中国科学院大学学报  2020, Vol. 37 Issue (6): 721-727   PDF    
Conformal minimal immersions of S2 into $\mathbb{H}$P4
JIAO Xiaoxiang, CUI Hongbin     
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: This work is a generalization of Chen and Jiao's work, where they considered the question of explicit construction of some conformal minimal two-spheres of constant curvature in quaternionic projective space. The crucial point was to find some horizontal immersions derived from Veronese sequence in $\mathbb{C} $P2n+1, which was projected into constant curvature conformal minimal two-spheres by twistor map π:$\mathbb{C} $P2n+1$\mathbb{H}$Pn. They calculated the case n=2. In this work, we deal with the case n=4 and a related geometry phenomenon.
Keywords: minimal two-sphere    Gaussian curvature    Veronese sequence    quaternionic projective space    
S2$\mathbb{H}$P4的共形极小浸入
焦晓祥, 崔洪斌     
中国科学院大学数学科学学院, 北京 100049
摘要: 本工作是Chen和Jiao工作的推广。他们考虑在四元数射影空间中如何具体构造常曲率共形极小二球,关键点是从$\mathbb{C} $P2n+1里的Veronese序列找到一些相关的水平浸入,然后关于扭映射π:$\mathbb{C} $P2n+1$\mathbb{H}$Pn做投影就得到$\mathbb{H}$Pn的常曲率共形极小二球。Chen和Jiao计算了n=2的情况, 本工作处理n=4的情况和一个相关的几何现象。
关键词: 极小二球    高斯曲率    Veronese序列    四元数射影空间    

There have been many researches about minimal surfaces in real and complex space forms[1-3]. For quaternionic projective space, Bryant[4] proved that the projections of horizontal holomorphic surfaces in $\mathbb{C} $P3 are minimal in $\mathbb{H}$P1 through twistor map. Aithal[5] described all the harmonic maps from S2 to $\mathbb{H}$P2. Considering $\mathbb{H}$Pn as a totally geodesic submani-fold in the complex Grassmann manifold G(2, 2n+2), Bahy-El-Dien and Wood[6] constructed explicitly all harmonic maps from the two-spheres to a quaternionic projective space. Based on Bahy-El-Dien and Wood's results, some classifications of minimal two-spheres of constant curvature in $\mathbb{H}$Pn have been given[7-9].

Recently, Chen and Jiao[10] used twistor map to discuss conformal minimal surface in quaternionic projective space, based on the horizontal condition given by Yang[11]. They got two polynomial equations as the horizontal conditions for the immersed surfaces in $\mathbb{C} $P2n+1, and then they calculated Veronese surfaces in $\mathbb{C} $P5 and got a series of conformal minimal two-spheres with constant curvature in $\mathbb{H}$P2.

In this paper we deal with the case $\mathbb{H}$P4.

In section 1, we review the knowledge of geometry of quaternionic projective space, minimal surfaces in complex projective space, and horizontal equation of immersed surfaces with respect to the twistor map.

In section 2, we try to improve the calculation of Veronese two-spheres to the case n. We will calculate explicitly the case n=4 and get a series of conformal minimal two-spheres ϕ4, p=π○ (U0·Vp9)(0≤p≤3) in $\mathbb{H}$P4.

In section 3, we talk about the interesting phenomenon that the middle terms, V49 and V59, of the Veronese sequences can not be rotated horizontally with respect to the twistor map. We will use the method of harmonic sequence to prove it.

1 Preliminaries 1.1 Geometry of quaternionic projective space

Let $\mathbb{H}$ be the quaternion algebra, which is regarded as a 4-dimensional real vector space with the basis 1, i, j, k. A ring multiplication is defined as

$ \begin{array}{*{20}{c}} {{{\rm{i}}^2} = {{\rm{j}}^2} = {{\rm{k}}^2} = - 1,}\\ {{\rm{ij}} = {\rm{k}} = - {\rm{ji}},{\rm{jk}} = {\rm{i}} = - {\rm{kj}},{\rm{ki}} = {\rm{j}} = - {\rm{ik}}{\rm{.}}} \end{array} $ (1)

In particular, $\mathbb{H}$ is a 2-dimensional ring module over $\mathbb{C} $ with the basis 1, j. For z=z1+jz2, w=w1+jw2$\mathbb{H}$, we have

$ zw = ({z_1}{w_1} - {\bar z_2}{w_2}) + {\rm{j}}({z_2}{w_1} + {\bar z_1}{w_2}). $ (2)

There is a natural conjugation in $\mathbb{H}$, denoted by

$ {({z_1} + {\rm{j}}{z_2})^*} = {z_1} - {\rm{j}}{z_2}. $ (3)

Let $\mathbb{H}$n be the set of n-tuples of quaternions written as column vectors. We can identify $\mathbb{H}$n with $\mathbb{C} $2n:

$ {z_1} + {\rm{j}}{z_2} \mapsto \left( {\begin{array}{*{20}{c}} {{z_1}}\\ {{z_2}} \end{array}} \right). $ (4)

The quaternionic projective space $\mathbb{H}$Pn is the space of $\mathbb{H}$-lines in $\mathbb{H}$n+1, that is, for [v1]$\mathbb{H}$ and [v2]$\mathbb{H}$$\mathbb{H}$Pn, [v1]$\mathbb{H}$=[v2]$\mathbb{H}$ if and only if there is an x$\mathbb{H}$, such that v2=v1x.

