当G为有限交换群时,K1(
定义1.1 对阶为素数p的幂的交换群G,由有限生成交换群的结构定理可将G唯一地表示为某些pki阶循环群的直和,i=1, 2, …, n,且k1≤k2≤…≤kn, 数组(k1, k2, …, kn)p称为群G的型。
引理1.1 令p是一个素数,群G的型为(k1, k2, …, kn)p。为方便起见记k0=0,对任意整数h,0 < h≤kn,记vh是满足kvh < h≤kvh+1的非负整数,且记
$ t({p^h}) = \frac{{{p^{n - {v_h}}} - 1}}{{p - 1}}{p^{(n - {v_h} - 1)(h - 1) + {a_h}}}. $ |
引理1.2 对代数数域F的代数整数环OF,有SK1(OF)=1。
证明 见文献[4]。
引理1.3 对任一有限交换群G,SK1(
证明 见文献[5]。
引理1.4 对有限交换群G,
证明 见文献[6]。
引理1.5 在上述引理条件下,(
证明 见文献[7]。
定义1.2 对任意素数p,记
定义1.3 令G是有限群,对
在上述定义的条件下,若
$ 0 \to D(\Lambda ) \to CL(\Lambda ) \to CL(\Gamma ) \to 0. $ |
而由文献[9]可知(在同构意义下)D(Λ)与极大
引理1.6 有正合序列
$ \begin{array}{*{20}{c}} {1 \to {\Gamma ^ \times }/{{(\mathbb{Z}G)}^ \times } \to \prod\limits_{S(\mathbb{Z}G)} {{{({\Gamma _{{p_0}}})}^ \times }} /{{(\mathbb{Z}{G_{{p_0}}})}^ \times }}\\ { \to CL(\mathbb{Z}G) \to CL(\Gamma ) \to 1.} \end{array} $ |
且有
(ⅱ)
$ \begin{array}{*{20}{l}} {{l_{{p_0}}} = \frac{{|{{({\Gamma _{{p_0}}}/{J_{{p_0}}})}^ \times }|}}{{|{{\{ \mathbb{Z}{G_{{p_0}}}/({J_{{p_0}}} \cap \mathbb{Z}{G_{{p_0}}})\} }^ \times }|}}, }\\ {{m_{{p_0}}} = [{J_{{p_0}}}:(\mathbb{Z}{G_{{p_0}}} \cap {J_{{p_0}}})]}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{{[{\Gamma _{{p_0}}}:\mathbb{Z}{G_{{p_0}}}][\mathbb{Z}{G_{{p_0}}}:({J_{{p_0}}} \cap \mathbb{Z}{G_{{p_0}}})]}}{{[{\Gamma _{{p_0}}}:{J_{{p_0}}}]}}, } \end{array} $ |
其中Jp0是Γp0的Jacobson根。
证明 见文献[10]。
特别地,当G是阶为pn的有限交换群时,S(
引理1.7 |D(
$ |D(\mathbb{Z}G)| = [{({\Gamma _p})^ \times }:{(\mathbb{Z}{G_p})^ \times }]/[{\Gamma ^ \times }:{(\mathbb{Z}G)^ \times }] $ |
且
$ {[{({\Gamma _p})^ \times }:{(\mathbb{Z}{G_p})^ \times }]^2} = {p^{n{p^n} - 2t}}/\prod\limits_{i = 1}^m | {d_i}|, $ |
其中t=t(G)=m-1是G的非平凡循环子群的个数。
证明 见文献[10]。
引理1.8 若G是指数为m的有限交换群, 则
证明 见文献[11]。
2 主要结果我们的第一个主要结果是对G=Cpn1×Cpn2, 0≤n1≤n2,给出[(Γp)×:(
定理2.1 若G=Cpn, (n≥0),则
$ [{({\Gamma _p})^ \times }:{({\mathbb{Z}_p}G)^ \times }] = {p^{\frac{{{p^n} - 1}}{{{p^{ - 1}}}} - n}}. $ |
证明 由引理1.1, G的型为(n)p。这时,对任意0 < h≤n,G有唯一的阶为ph的循环子群, 于是t=n。由引理1.8知
$ d(\mathbb{Q}({\xi _s})) = {( - 1)^{\varphi (s)/2}}{s^{\varphi (s)}}/\prod\limits_{p|s} {{p^{\varphi (s)/(p - 1)}}} . $ |
故|di|=|d(
$ \begin{array}{l} \prod\nolimits_{i = 1}^n {\left| {{d_i}} \right|} = \prod\nolimits_{i = 1}^n {{p^{{p^{i - 1}}(ip - i - 1)}}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} { = {p^{\mathop \Sigma \limits_{i = 1}^n [{p^{i - 1}}(ip - i - 1)]}}}\\ { = {p^{n{p^n} - \frac{{2({p^n} - 1)}}{{p - 1}}}}.} \end{array} \end{array} $ |
于是由引理1.7得
$ \begin{array}{*{20}{l}} {{{[{{({\Gamma _p})}^ \times }:{{({\mathbb{Z}_p}G)}^ \times }]}^2} = {p^{n{p^n} - 2t}}/\prod\nolimits_{i = 1}^n {\left| {{d_i}} \right|} }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {p^{\frac{{2({p^n} - 1)}}{{p - 1}} - 2n}}, } \end{array} $ |
