扩展功能
文章信息
- 向昱龙, 周敬祝, 刘英, 刘平涛, 胡勇, 梁文琴
- XIANG Yu-long, ZHOU Jing-zhu, LIU Ying, LIU Ping-tao, HU Yong, LIANG Wen-qin
- 贵州省部分地区蜱及其携带细菌调查
- An investigation of ticks and tick-borne bacteria in some areas of Guizhou province, China
- 中国媒介生物学及控制杂志, 2022, 33(1): 148-152
- Chin J Vector Biol & Control, 2022, 33(1): 148-152
- 10.11853/j.issn.1003.8280.2022.01.027
-
文章历史
- 收稿日期: 2021-09-18
2 贵州省疾病预防控制中心实验中心, 贵州 贵阳 550004;
3 修文县疾病预防控制中心, 贵州 贵阳 550299
2 Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China;
3 Xiuwen Center for Disease Control and Prevention, Guiyang, Guizhou 550299, China
蜱隶属于节肢动物门(Arthropoda)、蛛形纲(Arachnida)、蜱螨亚纲(Acari)、寄螨总目(Parasitiformes)、蜱目(Ixodida),以脊椎动物为宿主,属非永久性寄生[1]。蜱在全世界广泛分布,甚至在极为严寒的南极和北极也有蜱类存在[2]。蜱作为传染病媒介的历史由来已久,在全世界仅次于蚊虫[3],属于专性的体外吸血寄生虫。不仅通过叮咬直接危害宿主,而且还能携带或传播多种病原体,如伯氏疏螺旋体(Borrelia burgdorferi)[4-5]、嗜吞噬细胞无形体(Anaplasma phagocytophilum)[6-7]、贝氏柯克斯体(Coxiella burnetii)[8]、斑点热群立克次体(spotted fever group rickettsiae)[9-10]、布鲁氏菌(Brucella)[11-13]等病原体,严重危害人类健康。
我国蜱类物种丰富,现已报道2科9属124种,包括硬蜱110种,软蜱14种[14],约占世界蜱类总数(960种)的13%[15]。贵州省气候温暖湿润,适合蜱生存。目前,省内报道的蜱种共有2科4属19种[16]。根据走访调查,2017-2018年在贵州省修文县龙窝村发现12人被蜱叮咬,其中5人出现化脓性感染。据村民回忆在相邻村寨也存在蜱叮咬人情况。针对此次事件,本研究对贵州省部分地区开展蜱及蜱携带细菌初步调查,为贵州省蜱传病原体调查及蜱传疾病防控提供科学依据。
1 材料与方法 1.1 样本采集2017年4月和2019年4月在贵州省修文县、晴隆县、兴义市、兴仁市、望谟县、江口县开展蜱采集,采用体表搜捕法在牛、羊、鼠体表捕获蜱,将蜱按不同时间、地点、宿主分装至冻存管,液氮保存带回实验室备用。
1.2 样本鉴定根据邓国藩《中国经济昆虫志》第三十九册,蜱螨亚纲:硬蜱科[17]进行分类检索,在体视显微镜下观察蜱的须肢、假头基、盾板、齿式、肛沟、气门板等细微结构,根据检索表及形态鉴定资料确定蜱的种类。
1.3 样本处理根据样本采集情况,修文县随机挑取20只血蜱,兴义市挑取3只血蜱,其余市(县)各挑取5只血蜱。将蜱标本每1~2只分装于1.5 ml EP管中,加入75%乙醇溶液浸泡1 min,然后用吸管吸出乙醇溶液,反复消毒3次,最后用无菌研磨液清洗3次,吸出多余液体,在EP管中加入2~3颗研磨珠,50 μl研磨液,用研磨器研磨至观察不到整体的蜱组织后,再加入200 μl研磨液混匀,即为处理好原始标本。
1.4 细菌的分离培养用稀释涂布接种法,将标本从-80 ℃低温冰箱取出制备细菌悬液,采用1、10、100、1 000倍稀释度悬液,用接种环取1~2环各稀释度标本,三区划线分别接种于血平板和脑心浸液培养基(BHI)平板,28 ℃恒温培养箱培养,分别于24、48、72、96 h观察平板生长情况。根据细菌生长情况及特征挑取菌落,观察细菌大小、颜色、质地、透明度、边缘齐整度、湿润度、表面光滑与否等,然后从每个原代培养基上挑取有代表性的特征单菌落。每个原代平板挑取5~10个不同菌落,转接至BHI培养基(1块平板划线分为8个区域,1个区域接种1个单菌落),28 ℃恒温培养箱培养。
1.5 菌株鉴定菌株传代纯化后,PCR扩增16S rDNA(27F/1492R)全长序列,通用引物为27F:AGAGTTTGATCMTGGCTCAG,1492R:ACGGYT ACCTTYTTACGACTT。然后进行琼脂糖凝胶电泳PCR扩增,阳性产物送天一辉远生物科技有限公司测序并分析注释结果。对获得的疑似新种16S rDNA全长序列,进行序列比对(http://www.ezbiocloud.net/),确定新种所在属以及近缘种。最后根据比对结果,遴选出菌株,传代满涂于BHI平板,保存菌种。