The symplectic group is

$ Sp(n) = \{ \mathit{\boldsymbol{A}} \in {\rm{GL}} (n;\mathbb{H}){|^t}{\mathit{\boldsymbol{A}}^*} \cdot \mathit{\boldsymbol{A}} = {\mathit{\boldsymbol{I}}_n}\} , $ (5)

where In is the identity matrix of order n.

For ASp(n+1) and [v]$\mathbb{H}$$\mathbb{H}$Pn, Sp(n+1) acts on $\mathbb{H}$Pn by

$ \mathit{\boldsymbol{A}} \cdot {[\mathit{\boldsymbol{v}}]_\mathbb{H}} = {[\mathit{\boldsymbol{Av}}]_\mathbb{H}}. $ (6)

G0=Sp(1)×Sp(n)is the isotropy group of this action at[(1, 0, …, 0)T]$\mathbb{H}$ and this action is transitive. Therefore,

$ \mathbb{H}{P^n} = Sp(n + 1)/Sp(1) \times Sp(n). $ (7)

There is the inclusion Sp(n)↪SU(2n) by $ \boldsymbol{X}+\text{j}\boldsymbol{Y}\mapsto \left( \begin{align} & \boldsymbol{X}\ \ \ -\boldsymbol{\bar{Y}} \\ & ~\boldsymbol{Y}\ \ \ \ \boldsymbol{\bar{X}} \\ \end{align} \right)$, where X, YGL(n; C).

We have the following commutative diagram

$ \begin{matrix} {} & Sp(n+1) & {} \\ {{\pi }_{2}}\swarrow & {} & \searrow {{\pi }_{1}} \\ \mathbb{H}{{P}^{n}} & {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{\pi }} & \mathbb{C}{{P}^{2n+1}} \\ \end{matrix} $ (8)

where π:$\mathbb{C} $P2n+1$\mathbb{H}$Pn, $\left[ \begin{align} & {{z}_{1}} \\ & {{z}_{2}} \\ \end{align} \right]\mapsto {{\left[ {{z}_{1}}+\text{j}{{z}_{2}} \right]}_{\mathbb{H}}} $, z1, z2$\mathbb{C} $n+1, is the twistor map and it is a fibration, π1 and π2 are defined as follows. If A=X+jYSp(n+1), write A=(A0, …, An), X=(X0, …, Xn), Y=(Y0, …, Yn). Then $ {\pi _1}(\mathit{\boldsymbol{A}}) = \left[ \begin{array}{l} {X_0}\\ {Y_0} \end{array} \right]$ and π2(A)=[A0]$\mathbb{H}$ are the natural projections. Note that Sp(n+1)→$\mathbb{C} $P2n+1 is a principal fiber bundle with structure group U(1)×Sp(n) and π1 is a surjection.

Definition 1.1   The twistor map gives a fibration, and the horizontal distribution $\mathscr{H} $ on $\mathbb{C} $P2n+1 is defined to be the orthogonal complement to the fiber of π with respect to the Fubini-Study metric on $\mathbb{C} $P2n+1. In particular, if M is a Riemann surface, call a map f:M$\mathbb{C} $P2n+1 horizontal surface if the image of f is tangent to $\mathscr{H} $.

As in Ref[11], for [v]∈$\mathbb{C} $P2n+1, we write $\boldsymbol{v}=\left( \begin{align} & {{v}_{1}} \\ & {{v}_{2}} \\ \end{align} \right)\in {{\mathbb{C}}^{2n+2}} $, where v1, v2$\mathbb{C} $n+1, and the horizontal space $\mathscr{H} $ [v] is

$ {\mathscr{H} _{[v]}} = \{ w \in {v^ \bot }|{\sigma _v}(w) = 0,{\sigma _v} = { - ^t}{z_2}{\rm{d}}{z_1}{ + ^t}{z_1}{\rm{d}}{z_2}\} . $ (9)

We have the following proposition[10], which is a special case of Lemma 3.5 of Eells and Wood[3].

Proposition 1.1   If ϕ=[f]:M$\mathbb{C} $P2n+1 is a horizontal conformal minimal surface, then πϕ:M$\mathbb{H}$Pn is conformal minimal, where π:$\mathbb{C} $P2n+1$\mathbb{H}$Pn is the twistor map.

1.2 Minimal surface in a complex projective space

In this subsection, we introduce some knowledge about harmonic sequences and minimal surfaces in $\mathbb{C} $Pn[2-3].

