There have been many researches about minimal surfaces in real and complex space forms[1-3]. For quaternionic projective space, Bryant[4] proved that the projections of horizontal holomorphic surfaces in
Recently, Chen and Jiao[10] used twistor map to discuss conformal minimal surface in quaternionic projective space, based on the horizontal condition given by Yang[11]. They got two polynomial equations as the horizontal conditions for the immersed surfaces in
In this paper we deal with the case
In section 1, we review the knowledge of geometry of quaternionic projective space, minimal surfaces in complex projective space, and horizontal equation of immersed surfaces with respect to the twistor map.
In section 2, we try to improve the calculation of Veronese two-spheres to the case n. We will calculate explicitly the case n=4 and get a series of conformal minimal two-spheres ϕ4, p=π○
(U0·Vp9)(0≤p≤3) in
In section 3, we talk about the interesting phenomenon that the middle terms, V49 and V59, of the Veronese sequences can not be rotated horizontally with respect to the twistor map. We will use the method of harmonic sequence to prove it.
1 Preliminaries 1.1 Geometry of quaternionic projective spaceLet
$ \begin{array}{*{20}{c}} {{{\rm{i}}^2} = {{\rm{j}}^2} = {{\rm{k}}^2} = - 1,}\\ {{\rm{ij}} = {\rm{k}} = - {\rm{ji}},{\rm{jk}} = {\rm{i}} = - {\rm{kj}},{\rm{ki}} = {\rm{j}} = - {\rm{ik}}{\rm{.}}} \end{array} $ | (1) |
In particular,
$ zw = ({z_1}{w_1} - {\bar z_2}{w_2}) + {\rm{j}}({z_2}{w_1} + {\bar z_1}{w_2}). $ | (2) |
There is a natural conjugation in
$ {({z_1} + {\rm{j}}{z_2})^*} = {z_1} - {\rm{j}}{z_2}. $ | (3) |
Let
$ {z_1} + {\rm{j}}{z_2} \mapsto \left( {\begin{array}{*{20}{c}} {{z_1}}\\ {{z_2}} \end{array}} \right). $ | (4) |
The quaternionic projective space
The symplectic group is
$ Sp(n) = \{ \mathit{\boldsymbol{A}} \in {\rm{GL}} (n;\mathbb{H}){|^t}{\mathit{\boldsymbol{A}}^*} \cdot \mathit{\boldsymbol{A}} = {\mathit{\boldsymbol{I}}_n}\} , $ | (5) |
where In is the identity matrix of order n.
For A∈Sp(n+1) and [v]
$ \mathit{\boldsymbol{A}} \cdot {[\mathit{\boldsymbol{v}}]_\mathbb{H}} = {[\mathit{\boldsymbol{Av}}]_\mathbb{H}}. $ | (6) |
G0=Sp(1)×Sp(n)is the isotropy group of this action at[(1, 0, …, 0)T]
$ \mathbb{H}{P^n} = Sp(n + 1)/Sp(1) \times Sp(n). $ | (7) |
There is the inclusion Sp(n)↪SU(2n) by
We have the following commutative diagram
$ \begin{matrix} {} & Sp(n+1) & {} \\ {{\pi }_{2}}\swarrow & {} & \searrow {{\pi }_{1}} \\ \mathbb{H}{{P}^{n}} & {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{\pi }} & \mathbb{C}{{P}^{2n+1}} \\ \end{matrix} $ | (8) |
where π:
Definition 1.1 The twistor map gives a fibration, and the horizontal distribution
As in Ref[11], for [v]∈
$ {\mathscr{H} _{[v]}} = \{ w \in {v^ \bot }|{\sigma _v}(w) = 0,{\sigma _v} = { - ^t}{z_2}{\rm{d}}{z_1}{ + ^t}{z_1}{\rm{d}}{z_2}\} . $ | (9) |
We have the following proposition[10], which is a special case of Lemma 3.5 of Eells and Wood[3].
