Function spaces with variable exponent are being concerned with strong interest not only in harmonic analysis but also in applied mathematics. In the past 27 years, the theory of function spaces with variable exponent has made great progress since some elementary properties were given by Kováčik and Rákosník[1] in 1991. In Refs. [2-6], the authors proved the boundedness of some integral operators on variable Lp spaces, respectively. Lebesgue and Sobolev spaces with integrability exponent have been widely studied (see Refs. [3, 5] and the references therein). Many applications of these spaces were given, for example, in the modeling of electrorheological fluids, in the study of image processing, and in differential equations with nonstandard growth.
On the other hand, a class of function spaces called Herz-type spaces on ℝn has attracted considerable attention in recent years because the interesting norm includes explicitly both local and global informations of the function. In 2011, Izuki[7] obtained Herz spaces with variable exponent. In 2012, Wang and Liu[8] introduced a certain Herz-type Hardy spaces with variable exponent. Subsequently, Wang[9-12] proved the continuity of some operators on Herz-type Hardy spaces with variable exponent.
Suppose that Sn-1 denotes the unit sphere in ℝn(n≥2) equipped with normalized Lebesgue measure. Let Ω∈Lipβ(Sn-1) for 0 < β≤1 be homogeneous function of degree zero and
$ \int_{{S^{n - 1}}} \Omega \left( {{x^\prime }} \right){\rm{d}}\sigma \left( {{x^\prime }} \right) = 0, $ |
where x′=x/|x| for any x≠0. In 1958, Stein[13] introduced the Marcinkiewicz integral related to the Littlewood-Paley g function on ℝn as
$ {\mu _\Omega }(f)(x) = {\left( {\int_0^\infty {{{\left| {{F_{\Omega ,t}}(f)(x)} \right|}^2}} \frac{{{\rm{d}}t}}{{{t^3}}}} \right)^{1/2}}, $ |
where
$ {F_{\Omega ,t}}(f)(x) = \int_{\left| {x - y} \right| \le t} {\frac{{\Omega (x - y)}}{{{{\left| {x - y} \right|}^{n - 1}}}}f(y){\rm{d}}y} . $ |
It is shown that μΩ is of weak type (1, 1) and of type (p, p) for 1 < p≤2.
For 0 < γ≤1, the Lipschitz space, Lipγ(ℝn), is defined as
$ \begin{array}{l} \text{Lip}{_\gamma }\left( {{\mathbb{R}^n}} \right) = \hfill \\ \left\{ {f:{{\left\| f \right\|}_{{\text{Li}}{{\text{p}}_\gamma }}} = \mathop {\sup }\limits_{x,y \in {\mathbb{R}^n};x \ne y} \frac{{\left| {f(x) - f(y)} \right|}}{{{{\left| {x - y} \right|}^\gamma }}} < \infty } \right\}. \hfill \\ \end{array} $ |
Let b∈Lipγ(ℝn). The commutator generated by the Marcinkiewicz integral μΩ and b is defined by
$ \begin{array}{*{20}{c}} {\left[ {b,{\mu _\Omega }} \right](f)(x) = \left( {\int_0^\infty | \int_{|x - y| \le t} {\frac{{\Omega (x - y)}}{{{{\left| {x - y} \right|}^{n - 1}}}}} } \right.}\\ {{{\left. {{{\left. {[b(x) - b(y)]f(y){\rm{d}}y} \right|}^2}\frac{{{\rm{d}}t}}{{{t^3}}}} \right)}^{1/2}}.} \end{array} $ |
Motivated by Refs. [14-15], we will investigate the continuity of the commutators [b, μΩ] generated by Marcinkiewicz integral operators with rough kernels μΩ and Lipschitz functions b on the Herz-type spaces with variable exponent, where Ω∈Ls(Sn-1) for s≥1.
Throughout this paper, we denote the Lebesgue measure and the characteristic function of a measurable set A⊂ℝn by A and χA, respectively. S(ℝn) denotes the space of Schwartz functions, and S′ (ℝn)denotes the dual space of S(ℝn). The notation f≈g means that there exist constants C1, C2>0 such that C1g≤f≤C2g. Let Bk={x∈ℝn:|x|≤2k} and Ak=Bk\Bk-1 for k∈
Firstly we give some notations and basic definitions on variable Lebesgue spaces.