Let $\mathbb{C} $Pn denote the complex lines in $\mathbb{C} $n+1, let T$\mathbb{C} $Pn denote the universal line bundle whose fibre at l$\mathbb{C} $Pn is l itself.

Let M be a Riemann surface. We identify a smooth map ϕ:M2$\mathbb{C} $Pn with a subbundle ϕ of the trivial bundle $ \underline{{{\mathbb{C}}^{n+1}}}={{\boldsymbol{M}}^{2}}\times {{\mathbb{C}}^{n+1}}$ of rank one which has fibre at xM given by ϕx=ϕ(x). Thus ϕ=ϕ-1T. Conversely any rank subbundle of $ \underline{{{\mathbb{C}}^{n+1}}}$ induces a map M2$\mathbb{C} $Pn.

Each linearly full conformal minimal immersion φ from S2 is obtained from a holomorphic curve φ0 in $\mathbb{C} $Pn, and φ0 induces the harmonic sequence,

$ 0\overset{\partial }{\mathop{\to }}\,\underline{\varphi _{0}^{n}}\overset{\partial }{\mathop{\to }}\,\cdots \overset{\partial }{\mathop{\to }}\,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi }=\underline{\varphi _{\alpha }^{n}}\overset{\partial }{\mathop{\to }}\,\cdots \overset{\partial }{\mathop{\to }}\,\underline{\varphi _{n}^{n}}\overset{\partial }{\mathop{\to }}\,0. $ (10)

Under local coordinate z, choose a local holomorphic section f0 of φ0n, such that $\frac{\partial }{\partial \bar{z}}{{f}_{0}}=0 $. We define local section fi+1 of φi+1n by the formula

$ {f_{i + 1}} = \frac{\partial }{{\partial z}}{f_i} - \frac{{\left\langle {\frac{\partial }{{\partial z}}{f_i},{f_i}} \right\rangle }}{{|{f_i}{|^2}}}{f_i},0 \le i \le n - 1. $ (11)

Let $ {{\gamma }_{i}}=\frac{{{\left| {{f}_{i+1}} \right|}^{2}}}{{{\left| {{f}_{i}} \right|}^{2}}}$. Then we have the equations[2]

$ \begin{array}{*{20}{c}} {\frac{\partial }{{\partial z}}{f_i} = - {\gamma _{i - 1}}{f_{i - 1}},1 \le i \le n,}\\ {\frac{{{\partial ^2}}}{{\partial z\partial \bar z}}{\rm{log}}|{f_j}{|^2} = {\gamma _j} - {\gamma _{j - 1}},}\\ {\frac{{{\partial ^2}}}{{\partial z\partial \bar z}}{\rm{log}}{\gamma _j} = {\gamma _{j + 1}} - 2{\gamma _j} + {\gamma _{j - 1}},0 \le j \le n - 1.} \end{array} $ (12)

For convenience, we set γ-1=γn=0. Bolton et al.[12] defined the Veronese sequence as follows: Let Vpn:S2$\mathbb{C} $Pn be given by

$ V_p^n(z) = {[^t}({g_{p,0}}(z), \cdots ,{g_{p,n}}(z))], $ (13)

where z is a local holomorphic coordinate of S2, p=0, 1, …, n. For j=0, 1, …, n, gp, j are given by

$ {g_{p,j}}(z) = \frac{{p!}}{{{{(1 + z\bar z)}^p}}}\sqrt {C_n^j} {z^{j - p}}\sum\limits_k {{{( - 1)}^k}} C_j^{p - k}C_{n - j}^k{(z\bar z)^k}. $ (14)

Then, for each p, the Veronese map(or Veronese surface) Vpn is a conformal minimal immersion with constant curvature $ \frac{4}{n+2p\left( n-p \right)}$, and {V0n, …, Vnn} is the Veronese sequence in $\mathbb{C} $Pn.

Remark 1.1   Notice that gp, j(z) have a common factor $ \frac{p!}{{{\left( 1+z\overline{z} \right)}^{p}}}$. We can omit it in the horizontal equations which are mentioned below.

The Veronese sequence is particularly important for the following rigidity theorem[2].

Lemma 1.1   Let Ψ:S2$\mathbb{C} $Pn be a linearly full conformal minimal immersion with constant curvature, then, up to a holomorphic isometry of $\mathbb{C} $Pn, the immersion Ψ is an element of the Veronese sequence.

1.3 Horizontal equations of immersed surfaces

Based on the above discussions, we can produce conformal minimal two-spheres from the Veronese two-spheres in $\mathbb{H}$Pn by a unitary rotation. It is stated in the following proposition[10].

Proposition 1.2   Let Ψ:S2$\mathbb{C} $P2n+1 be an element of the Veronese sequence in $\mathbb{C} $P2n+1. If there exists a UU(2n+2) such that U·Ψ is horizontal in $\mathbb{C} $P2n+1, then π○(U·Ψ):S2$\mathbb{H}$Pn is a conformal minimal two-spheres with constant curvature, where π:$\mathbb{C} $P2n+1$\mathbb{H}$Pn is the twistor map.