Proposition 1.1 If ϕ=[f]:M→
In this subsection, we introduce some knowledge about harmonic sequences and minimal surfaces in
Let
Let M be a Riemann surface. We identify a smooth map ϕ:M2→
Each linearly full conformal minimal immersion φ from S2 is obtained from a holomorphic curve φ0 in
$ 0\overset{\partial }{\mathop{\to }}\,\underline{\varphi _{0}^{n}}\overset{\partial }{\mathop{\to }}\,\cdots \overset{\partial }{\mathop{\to }}\,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi }=\underline{\varphi _{\alpha }^{n}}\overset{\partial }{\mathop{\to }}\,\cdots \overset{\partial }{\mathop{\to }}\,\underline{\varphi _{n}^{n}}\overset{\partial }{\mathop{\to }}\,0. $ | (10) |
Under local coordinate z, choose a local holomorphic section f0 of φ0n, such that
$ {f_{i + 1}} = \frac{\partial }{{\partial z}}{f_i} - \frac{{\left\langle {\frac{\partial }{{\partial z}}{f_i},{f_i}} \right\rangle }}{{|{f_i}{|^2}}}{f_i},0 \le i \le n - 1. $ | (11) |
Let
$ \begin{array}{*{20}{c}} {\frac{\partial }{{\partial z}}{f_i} = - {\gamma _{i - 1}}{f_{i - 1}},1 \le i \le n,}\\ {\frac{{{\partial ^2}}}{{\partial z\partial \bar z}}{\rm{log}}|{f_j}{|^2} = {\gamma _j} - {\gamma _{j - 1}},}\\ {\frac{{{\partial ^2}}}{{\partial z\partial \bar z}}{\rm{log}}{\gamma _j} = {\gamma _{j + 1}} - 2{\gamma _j} + {\gamma _{j - 1}},0 \le j \le n - 1.} \end{array} $ | (12) |
For convenience, we set γ-1=γn=0. Bolton et al.[12] defined the Veronese sequence as follows: Let Vpn:S2→
$ V_p^n(z) = {[^t}({g_{p,0}}(z), \cdots ,{g_{p,n}}(z))], $ | (13) |
where z is a local holomorphic coordinate of S2, p=0, 1, …, n. For j=0, 1, …, n, gp, j are given by
$ {g_{p,j}}(z) = \frac{{p!}}{{{{(1 + z\bar z)}^p}}}\sqrt {C_n^j} {z^{j - p}}\sum\limits_k {{{( - 1)}^k}} C_j^{p - k}C_{n - j}^k{(z\bar z)^k}. $ | (14) |
Then, for each p, the Veronese map(or Veronese surface) Vpn is a conformal minimal immersion with constant curvature
Remark 1.1 Notice that gp, j(z) have a common factor
The Veronese sequence is particularly important for the following rigidity theorem[2].
Lemma 1.1 Let Ψ:S2→
Based on the above discussions, we can produce conformal minimal two-spheres from the Veronese two-spheres in
Proposition 1.2 Let Ψ:S2→
From the horizontal condition, if Ψ=[f] is horizontal, then tfBdf=0, where
Proposition 1.3 For Ψ=[f]=[t(f1, f2, …, f2n+2)]:S2→
$ \left\{ {\begin{array}{*{20}{l}} {\sum\nolimits_{i,j = 1}^{2n + 2} {{A_{ij}}} {f_i}\partial {f_j} = 0,}\\ {\sum\nolimits_{i,j = 1}^{2n + 2} {{A_{ij}}} {f_i}\bar \partial {f_j} = 0,} \end{array}} \right. $ | (15) |
where A=(Aij)=tUBU,
Definition 2.1 Let M be a Riemann surface, we call two surfaces Ψ, Φ:M2→
For Veronese sequence, Vp2n+1 and V2n+1-p2n+1 have the following relation.
Lemma 2.1 V2n+1-p2n+1=J2n+2· Vp2n+1, here we choose Vp2n+1=[t(gp, 0, …, gp, 2n+1)], where
$ {g_{p,j}} = \sqrt {C_{2n + 1}^j} {z^{j - p}}\sum\limits_k {{{( - 1)}^k}} C_j^{p - k}C_{2n + 1 - j}^k{(zz)^k}, $ | (16) |
$ {\mathit{\boldsymbol{J}}_m} = \left( {\begin{array}{*{20}{c}} 0&0& \cdots &0&{{{( - 1)}^{m - 1}}}\\ 0&0& \cdots &{{{( - 1)}^m}}&0\\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0&{{{( - 1)}^1}}& \cdots &0&0\\ {{{( - 1)}^0}}&0& \cdots &0&0 \end{array}} \right). $ | (17) |
for any integer m.