Given an open set E⊂ℝn and a measurable function p(·):E→[1, ∞). p′(·) is the conjugate exponent defined by p′(·)=p(·)/(p(·)-1).
The set P(E) consists of all p(·):E→[1, ∞) satisfying
$ {p^ - } = \text{essinf} \{ p(x):x \in E\} > 1, $ |
$ {p^ + } = \text{ esssup }\{ p(x):x \in E\} < \infty . $ |
By Lp(·)(E) we denote the space of all measurable functions f on E such that for some λ>0,
$ \int_E {{{\left( {\frac{{\left| {f(x)} \right|}}{\lambda }} \right)}^{p(x)}}} {\text{d}}x < \infty . $ |
This is a Banach function space with respect to the Luxemburg-Nakano norm
$ {\left\| f \right\|_{{L^{p( \cdot )}}(E)}} = \inf \left\{ {\lambda > 0:\int_E {{{\left( {\frac{{\left| {f(x)} \right|}}{\lambda }} \right)}^{p(x)}}} {\text{d}}x \leqslant 1} \right\}. $ |
The space Llocp(·)(Ω) is defined by Llocp(·)(Ω):={f:f∈Lp(·)(E) for all compact subsets E⊂Ω}.
The set B(ℝn) consists of p(·)∈P(ℝn) satisfying the condition that the Hardy-Littlewood maximal operator M is bounded on Lp(·)(ℝn).
In variable Lp spaces there are some important lemmas[1, 3, 7], which are given as follows.
Lemma 1.1 If p(·)∈P(ℝn) and satisfies
$ \left| {p(x) - p(y)} \right| \leqslant \frac{C}{{ - \log (|x - y|)}}, $ |
$ \left| {x - y} \right| \leqslant 1/2, $ | (1) |
and
$ \left| {p\left( x \right) - p\left( y \right)} \right| \leqslant \frac{C}{{\log (|x| + e)}},\left| y \right| \geqslant \left| x \right|, $ | (2) |
then p(·)∈B(ℝn), that is, the Hardy-Littlewood maximal operator M being bounded on Lp(·)(ℝn).
Lemma 1.2 Suppose q(·)∈B(ℝn). Then there exists a constant C>0 such that for all balls B in ℝn,
$ \frac{1}{{\left| B \right|}}{\left\| {{\chi _B}} \right\|_{{L^{q( \cdot )}}\left( {{\mathbb{R}^n}} \right)}}{\left\| {{\chi _B}} \right\|_{{L^{q'( \cdot )}}\left( {{\mathbb{R}^n}} \right)}} \leqslant C. $ |
Lemma 1.3 Let q(·)∈B(ℝn). Then there exists a positive constant C such that for all balls B in ℝn and all measurable subsets S⊂B,
$ \frac{{{{\left\| {{\chi _S}} \right\|}_{{L^{q( \cdot )}}\left( {{\mathbb{R}^n}} \right)}}}}{{{{\left\| {{\chi _B}} \right\|}_{{L^{q( \cdot )}}\left( {{\mathbb{R}^n}} \right)}}}} \leqslant C{\left( {\frac{{\left| S \right|}}{{\left| B \right|}}} \right)^{{\delta _1}}} $ |
and
$ \frac{{{{\left\| {{\chi _S}} \right\|}_{{L^{q'( \cdot )}}\left( {{\mathbb{R}^n}} \right)}}}}{{{{\left\| {{\chi _B}} \right\|}_{{L^{q'( \cdot )}}\left( {{\mathbb{R}^n}} \right)}}}} \leqslant C{\left( {\frac{{\left| S \right|}}{{\left| B \right|}}} \right)^{{\delta _2}}}, $ |
where δ1 and δ2 are constants with 0 < δ1, δ2 < 1.