故
当n=0时,上式显然成立。
定理2.2 当G=Cpn×Cpn,(0≤n)时,则
$ [{({\Gamma _p})^ \times }:{({\mathbb{Z}_p}G)^ \times }] = {p^q}, $ |
其中
证明 此时|G|=p2n, G的型为,(n, n)p, 则当1≤h≤n时,
$ \begin{array}{*{20}{l}} {t({p^h}) = \frac{{{p^{2 - {v_h}}} - 1}}{{p - 1}}{p^{(2 - {v_h} - 1)(h - 1) + {a_h}}}}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = (p + 1){p^{h - 1}}.} \end{array} $ |
于是
$ \begin{array}{*{20}{c}} {\mathbb{Q}G = \mathbb{Q} \oplus (p + 1)\mathbb{Q}({\xi _p}) \oplus (p + 1)p\mathbb{Q}({\xi _{{p^2}}}) \oplus }\\ { \cdots \oplus (p + 1){p^{n - 1}}\mathbb{Q}({\xi _{{p^n}}}).} \end{array} $ |
根据文献[12]有关分圆域的判别式的计算公式
$ d(\mathbb{Q}({\xi _s})) = {( - 1)^{\varphi (s)/2}}{s^{\varphi (s)}}/\prod\limits_{\left. p \right|s} {{p^{\varphi (s)/(p - 1)}}} , $ |
于是在这种情形下有
$ \begin{array}{*{20}{l}} {\prod\nolimits_{i = 1}^m {\left| {{d_i}} \right|} = {p^{\mathop \Sigma \limits_{i = 1}^n (p + 1){p^{2i - 2}}(ip - i - 1)}}}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {p^{n{p^{2n}} - \frac{{(p + 2)({p^{2n}} - 1)}}{{{p^2} - 1}}}}.} \end{array} $ |
由引理1.7得
$ \begin{array}{*{20}{c}} {{{[{{({\Gamma _p})}^ \times }:{{({\mathbb{Z}_p}G)}^ \times }]}^2} = }\\ {{p^{2n{p^{2n}} - \frac{{2(p + 1)({p^n} - 1)}}{{p - 1}}}}/{p^{n{p^{2n}} - \frac{{{p^{2n + 1}} + 2{p^{2n}} - p - 2}}{{{p^2} - 1}}}}}\\ { = {p^{2q}}, } \end{array} $ |
从而[(Γp)×:(
上式对n=0情形显然成立。
定理2.3 当
$ [{({\Gamma _p})^ \times }:{({\mathbb{Z}_p}G)^ \times }] = {p^q}. $ |
其中
$ \begin{array}{l} q = \frac{{{n_1}}}{2}{p^{{n_1} + {n_2}}} - ({n_2} - {n_1}){p^{{n_1}}} - \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{(p + 1)({p^{{n_1}}} - 1) + ({p^{{n_1}}} - {p^{{n_2}}}){p^{{n_1}}}}}{{p - 1}} + \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{(p + 2)({p^{2{n_1}}} - 1)}}{{2({p^2} - 1)}}. \end{array} $ |
证明 此时|G|=pn1+n2, G的型为(n1, n2)p。则当1≤h≤n1时,
$ \begin{array}{*{20}{l}} {t({p^h}) = \frac{{{p^{2 - {v_h}}} - 1}}{{p - 1}}{p^{(2 - {v_h} - 1)(h - 1) + {a_h}}}}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = (p + 1){p^{h - 1}}.} \end{array} $ |
当n1 < h≤n2时,
$ \begin{array}{*{20}{l}} {t({p^h}) = \frac{{{p^{2 - {v_h}}} - 1}}{{p - 1}}{p^{(2 - {v_h} - 1)(h - 1) + {a_h}}}}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {p^{{n_1}}}.} \end{array} $ |
综上所得有
$ t({p^h}) = \left\{ {\begin{array}{*{20}{l}} {(p + 1){p^{h - 1}}, }&{{\rm{ 若 }}0 < h \le {n_1}}\\ {{p^{{n_1}}}, }&{{\rm{ 若 }}{n_1} < h \le {n_2}} \end{array}} \right.. $ |
于是