From the horizontal condition, if Ψ=[f] is horizontal, then tfBdf=0, where $\boldsymbol{B}=\left( \begin{align} & 0\ \ \ \ \ \ \boldsymbol{I} \\ & -\boldsymbol{I}\ \ \ \ 0 \\ \end{align} \right) $. More explictly, it is the following proposition[10].

Proposition 1.3   For Ψ=[f]=[t(f1, f2, …, f2n+2)]:S2$\mathbb{C} $P2n+1, if UU(2n+2), then U·Ψ is horizontal if and only if

$ \left\{ {\begin{array}{*{20}{l}} {\sum\nolimits_{i,j = 1}^{2n + 2} {{A_{ij}}} {f_i}\partial {f_j} = 0,}\\ {\sum\nolimits_{i,j = 1}^{2n + 2} {{A_{ij}}} {f_i}\bar \partial {f_j} = 0,} \end{array}} \right. $ (15)

where A=(Aij)=tUBU, $\partial =\frac{\partial }{\partial z}, \overline{\partial }=\frac{\partial }{\partial \overline{z}} $, and z is a local coordinate of S2.

2 Conformal minimal two-spheres in $ \mathbb{H}{{P}^{4}}$ 2.1 Reduced horizontal equation of Veronese maps

Definition 2.1   Let M be a Riemann surface, we call two surfaces Ψ, Φ:M2$\mathbb{H}$Pn are symplectic equivalent if there is an isometry, i.e., a symplectic matrix H, H·Ψ=Φ.

For Veronese sequence, Vp2n+1 and V2n+1-p2n+1 have the following relation.

Lemma 2.1 V2n+1-p2n+1=J2n+2· Vp2n+1, here we choose Vp2n+1=[t(gp, 0, …, gp, 2n+1)], where

$ {g_{p,j}} = \sqrt {C_{2n + 1}^j} {z^{j - p}}\sum\limits_k {{{( - 1)}^k}} C_j^{p - k}C_{2n + 1 - j}^k{(zz)^k}, $ (16)
$ {\mathit{\boldsymbol{J}}_m} = \left( {\begin{array}{*{20}{c}} 0&0& \cdots &0&{{{( - 1)}^{m - 1}}}\\ 0&0& \cdots &{{{( - 1)}^m}}&0\\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0&{{{( - 1)}^1}}& \cdots &0&0\\ {{{( - 1)}^0}}&0& \cdots &0&0 \end{array}} \right). $ (17)

for any integer m.

Proof

$ \begin{array}{*{20}{l}} {{g_{2n + 1 - p,2n + 1 - j}}}\\ { = \sqrt {C_{2n + 1}^{2n + 1 - j}} {z^{p - j}}\sum\limits_l {{{( - 1)}^l}} C_{2n + 1 - j}^{2n + 1 - p - l}C_j^l{{(zz)}^l}.} \end{array} $ (18)

Set k=p+l-j, then we easily see

$ \begin{array}{*{20}{l}} {{g_{2n + 1 - p,2n + 1 - j}} = {{( - 1)}^{j - p}}{{\bar g}_{p,j}}}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {{( - 1)}^p}{{( - 1)}^j}{{\bar g}_{p,j}}.} \end{array} $ (19)

Omit (-1)p, then we get the conclusion.

Now, if Vp2n+1 can be rotated horizontally, U·Vp2n+1 satisfies the horizontal equations,

$ \left\{ {\begin{array}{*{20}{l}} {^tV{{_p^{2n + 1}}^t}\mathit{\boldsymbol{UBU}}V_{p + 1}^{2n + 1} = 0,}\\ {^tV{{_p^{2n + 1}}^t}\mathit{\boldsymbol{UBU}}V_{p - 1}^{2n + 1} = 0.} \end{array}} \right. $ (20)

By complex conjugate, we have

$ \left\{ {\begin{array}{*{20}{l}} {^tV{{_{2n + 1 - p}^{2n + 1}}^t}{J_{2n + 2}}^t\mathit{\boldsymbol{\bar UB\bar U}}{J_{2n + 2}}V_{2n - p}^{2n + 1} = 0,}\\ {^tV{{_{2n + 1 - p}^{2n + 1}}^t}{J_{2n + 2}}^t\mathit{\boldsymbol{\bar UB\bar U}}{J_{2n + 2}}V_{2n + 2 - p}^{2n + 1} = 0.} \end{array}} \right. $ (21)

That is to say, U·Vp2n+1 is horizontal ⇔ UJ2n+2·V2n+1-p2n+1 is horizontal.

So we only need to consider the case pn.