2 结果 2.1 蜱种鉴定2017年4月和2019年4月在贵州省6个市(县)共采集蜱3属6种,共计742只,其中长角血蜱(Haemaphysalis longicornis)518只、微小扇头蜱(Rhipicephalus microplus)171只、粒形硬蜱(Ixodes granulatus)31只、卵形硬蜱(I. ovatus)2只、褐黄血蜱(H. flava)12只、日岛血蜱(H. mageshimaensis)8只,宿主为羊、黄牛和鼠。修文县采集蜱种均属长角血蜱,兴仁市微小扇头蜱居多。长角血蜱数量最多,占捕获总数的69.81%;其次为微小扇头蜱,占比为23.05%;其余蜱种较少,仅占7.14%。各市(县)蜱采集种类及数量见表 1。
2.2 蜱携带细菌分析共培养出细菌3门28属,共计188株,其中丰度最高的是变形菌门(Proteobacteria),其次为厚壁菌门(Firmicutes)和放线菌门(Actinomycetes)。修文县蜱携带细菌种类最多,其余地区蜱携带细菌种类较少。见表 2。
棒状杆菌属(Corynebacterium)的丰度最高,其次是葡萄球菌属(Staphylococcus)、不动杆菌属(Acinetobacter)和假单胞菌属(Pseudomonas),其中棒状杆菌属含有多种条件致病菌,葡萄球菌属、不动杆菌属、假单胞菌属是人兽共患病病原菌,丰度较低的人兽共患病病原菌还有芽孢杆菌属(Bacillus)和链球菌属(Streptococcus)等(图 1)。共培养出细菌34种,成团泛菌(Pantoea agglomerans)、产色葡萄球菌(Staphylococcus chromogenes)、分散不动杆菌(Acinetobacter dispersus)的丰度较高(图 2)。所有菌种中,可能引起人化脓性感染的细菌有金黄色葡萄球菌(S. aureus)、溶血性葡萄球菌(S. haemolyticus)等。
3 讨论本次实验共采集蜱3属6种742只,均为已知种,从总体分析,长角血蜱为优势蜱种。修文县采集的蜱种均为长角血蜱。自然条件下,长角血蜱3月上旬开始出现,10月中旬消失,若蜱4月上旬开始活动,4月中旬开始出现雌蜱[18],长角血蜱出现时间与叮咬事件开始时间基本一致,因此长角血蜱极有可能是此次叮咬事件的元凶,提示春季出行应警惕蜱叮咬。
此次通过细菌培养的方式检测了6个市(县)蜱携带细菌的情况,检测到多个人兽共患病的病原菌属,优势菌门为变形菌门。本次培养的优势菌门与姚佳玲等[19]的检测结果一致,但与黄邵军等[20]检测出的厚壁菌门丰度最高的结果不同,推测蜱携带的细菌种类具有一定的地域差异。本次实验中培养出可引起化脓性感染的细菌主要有葡萄球菌属和假单胞菌属。鉴定出1株金黄色葡萄球菌,该菌是一种革兰阳性共生菌,也是一种条件致病菌[21],可能导致多种疾病,常见的是皮肤感染,更严重的是菌血症、心内膜炎、骨髓炎和坏死性筋膜炎[22]。鉴定出2株溶血性葡萄球菌,该菌是一种凝固酶阴性葡萄球菌,以共生方式存在于皮肤中[23],可以引起几种身体系统的严重感染,包括脑膜炎、心内膜炎、假肢关节感染和菌血症,还可以引起败血症、腹膜炎、中耳炎和糖尿病足溃疡(Diabetic foot ulcer)感染[24-25]。鉴定出9株产色葡萄球菌,其中8株来自黄牛寄生蜱。Andreotti等[26]采用细菌培养的方法同样在寄生于牛的微小扇头蜱中培养出该菌。产色葡萄球菌是牛的自然皮肤菌群的一部分,但会引起乳腺炎,在猪身上可能会引起渗出性表皮炎[27-28]。除这些可引起化脓性感染的细菌外,本次实验还鉴定出可引起其他感染的条件致病菌,如可引起呼吸道感染的莫拉氏菌属(Moraxella);引起泌尿系统感染和肠道感染的埃希菌属(Escherichia);引起呼吸道感染、伤口及皮肤感染、泌尿生殖道感染的不动杆菌属(Acinetobacter)等。本次实验中16S rDNA序列一致性在94.50%~98.70%的菌种,可能为某细菌属内新种,后续将进行实验进一步确定。
晴隆县、兴义市、望谟县采集蜱数量太少,不能全面反映当地主要蜱传细菌状况,同时细菌培养具有一定的局限性,修文县培养出的细菌种类明显比其余地区多,可能是由于修文县挑取的样本量大,后续将开展相关实验进一步确定。由于各种细菌所需的营养物质和生长条件不同,细菌培养不能全面地反映蜱携带细菌的种类,立克次体、螺旋体等不能检出。随着技术发展,高通量测序越来越多地运用于病原体的检测,与现在广泛运用的PCR检测方法相比,高通量测序除可以检测特定的已知病原体外,还可以检测未知的病原体。高通量测序运用于蜱的病原微生物检测在国内外已有报道[19, 29-30],可以检测蜱所携带的细菌及原虫,为蜱传疾病的防控提供进一步指导。
近年来,新发蜱媒传染病及病原体不断被发现。与长角血蜱关系密切的斑点热群立克次体的新基因型Candidatus Rickettsia longicornii于2018年在韩国首次被发现,在长角血蜱中可以通过性传播和口传播。尽管还未发现该基因型感染的病例,但新基因型与来自韩国的鼠脾组织和来自中国的人血中检测到的立克次体基因序列高度同源,提示Candidatus Rickettsia longicornii有感染包括人在内的哺乳动物的风险[31]。随着越来越多的蜱媒病原体被发现,蜱的危害应该被更加重视,加强蜱的监控与防治是现在和今后最主要的任务。
利益冲突 无
[1] |
