中国媒介生物学及控制杂志  2023, Vol. 34 Issue (6): 809-813

扩展功能

文章信息

李广帅, 徐琨, 雷晓岗, 薛威, 金梁栋, 解民, 杨西平, 庞松涛
LI Guang-shuai, XU Kun, LEI Xiao-gang, XUE Wei, JIN Liang-dong, XIE Min, YANG Xi-ping, PANG Song-tao
西安市2022年城区蝇类侵害水平的调查
An investigation of fly infestation level in urban Xi'an, China, 2022
中国媒介生物学及控制杂志, 2023, 34(6): 809-813
Chin J Vector Biol & Control, 2023, 34(6): 809-813
10.11853/j.issn.1003.8280.2023.06.019

文章历史

收稿日期: 2023-06-01
西安市2022年城区蝇类侵害水平的调查
李广帅 , 徐琨 , 雷晓岗 , 薛威 , 金梁栋 , 解民 , 杨西平 , 庞松涛     
西安市疾病预防控制中心病媒生物预防控制科, 陕西 西安 710054
摘要: 目的 了解西安市城区蝇类侵害情况,为制定科学有效的蝇类防制措施提供依据。方法 在全市11个市辖区随机抽取调查生境。调查分为室内环境和外环境,采用目测法调查,采用WPS 14309软件进行描述性统计分析,侵害情况按照《病媒生物密度控制水平蝇类》(GB/T 27772-2011)进行评价。结果 室内共抽取生境8种4 475间房间,有蝇房间阳性率1.72%,蝇密度为1.79只/间,控制水平为A级。成蝇阳性率最高的生境是农贸市场,有蝇房间阳性率为2.48%,阳性率最高的城区是雁塔区,有蝇房间阳性率为2.44%。外环境共抽查生境722处,蝇类孳生地阳性率为0.42%,控制水平为A级,鄠邑、莲湖和未央区发现阳性孳生地,控制水平均为B级。防蝇设施抽查2 161处,合格率为96.44%,控制水平为B级,农贸市场和灞桥区合格率最低,分别为92.53%、94.63%,控制水平均为C级。全市城镇蝇类密度控制水平为B级。结论 西安市创建卫生城市和举办重大活动改善了全市卫生环境,有效降低了蝇类密度,2022年城区蝇密度控制水平较好。但农贸市场防蝇设施合格率不高,蝇类危害较为严重,雁塔区、莲湖区餐饮业发达,蝇类危害较为严重。
关键词: 蝇类    侵害    调查    
An investigation of fly infestation level in urban Xi'an, China, 2022
LI Guang-shuai , XU Kun , LEI Xiao-gang , XUE Wei , JIN Liang-dong , XIE Min , YANG Xi-ping , PANG Song-tao     
Department for Vector Control, Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi 710054, China
Abstract: Objective To investigate the status of fly infestation in the urban areas of Xi'an, China, so as to provide a basis for scientific and effective prevention and control of flies. Methods Survey habitats were randomly selected in each of 11 administrative districts in Xi'an. The survey was conducted in both indoor areas and outdoor areas by visual observation. Descriptive statistical analysis was performed using WPS 14309 software. The fly infestation level was evaluated according to the Criteria for Vector Density Control-fly (GB/T 27772-2011). Results A total of 4 475 rooms of eight types of indoor habitats were selected. The rate of fly-positive rooms was 1.72%, and the fly density was 1.79 individuals/room, with the fly density control level being A. Among the habitats, the highest rate of adult fly-positive rooms was 2.48% in farmer's markets. Among the urban areas, the highest rate of fly-positive rooms was 2.44% in Yanta District. Among the surveyed 722 outdoor habitats, the positive rate of fly breeding sites was 0.42%, with the control level being A. The urban areas harboring fly breeding sites included Huyi, Lianhu, and Weiyang districts, with the control levels all being B. Among the 2 161 fly-proof facilities, the qualified rate was 96.44%, with the control level being B. The qualified rate was lowest in farmer's markets (92.53%) and Baqiao District (94.63%), where both control levels were C. The fly density control level of urban areas across Xi'an was B. Conclusions The creation of a Healthy City and holding major events can effectively reduce fly density by improving the city's environmental sanitation of Xi'an and the fly density control level in urban areas of was generally good in 2022. Fly infestation was serious at farmer's markets with low qualified rates of fly-proof facilities, and also in Yanta and Lianhu districts with a developed catering industry.
Key words: Fly    Infestation    Investigation    