Lemma 1.4 (Generalized Hölder inequality) Let p(·)∈Ρ(ℝn). If f∈Lp(·)(ℝn)and g∈Lp′(·)(ℝn), then fg is integrable on ℝn and
$ \int_{{\mathbb{R}^n}} {\left| {f(x)g(x)} \right|{\text{d}}x} \leqslant {r_p}{\left\| f \right\|_{{L^{p( \cdot )}}\left( {{\mathbb{R}^n}} \right)}}{\left\| g \right\|_{{L^{p'( \cdot )}}\left( {{\mathbb{R}^n}} \right)}}, $ |
where rp=1+1/p--1/p+.
Next we recall some definitions and one lemma for the Herz-type spaces with variable exponent given in Refs. [7-8].
Definition 1.1 Let α∈ℝ, 0 < p≤∞, and q(·)∈P(ℝn). The homogeneous Herz space
$ {\left\| f \right\|_{\dot K_{q( \cdot )}^{\alpha ,p}\left( {{\mathbb{R}^n}} \right)}} = {\left\{ {\sum\limits_{k = - \infty }^\infty {{2^{k\alpha p}}} \left\| {f{\chi _k}} \right\|_{{L^{q( \cdot )}}\left( {{\mathbb{R}^n}} \right)}^p} \right\}^{1/p}} < \infty . $ |
The non-homogeneous Herz space Kq(·)α, p(ℝn) is defined as the set of all f∈Llocq(·)(ℝn) such that
$ {\left\| f \right\|_{K_{q( \cdot )}^{\alpha ,p}\left( {{\mathbb{R}^n}} \right)}} = {\left\{ {\sum\limits_{k = 0}^\infty {{2^{k\alpha p}}} \left\| {f{{\tilde \chi }_k}} \right\|_{{L^{q( \cdot )}}\left( {{\mathbb{R}^n}} \right)}^p} \right\}^{1/p}} < \infty . $ |
Let GN(f)(x) be the grand maximal function of f(x) defined by
$ {G_N}(f)(x) = \mathop {\sup }\limits_{\phi \in {A_N}} \left| {\phi _\nabla ^*(f)(x)} \right|, $ |
where AN={ϕ∈S(ℝn):
Definition 1.2 Let α∈ℝ, 0 < p < ∞, q(·)∈P(ℝn) and N>n+1.
(ⅰ) The homogeneous Herz-type Hardy space
(ⅱ) The non-homogeneous Herz-type Hardy space HKq(·)α, p(ℝn) is defined as the set of all f∈S′(ℝn) such that GN(f)(x)∈Kq(·)α, p(ℝn) and ‖f‖HKq(·)α, p(ℝn)=‖GN(f)‖Kq(·)α, p(ℝn).
For x∈ℝ we denote by [x] the largest integer less than or equal to x.
Definition 1.3 Let nδ2≤α < ∞, q(·)∈P(ℝn), b∈Lloc1(ℝn), and integer s≥[α-nδ2].
(ⅰ) A function a(x) on ℝn is said to be a central (α, q(·))-atom, if it satisfies
1) supp a⊂B(0, r)={x∈ℝn:|x| < r},
2) ‖a‖Lq(·)(ℝn)≤|B(0, r)|-α/n,
3) ∫ℝna(x)xβdx=∫ℝna(x)b(x)xβdx=0, |β|≤s.
(ⅱ) A function a(x) on ℝn is said to be a central (α, q(·))-atom of the restricted type, if it satisfies the above conditions 2) and 3) and
$ {\left. 1 \right)^\prime }{\text{supp}}a \subset B\left( {0,r} \right),r \geqslant 1. $ |
If r=2k for some k∈
Lemma 1.5 Let nδ2≤α < ∞, 0 < p < ∞ and q (·)∈B(ℝn).Then
$ f = \sum\limits_{k = - \infty }^\infty {{\lambda _k}} {a_k}\left( {{\text{or}}\sum\limits_{k = 0}^\infty {{\lambda _k}} {a_k}} \right), $ |
in the sense of S′(ℝn), where each ak is a central (α, q(·))-atom(or central (α, q(·))-atom of restricted type) with support contained in Bk and
$ {\left\| f \right\|_{H\dot K_{q\left( \cdot \right)}^{\alpha ,p}\left( {{\mathbb{R}^n}} \right)}} \approx \inf {\left( {\sum\limits_{k = - \infty }^\infty {{{\left| {{\lambda _k}} \right|}^p}} } \right)^{1/p}} $ |
$ \left( {{\text{or}}{{\left\| f \right\|}_{HK_{q\left( \cdot \right)}^{\alpha ,p}\left( {{\mathbb{R}^n}} \right)}} \approx \inf {{\left( {\sum\limits_{k = 0}^\infty {{{\left| {{\lambda _k}} \right|}^p}} } \right)}^{1/p}}} \right), $ |
where the infimum is taken over all above decompositions of f.