Proof
$ \begin{array}{*{20}{l}} {{g_{2n + 1 - p,2n + 1 - j}}}\\ { = \sqrt {C_{2n + 1}^{2n + 1 - j}} {z^{p - j}}\sum\limits_l {{{( - 1)}^l}} C_{2n + 1 - j}^{2n + 1 - p - l}C_j^l{{(zz)}^l}.} \end{array} $ | (18) |
Set k=p+l-j, then we easily see
$ \begin{array}{*{20}{l}} {{g_{2n + 1 - p,2n + 1 - j}} = {{( - 1)}^{j - p}}{{\bar g}_{p,j}}}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {{( - 1)}^p}{{( - 1)}^j}{{\bar g}_{p,j}}.} \end{array} $ | (19) |
Omit (-1)p, then we get the conclusion.
Now, if Vp2n+1 can be rotated horizontally, U·Vp2n+1 satisfies the horizontal equations,
$ \left\{ {\begin{array}{*{20}{l}} {^tV{{_p^{2n + 1}}^t}\mathit{\boldsymbol{UBU}}V_{p + 1}^{2n + 1} = 0,}\\ {^tV{{_p^{2n + 1}}^t}\mathit{\boldsymbol{UBU}}V_{p - 1}^{2n + 1} = 0.} \end{array}} \right. $ | (20) |
By complex conjugate, we have
$ \left\{ {\begin{array}{*{20}{l}} {^tV{{_{2n + 1 - p}^{2n + 1}}^t}{J_{2n + 2}}^t\mathit{\boldsymbol{\bar UB\bar U}}{J_{2n + 2}}V_{2n - p}^{2n + 1} = 0,}\\ {^tV{{_{2n + 1 - p}^{2n + 1}}^t}{J_{2n + 2}}^t\mathit{\boldsymbol{\bar UB\bar U}}{J_{2n + 2}}V_{2n + 2 - p}^{2n + 1} = 0.} \end{array}} \right. $ | (21) |
That is to say, U·Vp2n+1 is horizontal ⇔ UJ2n+2·V2n+1-p2n+1 is horizontal.
So we only need to consider the case p≤n.
Denote gp, j(0≤p, j≤n) by
$ {g_{p,j}} = \sqrt {C_n^j} {z^{j - p}}\sum\limits_k {{{( - 1)}^k}} C_j^{p - k}C_{n - j}^k{(z\bar z)^k}. $ | (22) |
By derivation, we get
$ \partial {g_{p,j}} = \sqrt {C_n^j} {z^{j - p - 1}}\sum\limits_k {{{( - 1)}^k}} C_j^{p - k}C_{n - j}^k(j - p + k){(z\bar z)^k}, $ | (23) |
$ \partial {g_{p,j}} = \sqrt {C_n^j} {z^{j - p + 1}}\sum\limits_k {{{( - 1)}^k}} C_j^{p - k}C_{n - j}^kk{(zz)^{k - 1}}. $ | (24) |
Set
$ \left\{ {\begin{array}{*{20}{l}} {\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{n - i}^kC_j^{p - l}C_{n - j}^l(j - p + l) = 0,}\\ {\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{n - i}^kC_j^{p - l}C_{n - j}^ll = 0,} \end{array}} \right. $ | (25) |
for any nonnegative integers m, t.
If we change the positions of k and l in the second formula (notice that k+l=t=constant for some t and Sij=-Sji), then we get
$ \sum\limits_{i + j = m} {{S_{ij}}} \sum\limits_{k + l = t} {C_i^{p - k}} C_{n - i}^kC_j^{p - l}C_{n - j}^l = 0. $ | (26) |
Then, using i+j=m=constant for some m in the first equation, we finally get the equations
$ \left\{ {\begin{array}{*{20}{l}} {\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{n - i}^kC_j^{p - l}C_{n - j}^l = 0,}\\ {\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{n - i}^kC_j^{p - l}C_{n - j}^li = 0.} \end{array}} \right. $ | (27) |
Considering the projections of linearly full Veronese maps in
Theorem 2.1 Let Vp2n+1:S2→
$ \left\{ {\begin{array}{*{20}{l}} {\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{2n + 1 - i}^kC_j^{p - l}C_{2n + 1 - j}^l = 0,}\\ {\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{2n + 1 - i}^kC_j^{p - l}C_{2n + 1 - j}^li = 0,} \end{array}} \right. $ | (28) |
where S=QAQ, Q=diag{1, …,
As an application of (28), in this subsection, we calculate the Veronese maps Vp9, p=0, 1, 2, 3, 4.