蝇类是常见的病媒生物,除骚扰人们生活外,还携带、传播细菌、病毒等致病微生物[1-2]。由于夏、秋季蝇密度高、活动频繁,传播肠道传染病风险高,严重危害人群健康[3],一直是各地夏秋季重点防治的病媒生物。2022年9月作者在西安市开展了蝇类侵害情况调查,了解各城区蝇类防制工作情况,也为科学制定蝇类防制措施提供依据。

1 材料与方法 1.1 调查范围

按照《病媒生物密度控制水平蝇类》(GB/T 27772-2011)的要求,在西安市11个市辖区的不同方位随机抽取调查生境,分为室内环境和外环境。

1.2 调查方法

按照《病媒生物密度监测方法蝇类》(GB/T 23796-2009)的规定,采用目测法进行调查并计算蝇类侵害指标。

室内成蝇密度计算公式如下:

室外蝇类孳生阳性率计算公式如下:

防蝇设施合格率计算公式如下:

1.3 统计学分析

将调查数据录入WPS 14309表格中,建立数据库,计算室内有蝇房间阳性率、阳性间蝇密度以及室外蝇类孳生阳性率、防蝇设施合格率等蝇类侵害指标,进行描述性分析。

1.4 结果评价

按照《病媒生物密度控制水平蝇类》(GB/T 27772-2011)要求的标准对全市各城区蝇类侵害情况开展评价。

2 结果 2.1 成蝇侵害情况

在西安市11个市辖区共抽取8种331处生境,折合共计4 475间标准房间,77间标准间发现蝇类138只,有蝇房间阳性率为1.72%,阳性间蝇密度为1.79只/间,控制水平为A级。成蝇侵害情况最严重的生境是农贸市场,有蝇房间阳性率为2.48%;成蝇侵害情况最严重的城区是雁塔区,为2.44%。见表 12

表 1 西安市2022年城区不同生境成蝇侵害情况 Table 1 Results of fly infestation in different habitats of urban Xi'an, 2022
表 2 西安市2022年不同城区成蝇侵害情况 Table 2 Results of fly infestation in different districts of Xi'an, 2022
2.2 外环境蝇类孳生情况

共调查外环境中722处孳生地,发现3处阳性孳生地,阳性率为0.42%,控制水平为A级。阳性孳生地只存在于外环境散在孳生地中,分布在鄠邑、莲湖和未央区,控制水平均为B级。见表 34

表 3 2022年西安市城区外环境蝇类侵害情况 Table 3 Results of fly infestation in outdoor habitats of urban Xi'an, 2022
表 4 2022年西安市不同城区蝇类侵害情况 Table 4 Results of fly infestation in different urban areas of Xi'an, 2022
2.3 防蝇设施情况

共调查331处生境2 161处防蝇设施的设置情况,2 084处防蝇设施设置合格,合格率为96.44%,为B级水平。各生境中农贸市场的合格率最低,为92.53%,各城区中灞桥区的合格率较低,为94.63%。见表 56

表 5 2022年西安市城区不同生境防蝇设施设置情况 Table 5 Results of fly-proof facilities in different habitats of urban Xi'an, 2022
表 6 2022年西安市不同城区防蝇设施设置情况 Table 6 Results of fly-proof facilities in different districts of Xi'an, 2022
2.4 全市蝇类侵害情况