$ \begin{array}{*{20}{c}} {t = t(G) = \mathop \Sigma \limits_{h = 1}^{{n_2}} t({p^h}) = \mathop \Sigma \limits_{h = 1}^{{n_1}} t({p^h}) + \mathop \Sigma \limits_{h = {n_1} + 1}^{{n_2}} t({p^h})}\\ { = \frac{{(p + 1)({p^{{n_1}}} - 1)}}{{p - 1}} + ({n_2} - {n_1}){p^{{n_1}}}.} \end{array} $ |
类似上面定理叙述可求得对应于引理1.7中的
$ \begin{array}{l} \prod\nolimits_{i = 1}^m {\left| {{d_i}} \right|} \\ \prod\nolimits_{i = 1}^m {\left| {{d_i}} \right|} = {p^{[{n_2}{p^{{n_2}}} - {n_1}{p^{{n_1}}} + \frac{{2({p^{{n_1}}} - {p^{{n_2}}})}}{{p - 1}}]{p^{{n_1}}} + {n_1}{p^{{2^n}1}} - \frac{{(p + 2)({p^{{2^n}1}} - 1)}}{{{p^2} - 1}}}}. \end{array} $ |
由引理1.7
$ \begin{array}{*{20}{l}} {{{[{{({\Gamma _p})}^ \times }:{{({\mathbb{Z}_p}G)}^ \times }]}^2} = {p^{({n_1} + {n_2}){p^{{n_1} + {n_2}}} - 2t}}/\prod\nolimits_{i = 1}^m {\left| {{d_i}} \right|} }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {p^{2q}}.} \end{array} $ |
于是[(Γp)×:(
综合定理2.1~定理2.3的结果有
定理2.4 对
$ [{({\Gamma _p})^ \times }:{({\mathbb{Z}_p}G)^ \times }] = {p^q}, $ |
其中
$ \begin{array}{l} q = \frac{{{n_1}}}{2}{p^{{n_1} + {n_2}}} - ({n_2} - {n_1}){p^{{n_1}}} - \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{(p + 1)({p^{{n_1}}} - 1) + ({p^{{n_1}}} - {p^{{n_2}}}){p^{{n_1}}}}}{{p - 1}} + \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{(p + 2)({p^{2{n_1}}} - 1)}}{{2({p^2} - 1)}}. \end{array} $ |
对于任意(k1, k2, …, kn)p型的交换群,相应的计算公式非常难以给出,然而对下面特殊情形,有
定理2.5 当
$ [{({\Gamma _p})^x}:{({\mathbb{Z}_p}G)^x}] = {p^q}, $ |
其中
$ \begin{array}{l} q = \frac{{n(l - 1)}}{2}{p^{nl}} + \frac{{{p^{nl}} + p - 2}}{{2(p - 1)}} + \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{{p^{nl}} - {p^l}}}{{2({p^l} - 1)}} - \frac{{({p^l} - 1)({p^{n(l - 1)}} - 1)}}{{({p^{l - 1}} - 1)(p - 1)}}. \end{array} $ |
证明 此时|G|=pnl, G的型为
$ \begin{array}{*{20}{l}} {t({p^h}) = \frac{{{p^{l - {v_h}}} - 1}}{{p - 1}}{p^{(l - {v_h} - 1)(h - 1) + {a_h}}}}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{{{p^l} - 1}}{{p - 1}}{p^{(l - 1)(h - 1)}}.} \end{array} $ |
故
$ \begin{array}{*{20}{c}} {\prod\nolimits_{i = 1}^m {\left| {{d_i}} \right|} = \prod\nolimits_{h = 1}^n {{{({p^{{p^{h - 1}}(hp - h - 1)}})}^{t({p^h})}}} }\\ { = {p^{n{p^{nl}} - \frac{{pl}}{{p - 1}} + \frac{{{p^l} - {p^{nl}}}}{{{p^l} - 1}}}}.} \end{array} $ |
于是由引理1.7
$ \begin{array}{*{20}{l}} {{{[{{({\Gamma _p})}^ \times }:{{({\mathbb{Z}_p}G)}^ \times }]}^2} = {p^{nl{p^{nl}} - 2t}}/\prod\nolimits_{i = 1}^m {\left| {{d_i}} \right|} }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {p^{2q}}, } \end{array} $ |
故[(Γp)×:(
推论2.1 (ⅰ)若G=C2×C2,则[K1(Γ):K1(
(ⅱ)若G=C2×C22,则[K1(Γ):K1(
(ⅲ)若G=C2×C23,则[K1(Γ):K1(
(ⅳ)若G=C2, 则[K1(Γ):K1(
(ⅴ)若G=C22,则[K1(Γ):K1(
(ⅵ)若G=C23,则[K1(Γ):K1(
(ⅶ)若G=C24,则[K1(Γ):K1(
证明 由文献[4]有