First, we talk about the general V02n+1, the equations (28) reduce to:
$ \left\{ {\begin{array}{*{20}{l}} {\sum\nolimits_{i + j = m} {{S_{ij}}} = 0,}\\ {\sum\nolimits_{i + j = m} {{S_{ij}}} i = 0.} \end{array}} \right. $ | (29) |
Notice that A is an anti-symmetric unitary matrix, so S is anti-symmetric too, the first equation is naturally satisfied, and we can reformulate the second to
$ \sum\limits_{i + j = m,j > i} {{S_{ij}}} (j - i) = 0, $ | (30) |
or, write
$ \sum\limits_{i + j = m,j > i} {{A_{ij}}} \sqrt {C_{2n + 1}^iC_{2n + 1}^j} (j - i) = 0. $ | (31) |
It is a linear combination of matrix elements in different lines of upper triangulation part of S. Now, we talk about the solution in different n(n≥1).
First, when n=1, the number of elements in the lines which are parallel to antidiagonal in the upper triangulation part of S (respect A) is less than 2, then they should be all zeros, so with respect to the twistor map π:
$ {\sum\limits_{i + j = 3,j > i} {{S_{ij}}} (j - i) = 0,} $ | (32) |
or, write
$ {\sum\limits_{i + j = 3,j > i} {{A_{ij}}} C_3^i(j - i) = 0.} $ | (33) |
The solution is
$ \left( {\begin{array}{*{20}{c}} 0&0&0&{{A_{03}}}\\ 0&0&{ - {A_{03}}}&0\\ 0&{{A_{03}}}&0&0\\ { - {A_{03}}}&0&0&0 \end{array}} \right) $ | (34) |
So, when n=1, A=λJ4, λ∈
In general, we have
Lemma 2.2
$ \left\{ {\begin{array}{*{20}{l}} {{A_{ij}} = 0,i + j \ne 2n + 1,}\\ {{A_{ij}} = {{( - 1)}^i}{A_{0,2n + 1}},i + j = 2n + 1.} \end{array}} \right. $ | (35) |
or, equivalently, A=λJ2n+2, λ∈
Proof For (1+x)2n+1=
Remark 2.1 Readers could see
Lemma 2.3 Choose two solutions of tUBU=A, denote them by M, N, then π○(M·Vp2n+1) is symplectic equivalent to π○(N·Vp2n+1).
Proof It's easy to see MN-1 are symplectic matrix with the form
From the above Lemma, the key point of "rotate horizontally" is to decide the existence of A, about U, we only need to search for the solution of special form, here we consider that U possess this form:
Then
In the rest part of this article, we will always denote the above matrix by U0.
This solution is special, now U0V02n+1 is horizontal, since
$ {\mathit{\boldsymbol{U}}_0}V_{2n + 1}^{2n + 1} = {\mathit{\boldsymbol{U}}_0}{\mathit{\boldsymbol{J}}_{2n + 2}}\bar V_0^{2n + 1} = {\bf{J}} \circ {\mathit{\boldsymbol{U}}_0}V_0^{2n + 1} $ | (36) |
is also horizontal.
From the above discussion, we have
Theorem 2.2 V09 can be rotated horizontally, and π○(U0·V09) is conformal minimal two-sphere with constant curvature 4/9 in
For V19, If we set
$ \left\{ {\begin{array}{*{20}{l}} {m{F_1} - {F_2} = 0,}\\ {9m{F_0} - 2(m{F_1} - {F_2}) = 0,}\\ {9(9 - m){F_0} + m{F_1} - {F_2} = 0,} \end{array}} \right. $ | (37) |
the second equation of (28) reduce to
$ \left\{ {\begin{array}{*{20}{l}} {m{F_2} - {F_3} = 0,}\\ {9m{F_1} - 2(m{F_2} - {F_3}) = 0,}\\ {9(9 - m){F_1} + m{F_2} - {F_3} = 0,} \end{array}} \right. $ | (38) |
notice F0=0 is naturally satisfied, then we have
$ {F_1} = 0,{F_2} = 0,{F_3} = 0. $ | (39) |
The equations Ft=0 which t is even are degenerate to those t is odd, since
$ {F_{2k}} = 0 \Leftrightarrow \sum\limits_{i + j = m,j > i} {{S_{ij}}} ({(m - i)^{2k}} - {i^{2k}}) = 0, $ | (40) |
and
$ \sum\limits_{i + j = m,j > i} {{S_{ij}}} ({(m - i)^{2k}} - {i^{2k}}) = 0 \Leftarrow {F_t} = 0 $ | (41) |
by every 0≤t≤2k-1.