康发亮. 蜱分类的方法及我国蜱分类的研究进展[J]. 安徽农业科学, 2011, 39(33): 20495-20497, 20500. Kang FL. Method and research progress of tick taxonomy in China[J]. J Anhui Agric Sci, 2011, 39(33): 20495-20497, 20500. DOI:10.13989/j.cnki.0517-6611.2011.33.142 |
[2] |
Frenot Y, de Oliveira E, Gauthier-Clerc M, et al. Life cycle of the tick Ixodes uriae in penguin colonies: Relationships with host breeding activity[J]. Int J Parasitol, 2001, 31(10): 1040-1047. DOI:10.1016/S0020-7519(01)00232-6 |
[3] |
Brites-Neto J, Roncato Duarte KM, Fernandes Martins T. Tick-borne infections in human and animal population worldwide[J]. Vet World, 2015, 8(3): 301-315. DOI:10.14202/vetworld.2015.301-315 |
[4] |
Rollins RE, Yeyin Z, Wyczanska M, et al. Spatial variability in prevalence and genospecies distributions of Borrelia burgdorferi sensu lato from ixodid ticks collected in southern Germany[J]. Ticks Tick Borne Dis, 2021, 12(1): 101589. DOI:10.1016/J.TTBDIS.2020.101589 |
[5] |
Takumi K, Sprong H, Hofmeester TR. Impact of vertebrate communities on Ixodes ricinus-borne disease risk in forest areas[J]. Parasit Vectors, 2019, 12(1): 434. DOI:10.1186/s13071-019-3700-8 |
[6] |
Granquist EG, Aleksandersen M, Bergström K, et al. A morphological and molecular study of Anaplasma phagocytophilum transmission events at the time of Ixodes ricinus tick bite[J]. Acta Vet Scand, 2010, 52(1): 43. DOI:10.1186/1751-0147-52-43 |
[7] |
张宏泽, 尹家祥. 中国人粒细胞无形体病流行现状及其影响因素[J]. 中国人兽共患病学报, 2018, 34(5): 478-481. Zhang HZ, Yin JX. Epidemic situation and influential factors of human granulocytic anaplasmosis in China[J]. Chin J Zoonoses, 2018, 34(5): 478-481. DOI:10.3969/j.issn.1002-2694.2018.00.070 |
[8] |
Knap N, Žele D, Glinšek Biškup U, et al. The prevalence of Coxiella burnetii in ticks and animals in Slovenia[J]. BMC Vet Res, 2019, 15(1): 368. DOI:10.1186/s12917-019-2130-3 |
[9] |
Borawski K, Dunaj J, Czupryna P, et al. Prevalence of spotted fever group rickettsia in north-eastern Poland[J]. Infect Dis (Lond), 2019, 51(11/12): 810-814. DOI:10.1080/23744235.2019.1660800 |
[10] |
Yin XH, Guo SC, Ding CL, et al. Spotted fever group rickettsiae in Inner Mongolia, China, 2015-2016[J]. Emerg Infect Dis, 2018, 24(11): 2105-2107. DOI:10.3201/eid2411.162094 |
[11] |