共调查224处生产销售直接入口食品的生境,均未发现有蝇及蝇类孳生地。按照《病媒生物密度控制水平蝇类》(GB/T 27772-2011)的标准,全市城区蝇类侵害控制水平为B级。

3 讨论

调查发现,2022年西安市室内蝇密度控制水平为A级,优于北京和石家庄市的控制水平[4-5],但低于浙江省海宁市[6],和本市2019年相比,有一定进步[7]。农贸市场有蝇房间阳性率较高,但较2019年有了很大的改善。2021年西安市举办全国运动会,政府对全市基础设施进行了改造整治,也减少了蝇类的孳生和侵害。各城区控制水平均较好,雁塔、莲湖区有很多旅游景点和城中村,小餐馆多,大量不能及时处理的厨余垃圾容易导致蝇类孳生,虽然较2019年有了很大的改善[7],但相对其他生境仍较为严重,陶卉英等[8]调查也发现小餐馆是蝇类危害的高风险生境。应加强小餐馆的监督检查,规范厨余垃圾处理和封闭,减少蝇类孳生和对蝇类的吸引,进而降低传染病疫情的风险[8]

本次外环境调查发现,散在孳生地中有蝇类孳生,但阳性率低于武汉市和泸州市[9-10],相比2019年有了很大的进步[7],防蝇设施合格情况和2019年基本一致[7]。通过对本市近几年的调查研究以及结合其他研究者的调查结果,发现创建国家卫生城市、举办重大活动对市政基础设施进行改造整治,改善了整个社会的环境卫生[11-13],同时也减少了蝇类等病媒生物的侵害[8]

在政府、专家学者等社会各界的努力下,我国蝇类等病媒生物防制取得了较好的成绩[14],随之也出现了病媒生物耐药的新挑战[15],随着社会经济进步,病媒生物防制也出现了新的需求[16-17]。面对新形势和新问题,很多研究者也都进行了探索[18-19],提出了很多应对措施,比如加强宣传、提高认识[20]、政府加大投入、引入社会专业机构等[21]。总之,只有采取全社会参与的综合防制措施,才能取得良好而持久的蝇类防制效果。