So, finally, the equations reduce to
$ {F_1} = 0,{F_3} = 0. $ | (42) |
The other discussions are just like V09, we give the following result:
Theorem 2.3 For V19 can be rotated horizontally, and π○(U0·V19) is conformal minimal two-sphere with constant curvature 4/25 in
For V29, (28) reduce to
$ \begin{array}{*{20}{l}} {\left[ {\begin{array}{*{20}{l}} {m{F_1} - {F_2} = 0,}\\ {m{F_2} - {F_3} = 0,}\\ {{F_4} - 2m{F_3} + {m^3}{F_1} = 0,}\\ {{F_5} - 2m{F_4} + ({m^2} + m - 1){F_3} + (m - {m^2}){F_2} = 0,}\\ {{F_3} - m{F_2} + \frac{{72m(m - 1)}}{{48m - 208}}{F_1} = 0,} \end{array}} \right.} \end{array} $ | (43) |
then we have
$ {F_1} = 0,{F_2} = 0,{F_3} = 0,{F_4} = 0,{F_5} = 0. $ | (44) |
So, finally, the equations reduce to
$ {F_1} = 0,{F_3} = 0,{F_5} = 0. $ | (45) |
The other discussions are just like V09, we give the following result:
Theorem 2.4 V29 can be rotated horizontally, and π○(U0·V29) is conformal minimal two-sphere with constant curvature 4/37 in
For V39, (28) reduce to
$ \mathit{\boldsymbol{B}}3{ * ^t}({F_7},{F_6},{F_5},{F_4},{F_3},{F_2},{F_1},{F_0}) = 0, $ | (46) |
where B3 is a 14×8 matrix, it is a big matrix, by using the software Matlab, we calculate rank(B3)=8, so we have
$ {F_i} = 0 $ | (47) |
for 0≤i≤7.
The equations Ft=0 which t is even are degenerate to those t is odd.
So, finally, the equations reduce to
$ {F_1} = 0,{F_3} = 0,{F_5} = 0,{F_7} = 0. $ | (48) |
It is still not determinate for the elements of matrix S, so we still have a solution U=U0, then:
Theorem 2.5 V39 can be rotated horizontally, and π○(U0·V39) is conformal minimal two-sphere with constant curvature 4/45 in
We continue to talk about V49, (28) reduce to
$ \mathit{\boldsymbol{B}}4{ * ^t}({F_9},{F_8},{F_7},{F_6},{F_5},{F_4},{F_3},{F_2},{F_1},{F_0}) = 0, $ | (49) |
where B4 is a 18×10 matrix, we calculate rank(B4)=10, so we have
$ {F_i} = 0 $ | (50) |
for 0≤i≤9.
The equations Ft=0 which t is even are degenerate to those t is odd.
So, finally, the equations reduce to
$ {F_1} = 0,{F_3} = 0,{F_5} = 0,{F_7} = 0,{F_9} = 0. $ | (51) |
Different like the former cases, this is a over-determined system for the elements of matrix S, since (51) is equivalent to:
$ \left\{ {\begin{array}{*{20}{l}} {\sum\nolimits_{i + j = m,j > i} {{S_{ij}}} (j - i) = 0,}\\ {\sum\nolimits_{i + j = m,j > i} {{S_{ij}}} ({j^3} - {i^3}) = 0,}\\ {\sum\nolimits_{i + j = m,j > i} {{S_{ij}}} ({j^5} - {i^5}) = 0,}\\ {\sum\nolimits_{i + j = m,j > i} {{S_{ij}}} ({j^7} - {i^7}) = 0,}\\ {\sum\nolimits_{i + j = m,j > i} {{S_{ij}}} ({j^9} - {i^9}) = 0.} \end{array}} \right. $ | (52) |
By checking rank of the coefficient matrix of any m, S must be zero matrix, then
Theorem 2.6 V49 can not be rotated horizontally.
