDNA[J]. Mycosystema, 2006, 25(4): 523-528. DOI:10.3969/j.issn.1672-6472.2006.04.004 |
[33] |
苏晓庆. 一种新型的真菌灭蚊幼剂[J]. 中华卫生杀虫药械, 2016, 22(4): 401-404. Su XQ. An introduction to a new type of mosquito-biological control agent against mosquito larvae[J]. Chin J Hyg Insect Equip, 2016, 22(4): 401-404. DOI:10.19821/j.1671-2781.2016.04.029 |
[34] |
类晶晶, 公茂庆, 刘丽娟. 媒介蚊虫生物杀虫剂杀虫机制及效果研究进展[J]. 热带病与寄生虫学, 2022, 20(4): 235-240. Lei JJ, Gong MQ, Liu LJ. Research progress in the mechanisms and effects of biological insecticides for mosquitoes[J]. J Trop Dis Parasitol, 2022, 20(4): 235-240. DOI:10.3969/j.issn.1672-2302.2022.04.012 |
[35] |
de Paula AR, Silva LEI, Ribeiro A, et al. Metarhizium anisopliae blastospores are highly virulent to adult Aedes aegypti, an important arbovirus vector[J]. Parasit Vectors, 2021, 14(1): 555. DOI:10.1186/s13071-021-05055-z |
[36] |
de Faria MR, Wraight SP. Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types[J]. Biol Control, 2007, 43(3): 237-256. DOI:10.1016/j.biocontrol.2007.08.001 |
[37] |
Kanzok SM, Jacobs-Lorena M. Entomopathogenic fungi as biological insecticides to control malaria[J]. Trends Parasitol, 2006, 22(2): 49-51. DOI:10.1016/j.pt.2005.12.008 |
[38] |
Rodrigues J, Bergamini C, Montalva C, et al. Simple method to detect and to isolate entomopathogenic fungi (Hypocreales) from mosquito larvae[J]. J Invertebr Pathol, 2021, 182: 107581. DOI:10.1016/j.jip.2021.107581 |
[39] |
Reyes-Villanueva F, Garza-Hernandez JA, Garcia-Munguia AM, et al. Dissemination of Metarhizium anisopliae of low and high virulence by mating behavior in Aedes aegypti[J]. Parasit Vectors, 2011, 4(1): 171. DOI:10.1186/1756-3305-4-171 |
[40] |
Darbro JM, Thomas MB. Spore persistence and likelihood of aeroallergenicity of entomopathogenic fungi used for mosquito control[J]. Am J Trop Med Hyg, 2009, 80(6): 992-997. DOI:10.4269/ajtmh.2009.80.992 |
[41] |
Morales-Rodriguez A, Peck DC. Synergies between biological and neonicotinoid insecticides for the curative control of the white grubs Amphimallon majale and Popillia japonica[J]. Biol Control, 2009, 51(1): 169-180. DOI:10.1016/j.biocontrol.2009.06.008 |
[42] |
Vivekanandhan P, Swathy K, Murugan AC, et al. Insecticidal efficacy of Metarhizium anisopliae derived chemical constituents against disease-vector mosquitoes[J]. J Fungi, 2022, 8(3): 300. DOI:10.3390/jof8030300 |
[43] |
Samish M, Rot A, Ment D, et al. Efficacy of the entomopathogenic fungus Metarhizium brunneum in controlling the tick Rhipicephalus annulatus under field conditions[J]. Vet Parasitol, 2014, 206(3/4): 258-266. DOI:10.1016/j.vetpar.2014.10.019 |
[44] |
Alkhaibari AM, Carolino AT, Yavasoglu SI, et al. Metarhizium brunneum blastospore pathogenesis in Aedes aegypti larvae: Attack on several fronts accelerates mortality[J]. PLoS Pathog, 2016, 12(7): e1005715. DOI:10.1371/journal.ppat.1005715 |
[45] |
Jackson MA. Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents[J]. J Ind Microbiol Biotechnol, 1997, 19(3): 180-187. DOI:10.1038/sj.jim.2900426 |
[46] |
Stone LBL, Bidochka MJ. The multifunctional lifestyles of Metarhizium: Evolution and applications[J]. Appl Microbiol Biotechnol, 2020, 104(23): 9935-9945. DOI:10.1007/s00253-020-10968-3 |
[47] |
Leão MPC, Tiago PV, Andreote FD, et al. Differential expression of the pr1A gene in Metarhizium anisopliae and M. acridum across different culture conditions and during pathogenesis[J]. Genet Mol Biol, 2015, 38(1): 86-92. DOI:10.1590/S1415-475738138120140236 |
[48] |
de Sousa NA, Rodrigues J, Arruda W, et al. Development of Metarhizium humberi in Aedes aegypti eggs[J]. J Invertebr Pathol, 2021, 184: 107648. DOI:10.1016/j.jip.2021.107648 |
[49] |
Greenfield BPJ, Lord AM, Dudley E, et al. Conidia of the insect pathogenic fungus, Metarhizium anisopliae, fail to adhere to mosquito larval cuticle[J]. Roy Soc Open Sci, 2014, 1(2): 140193. DOI:10.1098/rsos.140193 |