利益冲突  无

参考文献
[1]
程晓兰, 王光, 陈雪松, 等. 2006-2015年辽宁口岸蚊、蝇种群结构及其携带病原体监测检测[J]. 中国国境卫生检疫杂志, 2016, 39(6): 385-391.
Cheng XL, Wang G, Chen XS, et al. Analysis on population structure and pathogens detection of mosquitoes and flies at Liaoning ports from 2006 to 2015[J]. Chin Front Health Quar, 2016, 39(6): 385-391. DOI:10.16408/j.1004-9770.2016.06.002
[2]
曹晓梅, 宋锋林, 姚李四, 等. 口岸蝇类携带致病菌及寄生虫卵的检测分析[J]. 中华卫生杀虫药械, 2016, 22(2): 148-152.
Cao XM, Song FL, Yao LS, et al. Detection of fly-borne pathogenic bacteria and parasite eggs collected from ports[J]. Chin J Hyg Insect Equip, 2016, 22(2): 148-152. DOI:10.19821/j.1671-2781.2016.02.014
[3]
王雪霜, 吴海霞, 刘起勇. 2019年全国蝇类监测报告[J]. 中国媒介生物学及控制杂志, 2020, 31(4): 407-411.
Wang XS, Wu HX, Liu QY. National surveillance report on flies in China, 2019[J]. Chin J Vector Biol Control, 2020, 31(4): 407-411. DOI:10.11853/j.issn.1003.8280.2020.04.005
[4]
赵岩, 侯威远, 王磊. 北京市海淀区病媒生物侵害状况调查[J]. 中华卫生杀虫药械, 2019, 25(1): 29-33.
Zhao Y, Hou WY, Wang L. An investigation on the situation of vector infestation in Haidian district of Beijing[J]. Chin J Hyg Insect Equip, 2019, 25(1): 29-33. DOI:10.19821/j.1671-2781.2019.01.009
[5]
翟士勇, 逯春梅. 石家庄市主城区2016年病媒生物侵害状况调查[J]. 中国媒介生物学及控制杂志, 2018, 29(1): 111.
Zhai SY, Lu CM. Investigation on vectors of main urban areas in Shijiazhuang city, 2016[J]. Chin J Vector Biol Control, 2018, 29(1): 111. DOI:10.11853/j.issn.1003.8280.2018.01.030
[6]
葛宗良, 凌锋, 丁丰, 等. 2015年海宁市城区病媒生物密度监测评估分析[J]. 中国农村卫生事业管理, 2017, 37(5): 549-552.
Ge ZL, Ling F, Ding F, et al. Monitoring and evaluation of vectors from 2015 in Haining city[J]. Chin Rural Health Serv Adm, 2017, 37(5): 549-552.
[7]
李广帅, 庞松涛, 雷晓岗, 等. 2019年夏季西安市城镇蝇类侵害状况调查[J]. 热带医学杂志, 2021, 21(12): 1605-1608.
Li GS, Pang ST, Lei XG, et al. Investigation on fly infestation of urban areas of Xi'an in summer of 2019[J]. J Trop Med, 2021, 21(12): 1605-1608. DOI:10.3969/j.issn.1672-3619.2021.12.024
[8]
陶卉英, 柳小青, 马红梅, 等. 南昌市重点行业蝇类危害风险评估[J]. 中国媒介生物学及控制杂志, 2015, 26(5): 491-494.
Tao HY, Liu XQ, Ma HM, et al. Risk assessment and control of flies in major industries of Nanchang city[J]. Chin J Vector Biol Control, 2015, 26(5): 491-494. DOI:10.11853/j.issn.1003.4692.2015.05.015
[9]
周良才, 包继永, 吴丽群, 等. 武汉市2016年不同环境蝇类孳生现况调查[J]. 中国媒介生物学及控制杂志, 2018, 29(6): 645-647.
Zhou LC, Bao JY, Wu LQ, et al. Investigation of breeding situation of flies in different environments in Wuhan, 2016[J]. Chin J Vector Biol Control, 2018, 29(6): 645-647. DOI:10.11853/j.issn.1003.8280.2018.06.025
[10]
李劲松. 泸州市三区病媒生物孳生地调查[J]. 中华卫生杀虫药械, 2015, 21(4): 401-403.
Li JS. A survey of breeding grounds for medical vectors in Luzhou city[J]. Chin J Hyg Insect Equip, 2015, 21(4): 401-403. DOI:10.19821/j.1671-2781.2015.04.025
[11]
程时秀, 龚丽丽, 吕均, 等. 湖北省十堰市创建国家卫生城市前后病媒生物密度监测与分析[J]. 医学动物防制, 2019, 35(10): 1009-1011.