3 The middle terms of harmonic sequenceIn this section, we give another proof for the phenomenon that V49 and V59 can not be rotated horizontally. In fact, it is also right for any harmonic sequence in
Theorem 3.1 In the following harmonic sequence associated to a linearly full holomorphic map [f0]=f:M2→
$ 0\mathop \to \limits^\partial \underline {{f_0}} \mathop \to \limits^\partial \cdots \mathop \to \limits^\partial \underline {{f_4}} \mathop \to \limits^\partial \underline {{f_5}} \mathop \to \limits^\partial \cdots \mathop \to \limits^\partial \underline {{f_9}} \mathop \to \limits^\partial 0. $ | (53) |
f4, f5 can not be rotated horizontally.
Proof Assume f4 can be rotated horizontally, tf4Bdf4=0, from(11), (12), we have
$ \begin{array}{*{20}{l}} {^t{f_4}\mathit{\boldsymbol{B}}{\rm{d}}{f_4}{ = ^t}{f_4}\mathit{\boldsymbol{B}}(\partial {f_4}{\rm{d}}z + \bar \partial {f_4}{\rm{d}}\bar z)}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} { = ^t}{f_4}\mathit{\boldsymbol{B}}({f_5} + \partial {\rm{log}}|{f_4}{|^2}{f_4}){\rm{d}}z + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\kern 1pt} ^t}{f_4}\mathit{\boldsymbol{B}}( - {\gamma _3}{f_3}){\rm{d}}z}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 0,} \end{array} $ | (54) |
Since B is antisymmetric, tf4Bf4=0, then it is equivalent to
$ \left\{ {\begin{array}{*{20}{l}} {^t{f_4}\mathit{\boldsymbol{B}}{f_5} = 0,}\\ {^t{f_4}\mathit{\boldsymbol{B}}{f_3} = 0,} \end{array}} \right. $ | (55) |
then we have
$ ^t{f_4}\mathit{\boldsymbol{B}}{f_5} = 0{\mathop \to \limits^\partial {^t}}{f_4}\mathit{\boldsymbol{B}}{f_6} = 0{\mathop \to \limits^{\bar \partial } {^t}}{f_3}\mathit{\boldsymbol{B}}{f_6} = 0. $ | (56) |
Continue this process, we will get tf0Bf9=0, then do ∂ continuously for it, we will get
$ ^t{f_0}\mathit{\boldsymbol{B}}{f_i} = 0,i = 0,1,2,3,4,5,6,7,8,9, $ | (57) |
then it is easy to check that f0 must be a local zero section of the trivial bundle M2×
f5 is similar, we only need to show f9 is a local zero section.
[1] |
Calabi E. Minimal immersions of surfaces in Euclidean spheres[J]. J Differ Geom, 1967, 1: 111-125. DOI:10.4310/jdg/1214427884 |
[2] |
Bolton J, Jensen G R, Rigoli M, et al. On conformal minimal immersion of S2 into |
[3] |
Eells J, Wood J C. Harmonic maps from surfaces to complex projective spaces[J]. Adv Math, 1983, 49: 217-263. DOI:10.1016/0001-8708(83)90062-2 |
[4] |
Bryant R L. Conformal and minimal immersions of compact surfaces into the 4-sphere[J]. J Differ Geom, 1982, 17: 455-473. DOI:10.4310/jdg/1214437137 |
[5] |
Aithal A R. Harmonic maps from S2 to |
[6] |
Bahy-El-Dien A, Wood J C. The explicit construction of all harmonic two-spheres in quaternionic projective spaces[J]. Proc Lond Math Soc, 1991, 62: 202-224. |
[7] |
He L, Jiao X X. Classification of conformal minimal immersions of constant curvature from S2 to |
[8] |
He L, Jiao X X. On conformal minimal immersions of S2 in |
[9] |
He L, Jiao X X. On conformal minimal immersions of constant curvature from S2 to |
[10] |
Chen X D, Jiao X X. Conformal minimal surfaces immersed into |
[11] |
Yang K. Complete and compact minimal surfaces[C]. Dordrecht: Kluwer Academic Publishers, 1989: 66-67.
|