2 Main results and their proofsLet b∈Lipγ(ℝn). It is easy to know that |[b, μΩ]|≤C‖b‖LipγTΩ, γ, where
$ {{\bar T}_{\Omega ,\gamma }}f(x) = \int_{{\mathbb{R}^n}} {\frac{{\left| {\Omega (x - y)} \right|}}{{{{\left| {x - y} \right|}^{n - \gamma }}}}} \left| {f(y)} \right|{\text{d}}y. $ |
In Ref. [16], the authors proved that TΩ, γ is bounded from Lq1(·)(ℝn) to Lq2(·)(ℝn) for 1/q1(x)-1/q2(x)=γ/n and q1(·)∈P(ℝn) satisfying conditions(1) and (2) in Lemma 1.1 with q1+ < n/γ. So we can get the following theorem.
Theorem 2.1 Suppose that b∈Lipγ(ℝn) with 0 < γ≤1. If q1(·)∈P(ℝn) satisfies conditions (1) and (2) in Lemma 1.1 with q1+ < n/γ, 1/q1(x)-1/q2(x)=γ/n, Ω∈Ls(Sn-1)(s>q2+) with 1≤s′ < q1-. Then [b, μΩ] is bounded from Lq1(·)(ℝn) to Lq2(·)(ℝn).
Next, we will give the continuity about the commutator [b, μΩ] on Herz-type Hardy spaces with variable exponent. Before stating our result, let us recall the definition of the Ls-Dini condition. We say that Ω satisfies the Ls-Dini condition if Ω(x′)∈Ls(Sn-1) with s≥1 is homogeneous of degree zero on ℝn, and
$ \int_0^1 {\frac{{{\omega _s}(\delta )}}{\delta }} {\text{d}}\delta < \infty , $ |
where ωs(δ) denotes the integral modulus of continuity of order s of Ω defined by
$ {\omega _s}(\delta ) = \mathop {\sup }\limits_{\left\| \rho \right\| \le \delta } {\left( {\int_{{S^{n - 1}}} {{{\left| {\Omega \left( {\rho x'} \right) - \Omega \left( {x'} \right)} \right|}^s}} {\rm{d}}\sigma \left( {x'} \right)} \right)^{1/s}} $ |
and ρ is a rotation on Sn-1 and
Theorem 2.2 Suppose that b∈Lipγ(ℝn) with 0 < γ≤1. If q1(·)∈P(ℝn) satisfies conditions (1) and (2) in Lemma 1.1 with q1+ < n/γ, 1/q1(x)-1/q2(x)=γ/n, Ω∈Ls(Sn-1)(s>q2+) with 1≤s′ < q1- and satisfies
$ \int_0^1 {\frac{{{\omega _s}(\delta )}}{{{\delta ^{1 + \gamma }}}}} {\text{d}}\delta < \infty . $ |
Let 0 < p1≤p2 < ∞ and nδ2≤α < nδ2+γ(or 0 < max(nδ2, α2)≤α1 < nδ2+γ). Then [b, μΩ] maps
In the proof of Theorem 2.2, we need the following lemmas in Refs. [3, 5, 17-18].