Cheng SX, Gong LL, Lyu J, et al. Surveillance and analysis of vector density before and after the establishment of national health city in Shiyan city, Hubei province[J]. J Med Pest Control, 2019, 35(10): 1009-1011. DOI:10.7629/yxdwfz201910026
[12]
陈祖华, 李晓军, 黄进, 等. 攀枝花市病媒生物预防控制效果评估分析[J]. 中华卫生杀虫药械, 2019, 25(4): 346-350.
Chen ZH, Li XJ, Huang J, et al. Effect evaluation on integrated vector control in Panzhihua city[J]. Chin J Hyg Insect Equip, 2019, 25(4): 346-350. DOI:10.19821/j.1671-2781.2019.04.013
[13]
张学太, 吴嘉徽. 甘肃省白银市国家卫生城市创建对病媒生物防制影响分析[J]. 中国媒介生物学及控制杂志, 2022, 33(5): 715-721.
Zhang XT, Wu JH. An analysis of influence of National Sanitary city construction on vector control in Baiyin, Gansu province, China[J]. Chin J Vector Biol Control, 2022, 33(5): 715-721. DOI:10.11853/j.issn.1003.8280.2022.05.019
[14]
冷培恩, 刘洪霞, 吴寰宇, 等. 上海市病媒生物控制30年回顾[J]. 上海预防医学, 2019, 31(2): 125-133.
Leng PE, Liu HX, Wu HY, et al. Thirty-year review of vector control in Shanghai[J]. Shanghai J Prev Med, 2019, 31(2): 125-133. DOI:10.19428/j.cnki.sjpm.2019.18999
[15]
亓云鹏, 富小飞, 查亦薇, 等. 浙江省嘉兴市主要病媒生物对常用卫生杀虫剂的抗药性调查[J]. 中国媒介生物学及控制杂志, 2019, 30(3): 337-340.
Qi YP, Fu XF, Zha YW, et al. Study on resistance of main vectors to commonly used insecticides in Jiaxing, China[J]. Chin J Vector Biol Control, 2019, 30(3): 337-340. DOI:10.11853/j.issn.1003.8280.2019.03.026
[16]
马先富, 蔡一华, 王建勋, 等. G20杭州峰会病媒生物防制保障实践和启示[J]. 中国媒介生物学及控制杂志, 2019, 30(2): 185-190.
Ma XF, Cai YH, Wang JX, et al. Practice of vector control during the G20 Hangzhou Summit and its enlightenment[J]. Chin J Vector Biol Control, 2019, 30(2): 185-190. DOI:10.11853/j.issn.1003.8280.2019.01.016
[17]
刘起勇. 新时代媒介生物传染病形势及防控对策[J]. 中国媒介生物学及控制杂志, 2019, 30(1): 1-6, 11.
Liu QY. Epidemic profile of vector-borne diseases and vector control strategies in the new era[J]. Chin J Vector Biol Control, 2019, 30(1): 1-6, 11. DOI:10.11853/j.issn.1003.8280.2019.01.001
[18]
吴太平, 陈晓敏, 梁建生, 等. 用病媒生物问题清单推动城市病媒生物防治的探索[J]. 中华卫生杀虫药械, 2020, 26(4): 306-310.
Wu TP, Chen XM, Liang JS, et al. The exploration on promoting urban vector management by using vector spot checklist[J]. Chin J Hyg Insect Equip, 2020, 26(4): 306-310. DOI:10.19821/j.1671-2781.2020.04.002
[19]
赵奇, 武文, 黄华. 病媒生物预防控制"四早"策略分析[J]. 中国媒介生物学及控制杂志, 2021, 32(2): 254-256.
Zhao Q, Wu W, Huang H. The strategies of "early detection, early report, early assessment, and early control" in vector prevention and control[J]. Chin J Vector Biol Control, 2021, 32(2): 254-256. DOI:10.11853/j.issn.1003.8280.2021.02.027
[20]
龚震宇, 张新卫, 侯娟, 等. 浙江省病媒生物防制工作实践、存在的问题及对策建议[J]. 中国媒介生物学及控制杂志, 2020, 31(2): 121-125.
Gong ZY, Zhang XW, Hou J, et al. Practice, deficiencies, and countermeasures of vector control in Zhejiang province, China[J]. Chin J Vector Biol Control, 2020, 31(2): 121-125. DOI:10.11853/j.issn.1003.8280.2020.02.001
[21]
李晓宁, 刘远, 陈宗遒, 等. 政府购买病媒生物防制服务防控登革热疫情的效果评价[J]. 中国媒介生物学及控制杂志, 2020, 31(3): 259-262.