[50] |
Renuka S, Vani HC, Alex E. Entomopathogenic fungi as a potential management tool for the control of urban malaria vector, Anopheles stephensi (Diptera: Culicidae)[J]. J Fungi, 2023, 9(2): 223. DOI:10.3390/jof9020223 |
[51] |
Shoukat RF, Zafar J, Shakeel M, et al. Assessment of lethal, sublethal, and transgenerational effects of Beauveria bassiana on the demography of Aedes albopictus (Culicidae: Diptera)[J]. Insects, 2020, 11(3): 178. DOI:10.3390/insects11030178 |
[52] |
Paula AR, Carolino AT, Paula CO, et al. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae)[J]. Parasit Vectors, 2011, 4(1): 8. DOI:10.1186/1756-3305-4-8 |
[53] |
Paula AR, Ribeiro A, Lemos FJA, et al. Neem oil increases the persistence of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae[J]. Parasit Vectors, 2019, 12(1): 163. DOI:10.1186/s13071-019-3415-x |
[54] |
de Oliveira Barbosa Bitencourt R, de Souza Faria F, Marchesini P, et al. Entomopathogenic fungi and Schinus molle essential oil: The combination of two eco-friendly agents against Aedes aegypti larvae[J]. J Invertebr Pathol, 2022, 194: 107827. DOI:10.1016/j.jip.2022.107827 |
[55] |
Wei G, Lai YL, Wang GD, et al. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality[J]. Proc Natl Acad Sci USA, 2017, 114(23): 5994-5999. DOI:10.1073/pnas.1703546114 |
[56] |
Ji YN, Lu TF, Zou Z, et al. Aedes aegypti CLIPB9 activates prophenoloxidase-3 in the presence of CLIPA14 after fungal infection[J]. Front Immunol, 2022, 13: 927322. DOI:10.3389/fimmu.2022.927322 |
[57] |
Cui CL, Wang Y, Liu JN, et al. A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection[J]. Nat Commun, 2019, 10(1): 4298. DOI:10.1038/s41467-019-12323-1 |
[58] |
Lovett B, Bilgo E, Diabate A, et al. A review of progress toward field application of transgenic mosquitocidal entomopathogenic fungi[J]. Pest Manag Sci, 2019, 75(9): 2316-2324. DOI:10.1002/ps.5385 |
[59] |
St Leger RJ, Wang CS. Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests[J]. Appl Microbiol Biotechnol, 2010, 85(4): 901-907. DOI:10.1007/s00253-009-2306-z |
[60] |
Fang WG, Vega-Rodríguez J, Ghosh AK, et al. Development of transgenic fungi that kill human malaria parasites in mosquitoes[J]. Science, 2011, 331(6020): 1074-1077. DOI:10.1126/science.1199115 |
[61] |
Lovett B, Bilgo E, Millogo SA, et al. Transgenic Metarhizium rapidly kills mosquitoes in a malaria-endemic region of Burkina Faso[J]. Science, 2019, 364(6443): 894-897. DOI:10.1126/science.aaw8737 |
[62] |
Vogel G. Fungus with a venom gene could be new mosquito killer[J]. Science, 2019, 364(6443): 817. DOI:10.1126/science.364.6443.817 |
[63] |
Deng SQ, Zou WH, Li DL, et al. Expression of Bacillus thuringiensis toxin Cyt2Ba in the entomopathogenic fungus Beauveria bassiana increases its virulence towards Aedes mosquitoes[J]. PLoS Negl Trop Dis, 2019, 13(7): e0007590. DOI:10.1371/journal.pntd.0007590 |
[64] |
陆佳晨, 沈飞虎, 雷瑶, 等. 共生菌在控制蚊媒传染病中的研究进展[J]. 中国血吸虫病防治杂志, 2021, 33(5): 544-550. Lu JC, Shen FH, Lei Y, et al. Progress of researches on symbionts in the management of mosquito-borne infectious diseases[J]. Chin J Schistosomiasis Control, 2021, 33(5): 544-550. DOI:10.16250/j.32.1374.2020333 |
[65] |
Jupatanakul N, Sim S, Dimopoulos G. The insect microbiome modulates vector competence for arboviruses[J]. Viruses, 2014, 6(11): 4294-4313. DOI:10.3390/v6114294 |
[66] |
Dong YM, Morton JC Jr, Ramirez JL, et al. The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti[J]. Insect Biochem Mol Biol, 2012, 42(2): 126-132. DOI:10.1016/j.ibmb.2011.11.005 |
[67] |
Wang YH, Chang MM, Wang M, et al. OTU7B modulates the mosquito immune response to Beauveria bassiana infection via deubiquitination of the toll adaptor TRAF4[J]. Microbiol Spectr, 2023, 11(1): e0312322. DOI:10.1128/spectrum.03123-22 |