Denote gp, j(0≤p, jn) by

$ {g_{p,j}} = \sqrt {C_n^j} {z^{j - p}}\sum\limits_k {{{( - 1)}^k}} C_j^{p - k}C_{n - j}^k{(z\bar z)^k}. $ (22)

By derivation, we get

$ \partial {g_{p,j}} = \sqrt {C_n^j} {z^{j - p - 1}}\sum\limits_k {{{( - 1)}^k}} C_j^{p - k}C_{n - j}^k(j - p + k){(z\bar z)^k}, $ (23)
$ \partial {g_{p,j}} = \sqrt {C_n^j} {z^{j - p + 1}}\sum\limits_k {{{( - 1)}^k}} C_j^{p - k}C_{n - j}^kk{(zz)^{k - 1}}. $ (24)

Set $ {{S}_{ij}}={{A}_{ij}}\sqrt{~C_{n}^{i}C_{n}^{j}}$, then we have

$ \left\{ {\begin{array}{*{20}{l}} {\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{n - i}^kC_j^{p - l}C_{n - j}^l(j - p + l) = 0,}\\ {\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{n - i}^kC_j^{p - l}C_{n - j}^ll = 0,} \end{array}} \right. $ (25)

for any nonnegative integers m, t.

If we change the positions of k and l in the second formula (notice that k+l=t=constant for some t and Sij=-Sji), then we get

$ \sum\limits_{i + j = m} {{S_{ij}}} \sum\limits_{k + l = t} {C_i^{p - k}} C_{n - i}^kC_j^{p - l}C_{n - j}^l = 0. $ (26)

Then, using i+j=m=constant for some m in the first equation, we finally get the equations

$ \left\{ {\begin{array}{*{20}{l}} {\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{n - i}^kC_j^{p - l}C_{n - j}^l = 0,}\\ {\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{n - i}^kC_j^{p - l}C_{n - j}^li = 0.} \end{array}} \right. $ (27)

Considering the projections of linearly full Veronese maps in $\mathbb{C} $P2n+1, we only need to change n in the above equations into 2n+1, and then we have the following theorem.

Theorem 2.1   Let Vp2n+1:S2$\mathbb{C} $P2n+1 be the Veronese map defined in (13) and (14). If UU(2n+2), U·Vp2n+1 is horizontal with respect to the twistor map π:$\mathbb{C} $P2n+1$\mathbb{H}$Pn, then it satisfies

$ \left\{ {\begin{array}{*{20}{l}} {\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{2n + 1 - i}^kC_j^{p - l}C_{2n + 1 - j}^l = 0,}\\ {\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{2n + 1 - i}^kC_j^{p - l}C_{2n + 1 - j}^li = 0,} \end{array}} \right. $ (28)

where S=QAQ, Q=diag{1, …, $\sqrt{C_{2n+1}^{i}} $, …, 1}, A=tUBU is an anti-symmetric unitary matrix. The above equations should be right for any constant nonnegative integers m∈{0, …, 4n+2}, t∈{0, …, 2p}.

2.2 Projections of Vp9, p=0, 1, 2, 3, 4

As an application of (28), in this subsection, we calculate the Veronese maps Vp9, p=0, 1, 2, 3, 4.

First, we talk about the general V02n+1, the equations (28) reduce to:

$ \left\{ {\begin{array}{*{20}{l}} {\sum\nolimits_{i + j = m} {{S_{ij}}} = 0,}\\ {\sum\nolimits_{i + j = m} {{S_{ij}}} i = 0.} \end{array}} \right. $ (29)

Notice that A is an anti-symmetric unitary matrix, so S is anti-symmetric too, the first equation is naturally satisfied, and we can reformulate the second to

$ \sum\limits_{i + j = m,j > i} {{S_{ij}}} (j - i) = 0, $ (30)

or, write

$ \sum\limits_{i + j = m,j > i} {{A_{ij}}} \sqrt {C_{2n + 1}^iC_{2n + 1}^j} (j - i) = 0. $ (31)

It is a linear combination of matrix elements in different lines of upper triangulation part of S. Now, we talk about the solution in different n(n≥1).

First, when n=1, the number of elements in the lines which are parallel to antidiagonal in the upper triangulation part of S (respect A) is less than 2, then they should be all zeros, so with respect to the twistor map π:$\mathbb{C} $P3$\mathbb{H}$P1, there only have the linear relation in the antidiagonal:

$ {\sum\limits_{i + j = 3,j > i} {{S_{ij}}} (j - i) = 0,} $ (32)

or, write

$ {\sum\limits_{i + j = 3,j > i} {{A_{ij}}} C_3^i(j - i) = 0.} $ (33)

The solution is

$ \left( {\begin{array}{*{20}{c}} 0&0&0&{{A_{03}}}\\ 0&0&{ - {A_{03}}}&0\\ 0&{{A_{03}}}&0&0\\ { - {A_{03}}}&0&0&0 \end{array}} \right) $ (34)

So, when n=1, A=λJ4, λ$\mathbb{C} $, |λ|=1.