Li XN, Liu Y, Chen ZQ, et al. Effectiveness evaluation of government-purchased vector control services for the prevention and control of dengue fever[J]. Chin J Vector Biol Control, 2020, 31(3): 259-262. DOI:10.11853/j.issn.1003.8280.2020.03.003
[22]
Cai WJ, Zhang C, Suen HP, et al. The 2020 China report of the Lancet Countdown on health and climate change[J]. Lancet Public Health, 2021, 6(1): e64-e81. DOI:10.1016/S2468-2667(20)30256-5
[23]
Liu HM, Liu LH, Cheng P, et al. Bionomics and insecticide resistance of Aedes albopictus in Shandong, a high latitude and high-risk dengue transmission area in China[J]. Parasit Vectors, 2020, 13(1): 11. DOI:10.1186/s13071-020-3880-2
[24]
谢博, 冯磊, 顾盈培, 等. 气候因素对浦东新区蚊虫密度影响的效应分析[J]. 中国媒介生物学及控制杂志, 2019, 30(4): 430-433.
Xie B, Feng L, Gu YP, et al. An analysis of the effect of climatic factors on mosquito density in Pudong New Area, Shanghai, China[J]. Chin J Vector Biol Control, 2019, 30(4): 430-433. DOI:10.11853/j.issn.1003.8280.2019.04.017
[25]
徐苗苗, 苏通, 刘莹莹, 等. 石家庄市2017-2019年气象因素与手足口病发病相关性及其滞后效应分析[J]. 中华流行病学杂志, 2021, 42(5): 827-832.
Xu MM, Su T, Liu YY, et al. Analysis on influence and lag effects of meteorological factors on incidence of hand, foot and mouth disease in Shijiazhuang, 2017-2019[J]. Chin J Epidemiol, 2021, 42(5): 827-832. DOI:10.3760/cma.j.cn112338-20200930-01213
[26]
李文, 牛彦麟, 赵哲, 等. 气象因素对云南省西南地区恙虫病流行的影响与滞后效应研究[J]. 中华流行病学杂志, 2021, 42(7): 1235-1239.
Li W, Niu YL, Zhao Z, et al. Meteorological factors and related lag effects on scrub typhus in southwestern Yunnan[J]. Chin J Epidemiol, 2021, 42(7): 1235-1239. DOI:10.3760/cma.j.cn112338-20200828-01106
[27]
Gasparrini A. Distributed lag linear and non-linear models in R: The package dlnm[J]. J Stat Softw, 2011, 43(8): 1-20.
[28]
景晓, 康殿民, 王学军. 蚊媒传染病监测技术及应用[M]. 济南: 山东人民出版社, 2017: 86-91.
Jing X, Kang DM, Wang XJ. Monitoring technologies and their application of mosquito borne infectious diseases[M]. Ji'nan: Shandong People's Publishing House, 2017: 86-91.
[29]
杨迎宇, 王莹莹, 陈芸, 等. 上海市宝山区登革热媒介白纹伊蚊密度指数与气象因素的关系[J]. 中华疾病控制杂志, 2021, 25(4): 466-471.
Yang YY, Wang YY, Chen Y, et al. Study on the associations of density indexes of Aedes albopictus for dengue with meteorological factors in Baoshan district of Shanghai[J]. Chin J Dis Control Prev, 2021, 25(4): 466-471. DOI:10.16462/j.cnki.zhjbkz.2021.04.017
[30]
仲洁, 何隆华. 气象因素对蚊虫密度影响研究进展[J]. 中国媒介生物学及控制杂志, 2015, 26(1): 95-99.
Zhong J, He LH. Advances in research on impacts of meteorological factors on mosquito density[J]. Chin J Vector Biol Control, 2015, 26(1): 95-99. DOI:10.11853/j.issn.1003.4692.2015.01.028
[31]
侯祥, 刘可可, 刘小波, 等. 气候因素对广东省登革热流行影响的非线性效应[J]. 中国媒介生物学及控制杂志, 2019, 30(1): 25-30.
Hou X, Liu KK, Liu XB, et al. Nonlinear effects of climate factors on dengue epidemic in Guangdong province, China[J]. Chin J Vector Biol Control, 2019, 30(1): 25-30. DOI:10.11853/j.issn.1003.8280.2019.01.005