Lemma 2.1 Given E and p(·)∈P(E), let f:E×E→ℝ be a measurable function (with respect to product measure) such that for almost every y∈E, f(·, y)∈Lp(·)(E). Then
$ {\left\| {\int_E f ( \cdot ,y){\text{d}}y} \right\|_{{L^{p( \cdot )}}(E)}} \leqslant C\int_E {{{\left\| {f\left( { \cdot ,y} \right)} \right\|}_{{L^p}( \cdot )(E)}}{\text{d}}y} . $ |
Lemma 2.2 Define a variable exponent
$ {\left\| {fg} \right\|_{{L^p}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \leqslant C{\left\| f \right\|_{{L^{\tilde q( \cdot )}}}}_{\left( {{\mathbb{R}^n}} \right)}{\left\| g \right\|_{{L^q}\left( {{\mathbb{R}^n}} \right)}} $ |
for all measurable functions f and g.
Lemma 2.3 Let p(·)∈P(ℝn) satisfies conditions (1) and (2) in Lemma 1.1. Then
$ {\left\| {{\chi _Q}} \right\|_{{L^{p( \cdot )}}\left( {{\mathbb{R}^n}} \right)}} \approx \left\{ {\begin{array}{*{20}{c}} {{{\left| Q \right|}^{\frac{1}{{p\left( x \right)}}}}}&{{\text{if}}\left| Q \right| \leqslant {2^n}\;{\text{and}}\;x \in Q,} \\ {{{\left| Q \right|}^{\frac{1}{{p\left( \infty \right)}}}}}&{{\text{if}}\left| Q \right| \geqslant 1} \end{array}} \right. $ |
for every cube (or ball) Q⊂ℝn, where p(∞)=
Lemma 2.4 Suppose that Ω satisfies the Ls-Dini condition (1≤s < ∞). Then for any R>0 and x∈ℝn, when |y| < R/2, there is a constant C>0 such that
$ \begin{array}{*{20}{c}} {{{\left( {\int_{R < \left| x \right| < 2R} {{{\left| {\frac{{\Omega (x - y)}}{{{{\left| {x - y} \right|}^n}}} - \frac{{\Omega (x)}}{{{{\left| x \right|}^n}}}} \right|}^s}} {\text{d}}x} \right)}^{1/s}} \leqslant } \\ {C{R^{\frac{n}{s} - n}}\left\{ {\frac{{\left| y \right|}}{R} + \int_{\left| y \right|/2R < \delta < \left| y \right|/R} {\frac{{{\omega _s}(\delta )}}{\delta }{\text{d}}\delta } } \right\}.} \end{array} $ |
Proof of Theorem 2.2 We only prove homogeneous case. In Ref. [19], the authors proved Kq(·)α1, p2(ℝn)⊂Kq(·)α2, p2(ℝn) for 0 < α2≤α1. So the non-homogeneous case can be proved in the same way. Let
$ \begin{array}{*{20}{c}} {\left\| {\left[ {b,{\mu _\Omega }} \right](f)} \right\|_{\dot K_{{q_2}\left( \cdot \right)}^{\alpha ,{p_2}}\left( {{\mathbb{R}^n}} \right)}^{{p_1}}} \\ { = {{\left\{ {\sum\limits_{k = - \infty }^\infty {{2^{k\alpha {p_2}}}} \left\| {\left[ {b,{\mu _\Omega }} \right](f){\chi _k}} \right\|_{{L^{{q_2}}}( \cdot )\left( {{\mathbb{R}^n}} \right)}^{{p_2}}} \right\}}^{{p_1}/{p_2}}}} \\ { \leqslant \sum\limits_{k = - \infty }^\infty {{2^{k\alpha {p_1}}}} \left\| {\left[ {b,{\mu _\Omega }} \right](f){\chi _k}} \right\|_{{L^{{q_2}}}( \cdot )\left( {{\mathbb{R}^n}} \right)}^{{p_1}} \leqslant C\sum\limits_{k = - \infty }^\infty {{2^{k\alpha {p_1}}}} } \\ {{{\left( {\sum\limits_{j = - \infty }^{k - 2} {\left| {{\lambda _j}} \right|} {{\left\| {\left[ {b,{\mu _\Omega }} \right]\left( {{a_j}} \right){\chi _k}} \right\|}_{{L^{{q_2}}}( \cdot )\left( {{\mathbb{R}^n}} \right)}}} \right)}^{{p_1}}} + C\sum\limits_{k = - \infty }^\infty {{2^{k\alpha {p_1}}}} } \\ {{{\left( {\sum\limits_{j = k - 1}^\infty {\left| {{\lambda _j}} \right|} {{\left\| {\left[ {b,{\mu _\Omega }} \right]\left( {{a_j}} \right){\chi _k}} \right\|}_{{L^{{q_2}}}( \cdot )\left( {{\mathbb{R}^n}} \right)}}} \right)}^{{p_1}}}} \\ { = :{U_1} + {U_2}.} \end{array} $ | (3) |
We first estimate U1. Note that
$ \begin{array}{*{20}{c}} {\left| {\left[ {b,{\mu _\Omega }} \right]\left( {{a_j}} \right)(x)} \right| \leqslant } \\ {\left( {\int_0^{|x|} | \int_{|x - y| \leqslant t|} {\frac{{\Omega (x - y)}}{{|x - y{|^{n - 1}}}}} [b(x) - b(y)]} \right.} \\ {{{\left. {{{\left. {{a_j}(y){\text{d}}y} \right|}^2}\frac{{{\text{d}}t}}{{{t^3}}}} \right)}^{1/2}} + } \\ {\left( {\int_{|x|}^\infty | \int_{|x - y| \leqslant t} {\frac{{\Omega (x - y)}}{{|x - y{|^{n - 1}}}}} [b(x) - b(y)]} \right.} \\ {{{\left. {{{\left. {{a_j}(y){\text{d}}y} \right|}^2}\frac{{{\text{d}}t}}{{{t^3}}}} \right)}^{1/2}}} \\ { = :{U_{11}} + {U_{12}}.} \end{array} $ |
When x∈Ak and |x-y|≤t with t≤|x|, it follows from j≤k-2 that |x-y|~|x|. By mean value theorem we have
$ \left| {\frac{1}{{|x - y{|^2}}} - \frac{1}{{|x{|^2}}}} \right| \leqslant \frac{{|y|}}{{|x - y{|^3}}}. $ | (4) |
Then by (4), the Minkowski inequality, the generalized Hölder inequality and the vanishing moments of aj we have
$ \begin{gathered} {U_{11}} \leqslant C\int_{{\mathbb{R}^n}} {\left| {\frac{{\Omega (x - y)}}{{|x - y{|^{n - 1}}}} - \frac{{\Omega (x)}}{{|x{|^{n - 1}}}}} \right|} \hfill \\ \;\;\;\;\;\;\;\;\left| {b(x) - b(y)} \right|\left| {{a_j}(y)} \right|{\left( {\int_{|x - y|}^{|x|} {\frac{{{\text{d}}t}}{{{t^3}}}} } \right)^{1/2}}{\text{d}}y \hfill \\ \;\;\;\;\; \leqslant C\int_{{\mathbb{R}^n}} {\left| {\frac{{\Omega (x - y)}}{{|x - y{|^{n - 1}}}} - \frac{{\Omega (x)}}{{|x{|^{n - 1}}}}} \right|} \hfill \\ \;\;\;\;\;\;\left| {b(x) - b(y)} \right|\left| {{a_j}(y)} \right|{\left| {\frac{1}{{|x - y{|^2}}} - \frac{1}{{|x{|^2}}}} \right|^{1/2}}{\text{d}}y \hfill \\ \;\;\;\;\; \leqslant C\int_{{\mathbb{R}^n}} {\left| {\frac{{\Omega (x - y)}}{{|x - y{|^{n - 1}}}} - \frac{{\Omega (x)}}{{|x{|^{n - 1}}}}} \right|} \hfill \\ \;\;\;\;\;\;\left| {b(x) - b(y)} \right|\left| {{a_j}(y)} \right|\frac{{|y{|^{1/2}}}}{{|x - y{|^{3/2}}}}{\text{d}}y \hfill \\ \;\;\;\;\; \leqslant C{2^{(j - k)/2}}\int_{{A_j}} {\left| {\frac{{\Omega (x - y)}}{{{{\left| {x - y} \right|}^n}}} - \frac{{\Omega (x)}}{{{{\left| x \right|}^n}}}} \right|} \hfill \\ \;\;\;\;\;\left| {b(x) - b(y)} \right|\left| {{a_j}(y)} \right|{\text{d}}y. \hfill \\ \end{gathered} $ |