Wang Q, Zhao SS, Wureli H, et al. Brucella melitensis and B. abortus in eggs, larvae and engorged females of Dermacentor marginatus[J]. Ticks Tick Borne Dis, 2018, 9(4): 1045-1048. DOI:10.1016/j.ttbdis.2018.03.021 |
[12] |
Zhang K, Li AJ, Wang Y, et al. Investigation of the presence of Ochrobactrum spp. and Brucella spp. in Haemaphysalis longicornis[J]. Ticks Tick Borne Dis, 2021, 12(1): 101588. DOI:10.1016/j.ttbdis.2020.101588 |
[13] |
Li YC, Wen XX, Li M, et al. Molecular detection of tick-borne pathogens harbored by ticks collected from livestock in the Xinjiang Uygur Autonomous Region, China[J]. Ticks Tick Borne Dis, 2020, 11(5): 101478. DOI:10.1016/j.ttbdis.2020.101478 |
[14] |
陈泽, 杨晓军. 蜱的系统分类学[M]. 北京: 科学出版社, 2021: 126. Chen Z, Yang XJ. Systematics and taxonomy of Ixodida[M]. Beijing: Science Press, 2021: 126. |
[15] |
陈泽, 刘敬泽. 蜱分类学研究进展[J]. 应用昆虫学报, 2020, 57(5): 1009-1045. Chen Z, Liu JZ. Recent progress in tick taxonomy and a global list of tick species[J]. Chin J Appl Entomol, 2020, 57(5): 1009-1045. DOI:10.7679/j.issn.2095-1353.2020.104 |
[16] |
刘联坤, 郭建军. 贵州禽畜寄生蜱种类及优势种[J]. 西南师范大学学报(自然科学版), 2011, 36(1): 98-101. Liu LK, Guo JJ. Species of poultry ticks and its dominant species in Guizhou province[J]. J Southwest China Normal Univ (Natl Sci Ed), 2011, 36(1): 98-101. DOI:10.13718/j.cnki.xsxb.2011.01.040 |
[17] |
邓国藩, 姜在阶. 《中国经济昆虫志》第三十九册, 蜱螨亚纲: 硬蜱科[J]. 昆虫知识, 1992, 29(1): 52. Deng GF, Jiang ZJ. Economic insect fauna of China, fasc 39, Acari: Ixodidae[J]. Chin J Appl Entomol, 1992, 29(1): 52. |
[18] |
郑洪远. 长角血蜱的野外生态学研究[D]. 石家庄: 河北师范大学, 2009. Zheng HY. Field ecology researches on Haemaphysalis longicornis[D]. Shijiazhuang: Hebei Normal University, 2009. (in Chinese) |
[19] |
姚佳玲, 陈兆国, 龚海燕. 几种动物来源的蜱携带的细菌和原虫的检测[J]. 中国动物传染病学报, 2021, 29(3): 107-113. Yao JL, Chen ZG, Gong HY. Investigation of tick harbored bacteria and protoza from several animals species[J]. Chin J Anim Infect Dis, 2021, 29(3): 107-113. DOI:10.19958/j.cnki.cn31-2031/s.2021.03.016 |
[20] |
黄邵军, 张一, 罗学辉, 等. 基于高通量测序技术分析浙江省余姚市蜱中携带细菌菌群多样性[J]. 疾病监测, 2020, 35(7): 642-645. Huang SJ, Zhang Y, Luo XH, et al. High-throughput sequencing based analysis on diversity of pathogens carried by ticks in Yuyao, Zhejiang[J]. Dis Surveill, 2020, 35(7): 642-645. DOI:10.3784/j.issn.1003-9961.2020.07.019 |
[21] |