In general, we have

Lemma 2.2   $\sum\nolimits_{i+j=2n+1, j>i}{{{A}_{ij}}C_{2n+1}^{i}\left( j-i \right)=0} $ or $\sum\nolimits_{i+j=2n+1}{{{A}_{ij}}C_{2n+1}^{i}i=0} $ has a solution:

$ \left\{ {\begin{array}{*{20}{l}} {{A_{ij}} = 0,i + j \ne 2n + 1,}\\ {{A_{ij}} = {{( - 1)}^i}{A_{0,2n + 1}},i + j = 2n + 1.} \end{array}} \right. $ (35)

or, equivalently, A=λJ2n+2, λ$\mathbb{C} $, |λ|=1.

Proof   For (1+x)2n+1= $ \sum\nolimits_{i=0}^{2n+1}{C_{2n+1}^{i}{{x}^{i}}}$, derivative both sides.

Remark 2.1   Readers could see $ \sum\nolimits_{i+j=2n+1}{{{A}_{ij}}C_{2n+1}^{i}{{i}^{t}}=0}$ also have this solution for any nonnegative integer t.

Lemma 2.3   Choose two solutions of tUBU=A, denote them by M, N, then π○(M·Vp2n+1) is symplectic equivalent to π○(N·Vp2n+1).

Proof  It's easy to see MN-1 are symplectic matrix with the form $\boldsymbol{M}{{\boldsymbol{N}}^{-1}}=\left( \begin{align} & \boldsymbol{X}\ \ \ \ \ \ -\overline{\boldsymbol{Y}} \\ & \boldsymbol{Y}\ \ \ \ \ \ \ \ \overline{\boldsymbol{X}} \\ \end{align} \right) $, denote N·Vp2n+1 by $\left[ \begin{align} & {{v}_{1}} \\ & {{v}_{2}} \\ \end{align} \right] $, then π○(M·Vp2n+1)=[Xv1-Yv2+j(Yv1+Xv2)]$\mathbb{H}$=(X+jY)·[v1+jv2]$\mathbb{H}$=(X+jY)·(π○(N·Vp2n+1)).

From the above Lemma, the key point of "rotate horizontally" is to decide the existence of A, about U, we only need to search for the solution of special form, here we consider that U possess this form: $\mathit{\boldsymbol{U}} = \left( \begin{array}{l} {\mathit{\boldsymbol{U}}_1}\;\;\;0\\ 0\;\;\;\;\;\mathit{\boldsymbol{I}} \end{array} \right) $, U1U(n+1).

Then $ \mathit{\boldsymbol{A}} = \left( \begin{array}{l} \;\;0\;\;\;\;\;\;\;{\;^t}{\mathit{\boldsymbol{U}}_1}\\ - {\mathit{\boldsymbol{U}}_1}\;\;\;\;\;\;0 \end{array} \right)$, so, when p=0, for any n≥1, U has one solution $ \mathit{\boldsymbol{U}} = {\mathit{\boldsymbol{U}}_0} = \left( \begin{array}{l} {\mathit{\boldsymbol{J}}_{n + 1}}\;\;\;0\\ 0\;\;\;\;\;\;\;\mathit{\boldsymbol{I}} \end{array} \right)$.

In the rest part of this article, we will always denote the above matrix by U0.

This solution is special, now U0V02n+1 is horizontal, since $ {\mathit{\boldsymbol{U}}_{\rm{0}}}{\mathit{\boldsymbol{J}}_{{\rm{2}}n + 2}} = \left( \begin{array}{l} {\rm{0}}\;\;\;\;\;\;\;\;{\rm{ - }}\mathit{\boldsymbol{I}}\\ {\mathit{\boldsymbol{J}}_{n + 1}}\;\;\;\;{\rm{0}} \end{array} \right)$, then

$ {\mathit{\boldsymbol{U}}_0}V_{2n + 1}^{2n + 1} = {\mathit{\boldsymbol{U}}_0}{\mathit{\boldsymbol{J}}_{2n + 2}}\bar V_0^{2n + 1} = {\bf{J}} \circ {\mathit{\boldsymbol{U}}_0}V_0^{2n + 1} $ (36)

is also horizontal.

From the above discussion, we have

Theorem 2.2   V09 can be rotated horizontally, and π○(U0·V09) is conformal minimal two-sphere with constant curvature 4/9 in $\mathbb{H}$P4.