Similarly, we consider U12. Noting that |x-y|~|x|, by the Minkowski inequality and the vanishing moments of aj we have
$ \begin{gathered} {U_{12}} \leqslant C\int_{{\mathbb{R}^n}} {\left| {\frac{{\Omega (x - y)}}{{|x - y{|^{n - 1}}}} - \frac{{\Omega (x)}}{{|x{|^{n - 1}}}}} \right|} \hfill \\ \;\;\;\;\;\;\;\;\left| {b(x) - b(y)} \right|\left| {{a_j}(y)} \right|{\left( {\int_{|x|}^\infty {\frac{{{\text{d}}t}}{{{t^3}}}} } \right)^{1/2}}{\text{d}}y \hfill \\ \;\;\;\;\;\; \leqslant C\int_{{A_j}} {\left| {\frac{{\Omega (x - y)}}{{|x - y{|^n}}} - \frac{{\Omega (x)}}{{|x{|^n}}}} \right|} \hfill \\ \;\;\;\;\;\;\;\;\left| {b(x) - b(y)} \right|\left| {{a_j}(y)} \right|{\text{d}}y. \hfill \\ \end{gathered} $ |
So we have
$ \begin{array}{*{20}{c}} {\left| {\left[ {b,{\mu _\Omega }} \right]\left( {{a_j}} \right)(x)} \right| \leqslant C\int_{{A_j}} {\left| {\frac{{\Omega (x - y)}}{{|x - y{|^n}}} - \frac{{\Omega (x)}}{{|x{|^n}}}} \right|} } \\ {\left| {b(x) - b(y)} \right|\left| {{a_j}(y)} \right|{\text{d}}y.} \end{array} $ |
Using Lemma 2.1 and the Minkowski inequality we have
$ \begin{align} & {{\left\| \left[ b,{{\mu }_{\Omega }} \right]\left( {{a}_{j}} \right){{\chi }_{k}} \right\|}_{L{{q}_{2}}(\cdot )\left( {{\mathbb{R}}^{n}} \right)}} \\ & \le \int_{{{B}_{j}}}{\left\| \left| \frac{\Omega (\cdot -y)}{|\cdot -y{{|}^{n}}}-\frac{\Omega (\cdot )}{|\cdot {{|}^{n}}} \right| \right.} \\ & {{\left. (b(\cdot )-b(y)){{\chi }_{k}}(\cdot ) \right\|}_{L{{q}_{2}}(\cdot )\left( {{\mathbb{R}}^{n}} \right)}}\left| {{a}_{j}}(y) \right|\text{d}y \\ & \le \int_{{{B}_{j}}}{\left\| \left| \frac{\Omega (\cdot -y)}{|\cdot -y{{|}^{n}}}-\frac{\Omega (\cdot )}{|\cdot {{|}^{n}}} \right| \right.} \\ & b(\cdot )-b(0)|{{\chi }_{k}}(\cdot )|{{|}_{L{{q}_{2}}(\cdot )\left( {{\mathbb{R}}^{n}} \right)}}\left| {{a}_{j}}(y) \right|\text{d}y+ \\ & \int_{{{B}_{j}}}{\left| \frac{\Omega (\cdot -y)}{|\cdot -y{{|}^{n}}}-\frac{\Omega (\cdot )}{|\cdot {{|}^{n}}} \right|{{\chi }_{k}}(}\cdot )|{{|}_{{{L}{{{q}_{2}}}}(\cdot )\left( {{\mathbb{R}}^{n}} \right)}} \\ & |b(0)-b(y)|\left| {{a}_{j}}(y) \right|\text{d}y \\ & =:{{U}_{13}}+{{U}_{14}}. \\ \end{align} $ |
For U13, noting s>q2+, we denote