Jenul C, Horswill AR. Regulation of Staphylococcus aureus virulence[J]. Microbiol Spectr, 2019, 7(2): .1-34. DOI:10.1128/microbiolspec.GPP3-0031-2018 |
[22] |
Lowy FD. Staphylococcus aureus infections[J]. N Engl J Med, 1998, 339(8): 520-532. DOI:10.1056/NEJM199808203390806 |
[23] |
Eltwisy HO, Abdel-Fattahb M, Elsisi AM, et al. Pathogenesis of Staphylococcus haemolyticus on primary human skin fibroblast cells[J]. Virulence, 2020, 11(1): 1142-1157. DOI:10.1080/21505594.2020.1809962 |
[24] |
do Carmo Ferreira N, Schuenck RP, dos Santos KRN, et al. Diversity of plasmids and transmission of high-levelmupirocin mupA resistance gene in Staphylococcus haemolyticus[J]. FEMS Immunol Med Microbiol, 2011, 61(2): 147-152. DOI:10.1111/j.1574-695X.2010.00756.x |
[25] |
Schuenck RP, Pereira EM, Iorio NLP, et al. Multiplex PCR assay to identify methicillin‐resistant Staphylococcus haemolyticus[J]. FEMS Immunol Med Microbiol, 2008, 52(3): 431-435. DOI:10.1111/j.1574-695X.2008.00387.x |
[26] |
Andreotti R, de León AAP, Dowd SE, et al. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing[J]. BMC Microbiol, 2011, 11(1): 6. DOI:10.1186/1471-2180-11-6 |
[27] |
Devriese LA, Baele M, Vaneechoutte M, et al. Identification and antimicrobial susceptibility of Staphylococcus chromogenes isolates from intramammary infections of dairy cows[J]. Vet Microbiol, 2002, 87(2): 175-182. DOI:10.1016/s0378-1135(02)00047-0 |
[28] |
Andresen LO, Ahrens P, Daugaard L, et al. Exudative epidermitis in pigs caused by toxigenic Staphylococcus chromogenes[J]. Vet Microbiol, 2005, 105(3/4): 291-300. DOI:10.1016/j.vetmic.2004.12.006 |
[29] |
Portillo A, Palomar AM, de Toro M, et al. Exploring the bacteriome in anthropophilic ticks: to investigate the vectors for diagnosis[J]. PLoS One, 2019, 14(3): e0213384. DOI:10.1371/journal.pone.0213384 |
[30] |
Egan SL, Loh SM, Banks PB, et al. Bacterial community profiling highlights complex diversity and novel organisms in wildlife ticks[J]. Ticks Tick Borne Dis, 2020, 11(3): 101407. DOI:10.1016/j.ttbdis.2020.101407 |
[31] |
Jiang J, An HJ, Lee JS, et al. Molecular characterization of Haemaphysalis longicornis-borne rickettsiae, Republic of Korea and China[J]. Ticks Tick Borne Dis, 2018, 9(6): 1606-1613. DOI:10.1016/j.ttbdis.2018.07.013 |