For V19, If we set ${F_t} = \sum\nolimits_{i + j = m} {{S_{ij}}{i^t}} $ for some nonnegative integer m, t, then the first equation of (28) reduce to

$ \left\{ {\begin{array}{*{20}{l}} {m{F_1} - {F_2} = 0,}\\ {9m{F_0} - 2(m{F_1} - {F_2}) = 0,}\\ {9(9 - m){F_0} + m{F_1} - {F_2} = 0,} \end{array}} \right. $ (37)

the second equation of (28) reduce to

$ \left\{ {\begin{array}{*{20}{l}} {m{F_2} - {F_3} = 0,}\\ {9m{F_1} - 2(m{F_2} - {F_3}) = 0,}\\ {9(9 - m){F_1} + m{F_2} - {F_3} = 0,} \end{array}} \right. $ (38)

notice F0=0 is naturally satisfied, then we have

$ {F_1} = 0,{F_2} = 0,{F_3} = 0. $ (39)

The equations Ft=0 which t is even are degenerate to those t is odd, since

$ {F_{2k}} = 0 \Leftrightarrow \sum\limits_{i + j = m,j > i} {{S_{ij}}} ({(m - i)^{2k}} - {i^{2k}}) = 0, $ (40)

and

$ \sum\limits_{i + j = m,j > i} {{S_{ij}}} ({(m - i)^{2k}} - {i^{2k}}) = 0 \Leftarrow {F_t} = 0 $ (41)

by every 0≤t≤2k-1.

So, finally, the equations reduce to

$ {F_1} = 0,{F_3} = 0. $ (42)

The other discussions are just like V09, we give the following result:

Theorem 2.3   For V19 can be rotated horizontally, and π○(U0·V19) is conformal minimal two-sphere with constant curvature 4/25 in $\mathbb{H}$P4.

For V29, (28) reduce to

$ \begin{array}{*{20}{l}} {\left[ {\begin{array}{*{20}{l}} {m{F_1} - {F_2} = 0,}\\ {m{F_2} - {F_3} = 0,}\\ {{F_4} - 2m{F_3} + {m^3}{F_1} = 0,}\\ {{F_5} - 2m{F_4} + ({m^2} + m - 1){F_3} + (m - {m^2}){F_2} = 0,}\\ {{F_3} - m{F_2} + \frac{{72m(m - 1)}}{{48m - 208}}{F_1} = 0,} \end{array}} \right.} \end{array} $ (43)

then we have

$ {F_1} = 0,{F_2} = 0,{F_3} = 0,{F_4} = 0,{F_5} = 0. $ (44)

So, finally, the equations reduce to

$ {F_1} = 0,{F_3} = 0,{F_5} = 0. $ (45)

The other discussions are just like V09, we give the following result:

Theorem 2.4   V29 can be rotated horizontally, and π○(U0·V29) is conformal minimal two-sphere with constant curvature 4/37 in $\mathbb{H}$P4.

For V39, (28) reduce to

$ \mathit{\boldsymbol{B}}3{ * ^t}({F_7},{F_6},{F_5},{F_4},{F_3},{F_2},{F_1},{F_0}) = 0, $ (46)

where B3 is a 14×8 matrix, it is a big matrix, by using the software Matlab, we calculate rank(B3)=8, so we have

$ {F_i} = 0 $ (47)

for 0≤i≤7.

The equations Ft=0 which t is even are degenerate to those t is odd.

So, finally, the equations reduce to

$ {F_1} = 0,{F_3} = 0,{F_5} = 0,{F_7} = 0. $ (48)

It is still not determinate for the elements of matrix S, so we still have a solution U=U0, then:

Theorem 2.5   V39 can be rotated horizontally, and π○(U0·V39) is conformal minimal two-sphere with constant curvature 4/45 in $\mathbb{H}$P4.

We continue to talk about V49, (28) reduce to

$ \mathit{\boldsymbol{B}}4{ * ^t}({F_9},{F_8},{F_7},{F_6},{F_5},{F_4},{F_3},{F_2},{F_1},{F_0}) = 0, $ (49)

where B4 is a 18×10 matrix, we calculate rank(B4)=10, so we have

$ {F_i} = 0 $ (50)

for 0≤i≤9.

The equations Ft=0 which t is even are degenerate to those t is odd.

So, finally, the equations reduce to

$ {F_1} = 0,{F_3} = 0,{F_5} = 0,{F_7} = 0,{F_9} = 0. $ (51)

Different like the former cases, this is a over-determined system for the elements of matrix S, since (51) is equivalent to:

$ \left\{ {\begin{array}{*{20}{l}} {\sum\nolimits_{i + j = m,j > i} {{S_{ij}}} (j - i) = 0,}\\ {\sum\nolimits_{i + j = m,j > i} {{S_{ij}}} ({j^3} - {i^3}) = 0,}\\ {\sum\nolimits_{i + j = m,j > i} {{S_{ij}}} ({j^5} - {i^5}) = 0,}\\ {\sum\nolimits_{i + j = m,j > i} {{S_{ij}}} ({j^7} - {i^7}) = 0,}\\ {\sum\nolimits_{i + j = m,j > i} {{S_{ij}}} ({j^9} - {i^9}) = 0.} \end{array}} \right. $ (52)

By checking rank of the coefficient matrix of any m, S must be zero matrix, then

Theorem 2.6   V49 can not be rotated horizontally.