$ {{K_1}(\Gamma ) = {{(\Gamma )}^ \times } \oplus S{K_1}(\Gamma ), } $ |
$ {{K_1}(\mathbb{Z}G) = {{(\mathbb{Z}G)}^ \times } \oplus S{K_1}(\mathbb{Z}G).} $ |
由引理1.4知Γ是一些代数整数环的直和,于是由引理1.2知SK1(Γ)=1, 而由引理1.3知在上述(i)-(vii)情况下均有SK1(
$ [{K_1}(\Gamma ):{K_1}(\mathbb{Z}G)] = [{(\Gamma )^ \times }:{(\mathbb{Z}G)^ \times }]. $ |
(ⅰ)由文献[13]知,此时|D(
$ \begin{array}{*{20}{l}} {[{K_1}(\Gamma ):{K_1}(\mathbb{Z}G)] = [{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }]}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = [{{({\Gamma _2})}^ \times }:{{({\mathbb{Z}_2}G)}^ \times }]/|D(\mathbb{Z}G)|}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 2.} \end{array} $ |
(ⅱ)由文献[13]得知此时|D(
$ \begin{array}{*{20}{l}} {[{K_1}(\Gamma ):{K_1}(\mathbb{Z}G)] = [{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }]}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = [{{({\Gamma _2})}^ \times }:{{({\mathbb{Z}_2}G)}^ \times }]/|D(\mathbb{Z}G)|}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {2^4}.} \end{array} $ |
(ⅲ)由文献[13]知,此时|D(
$ \begin{array}{*{20}{l}} {[{K_1}(\Gamma ):{K_1}(\mathbb{Z}G)] = [{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }]}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = [{{({\Gamma _2})}^ \times }:{{({\mathbb{Z}_2}G)}^ \times }]/|D(\mathbb{Z}G)|}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {2^{12}}.} \end{array} $ |
(ⅳ)当G=C2时由文献[13]知|D(
$ \begin{array}{*{20}{l}} {[{K_1}(\Gamma ):{K_1}(\mathbb{Z}G)] = [{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }]}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = [{{({\Gamma _2})}^ \times }:{{({\mathbb{Z}_2}G)}^ \times }]/|D(\mathbb{Z}G)|}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 1.} \end{array} $ |
(ⅴ)当G=C22时由文献[13]知|D(
$ \begin{array}{*{20}{l}} {[{K_1}(\Gamma ):{K_1}(\mathbb{Z}G)] = [{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }]}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = [{{({\Gamma _2})}^ \times }:{{({\mathbb{Z}_2}G)}^ \times }]/|D(\mathbb{Z}G)|}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 2.} \end{array} $ |
(ⅵ)当G=C23时由文献[13]知|D(
$ \begin{array}{*{20}{l}} {[{K_1}(\Gamma ):{K_1}(\mathbb{Z}G)] = [{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }]}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = [{{({\Gamma _2})}^ \times }:{{({\mathbb{Z}_2}G)}^ \times }]/|D(\mathbb{Z}G)|}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {2^4}.} \end{array} $ |
(ⅶ)当G=C24时由文献[13]知|D(