3 The middle terms of harmonic sequence

In this section, we give another proof for the phenomenon that V49 and V59 can not be rotated horizontally. In fact, it is also right for any harmonic sequence in $\mathbb{C} $P9.

Theorem 3.1   In the following harmonic sequence associated to a linearly full holomorphic map [f0]=f:M2$\mathbb{C} $P9,

$ 0\mathop \to \limits^\partial \underline {{f_0}} \mathop \to \limits^\partial \cdots \mathop \to \limits^\partial \underline {{f_4}} \mathop \to \limits^\partial \underline {{f_5}} \mathop \to \limits^\partial \cdots \mathop \to \limits^\partial \underline {{f_9}} \mathop \to \limits^\partial 0. $ (53)

f4, f5 can not be rotated horizontally.

Proof  Assume f4 can be rotated horizontally, tf4Bdf4=0, from(11), (12), we have

$ \begin{array}{*{20}{l}} {^t{f_4}\mathit{\boldsymbol{B}}{\rm{d}}{f_4}{ = ^t}{f_4}\mathit{\boldsymbol{B}}(\partial {f_4}{\rm{d}}z + \bar \partial {f_4}{\rm{d}}\bar z)}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} { = ^t}{f_4}\mathit{\boldsymbol{B}}({f_5} + \partial {\rm{log}}|{f_4}{|^2}{f_4}){\rm{d}}z + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\kern 1pt} ^t}{f_4}\mathit{\boldsymbol{B}}( - {\gamma _3}{f_3}){\rm{d}}z}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 0,} \end{array} $ (54)

Since B is antisymmetric, tf4Bf4=0, then it is equivalent to

$ \left\{ {\begin{array}{*{20}{l}} {^t{f_4}\mathit{\boldsymbol{B}}{f_5} = 0,}\\ {^t{f_4}\mathit{\boldsymbol{B}}{f_3} = 0,} \end{array}} \right. $ (55)

then we have

$ ^t{f_4}\mathit{\boldsymbol{B}}{f_5} = 0{\mathop \to \limits^\partial {^t}}{f_4}\mathit{\boldsymbol{B}}{f_6} = 0{\mathop \to \limits^{\bar \partial } {^t}}{f_3}\mathit{\boldsymbol{B}}{f_6} = 0. $ (56)

Continue this process, we will get tf0Bf9=0, then do continuously for it, we will get

$ ^t{f_0}\mathit{\boldsymbol{B}}{f_i} = 0,i = 0,1,2,3,4,5,6,7,8,9, $ (57)

then it is easy to check that f0 must be a local zero section of the trivial bundle M2×$\mathbb{C} $10, this is a contradiction.

f5 is similar, we only need to show f9 is a local zero section.

References
[1]
Calabi E. Minimal immersions of surfaces in Euclidean spheres[J]. J Differ Geom, 1967, 1: 111-125. DOI:10.4310/jdg/1214427884
[2]
Bolton J, Jensen G R, Rigoli M, et al. On conformal minimal immersion of S2 into $\mathbb{C} $Pn[J]. Math Ann, 1988, 279: 599-620. DOI:10.1007/BF01458531
[3]
Eells J, Wood J C. Harmonic maps from surfaces to complex projective spaces[J]. Adv Math, 1983, 49: 217-263. DOI:10.1016/0001-8708(83)90062-2
[4]
Bryant R L. Conformal and minimal immersions of compact surfaces into the 4-sphere[J]. J Differ Geom, 1982, 17: 455-473. DOI:10.4310/jdg/1214437137
[5]
Aithal A R. Harmonic maps from S2 to $\mathbb{H}$P2[J]. Osaka J Math, 1986, 23: 255-270.
[6]
Bahy-El-Dien A, Wood J C. The explicit construction of all harmonic two-spheres in quaternionic projective spaces[J]. Proc Lond Math Soc, 1991, 62: 202-224.
[7]
He L, Jiao X X. Classification of conformal minimal immersions of constant curvature from S2 to $\mathbb{H}$P2[J]. Math Ann, 2014, 359: 663-694. DOI:10.1007/s00208-014-1013-y
[8]
He L, Jiao X X. On conformal minimal immersions of S2 in $\mathbb{H}$Pn with parallel second fundamental form[J]. Annali di Matematica Pura ed Applicata, 2015, 194: 1301-1317. DOI:10.1007/s10231-014-0420-8
[9]
He L, Jiao X X. On conformal minimal immersions of constant curvature from S2 to $\mathbb{H}$Pn[J]. Mathematische Zeitschrift, 2015, 280(3/4): 1-21.
[10]
Chen X D, Jiao X X. Conformal minimal surfaces immersed into $\mathbb{H}$Pn[J]. Annali di Matematica Pura ed Applicata, 2017, 196: 2063-2076. DOI:10.1007/s10231-017-0653-4
[11]
Yang K. Complete and compact minimal surfaces[C]. Dordrecht: Kluwer Academic Publishers, 1989: 66-67.