$ \begin{array}{*{20}{l}} {[{K_1}(\Gamma ):{K_1}(\mathbb{Z}G)] = [{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }]}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = [{{({\Gamma _2})}^ \times }:{{({\mathbb{Z}_2}G)}^ \times }]/|D(\mathbb{Z}G)|}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {2^{10}}.} \end{array} $ |
推论2.2 (i)当G=C2×C2×C2时,[K1(Γ):K1(
(ii) 当G=C2×C2×C2×C2时,[K1(Γ):K1(
证明 由引理1.2~引理1.4知, 在(i), (ii)两种情况下均有SK1(ZG)=1和SK1(Γ)=1,于是均有[K1(Γ):K1(
(ⅰ)由定理2.5可得
$ [{({\Gamma _p})^ \times }:{({\mathbb{Z}_p}G)^ \times }] = {2^5}. $ |
由文献[13],此时|D(
$ \begin{array}{*{20}{l}} {[{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }] = [{{({\Gamma _p})}^ \times }:{{({\mathbb{Z}_p}G)}^ \times }]/|D(\mathbb{Z}G)|}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {2^4}.} \end{array} $ |
(ⅱ)由定理2.5可得
$ [{({\Gamma _p})^ \times }:{({\mathbb{Z}_p}G)^ \times }] = {2^{17}}. $ |
由文献[13],此时|D(
$ \begin{array}{*{20}{l}} {[{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }] = [{{({\Gamma _p})}^ \times }:{{({\mathbb{Z}_p}G)}^ \times }]/|D(\mathbb{Z}G)|}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {2^{11}}, } \end{array} $ |
故[K1(Γ):K1(
[1] |
Miller G A. Number of the subgroups of any given abelian group[J]. Proceedings of the National Academy of Sciences, 1939, 25(5): 258-262. Doi:10.1073/pnas.25.5.258 |
[2] |
Miller G A. Independent generators of the subgroups of an abelian group[J]. Proceedings of the National Academy of Sciences, 1939, 25(7): 364-367. Doi:10.1073/pnas.25.7.364 |
[3] |
Yeh Y. On prime power abelian groups[J]. Bulletin of the American Mathematical Society, 1948, 54: 323-327. Doi:10.1090/S0002-9904-1948-08995-9 |
[4] |
Rosenberg J. Algebraic K-Theory and its applications[M].北京: 世界图书出版公司北京公司, 2010.
|
[5] |
Robert O. Whitehead groups of finite groups[M]. Cambridge: Cambridge University Press, 1988.
|
[6] |
Reiner I. Maximal orders[M]. London: Academic Press, 1975.
|
[7] |
Higman G. The units of group rings[J]. Proceeding of the London Mathematical Society, 1940, 2(1): 231-248. |
[8] |
Swan R G. The Grothendieck ring of a finite group[J]. Topology, 1963, 2(1/2): 85-110. |
[9] |
Jacobinski H. Genera and decompositions of lattices over orders[J]. Acta Mathematica, 1968, 121(1): 1-29. |
[10] |
Fröhlich A. On the classgroup of integral grouprings of finite abelian groups[J]. Mathematika, 1969, 16(2): 143-152. Doi:10.1112/S002557930000810X |
[11] |
Ayoub R G, Ayoub C. On the group ring of a finite abelian group[J]. Bulletin of the Australian Mathematical Society, 1969, 1(2): 245-261. Doi:10.1017/S0004972700041496 |
[12] |
冯克勤. 代数数论[M]. 北京: 高等教育出版社, 2001.
|
[13] |
Cassou-Nogues P. Classes d'idéaux de l'algèbre d'un groupe abélien[J]. Mémoires de la Société Mathématique de France, 1974, 37: 23-32. |