$ \begin{gathered} {\left\| {\left| {\frac{{\Omega ( \cdot - y)}}{{| \cdot - y{|^n}}} - \frac{{\Omega ( \cdot )}}{{| \cdot {|^n}}}} \right||b( \cdot ) - b(0)|{\chi _k}( \cdot )} \right\|_{{L^{{q}}2}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \hfill \\ \leqslant {\left\| {\left| {\frac{{\Omega ( \cdot - y)}}{{| \cdot - y{|^n}}} - \frac{{\Omega ( \cdot )}}{{| \cdot {|^n}}}} \right|{\chi _k}( \cdot )} \right\|_{{L^s}\left( {{\mathbb{R}^n}} \right)}} \hfill \\ {\left\| {|b( \cdot ) - b(0)|{\chi _k}( \cdot )} \right\|_{L{{\bar q}_2}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \hfill \\ \leqslant C{\left\| b \right\|_{Li{p_\gamma }}}{2^{k\gamma }}{\left\| {\left| {\frac{{\Omega ( \cdot - y)}}{{| \cdot - y{|^n}}} - \frac{{\Omega ( \cdot )}}{{| \cdot {|^n}}}} \right|{\chi _k}( \cdot )} \right\|_{{L^s}\left( {{\mathbb{R}^n}} \right)}} \hfill \\ {\left\| {{\chi _{{B_k}}}} \right\|_{L_2^{\bar q}( \cdot )\left( {{\mathbb{R}^n}} \right)}}. \hfill \\ \end{gathered} $ |
When |Bk|≤2n and xk∈Bk, by Lemma 2.3 we have
$ \begin{gathered} {\left\| {{\chi _{{B_k}}}} \right\|_{{L^{{\tilde q}}2}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \approx {\left| {{B_k}} \right|^{\frac{1}{{{{\tilde q}_2}\left( {{x_k}} \right)}}}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \approx {\left\| {{\chi _{{B_k}}}} \right\|_{{L^{{q}}1}\left( \cdot \right)\left( {{\mathbb{R}^n}} \right)}}{\left| {{B_k}} \right|^{ - \frac{1}{s} - \frac{\gamma }{n}}}. \hfill \\ \end{gathered} $ |
When |Bk|≥1 we have
$ \begin{gathered} {\left\| {{\chi _{{B_k}}}} \right\|_{{L^{{\tilde q}}2}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \approx {\left| {{B_k}} \right|^{\frac{1}{{{{\tilde q}_2}\left( \infty \right)}}}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \approx {\left\| {{\chi _{{B_k}}}} \right\|_{{L^{{q}}1}\left( \cdot \right)\left( {{\mathbb{R}^n}} \right)}}{\left| {{B_k}} \right|^{ - \frac{1}{s} - \frac{\gamma }{n}}}. \hfill \\ \end{gathered} $ |
So we obtain
$ {\left\| {{\chi _{{B_k}}}} \right\|_{{L^{{\tilde q}}2}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \approx {\left\| {{\chi _{{B_k}}}} \right\|_{{L^{{q}}1}\left( \cdot \right)\left( {{\mathbb{R}^n}} \right)}}{\left| {{B_k}} \right|^{ - \frac{1}{s} - \frac{\gamma }{n}}}. $ |
Meanwhile, by Lemma 2.4 we have
$ \begin{gathered} {\left\| {\left| {\frac{{\Omega ( \cdot - y)}}{{| \cdot - y{|^n}}} - \frac{{\Omega ( \cdot )}}{{{{\left| \cdot \right|}^n}}}} \right|{\chi _k}( \cdot )} \right\|_{{L^s}\left( {{\mathbb{R}^n}} \right)}} \hfill \\ \leqslant {2^{(k - 1)\left( {\frac{n}{s} - n} \right)}}\left\{ {\frac{{|y|}}{{{2^k}}} + \int_{|y|/{2^k}}^{|y|/{2^{k - 1}}} {\frac{{{\omega _s}(\delta )}}{\delta }{\text{d}}\delta } } \right\} \hfill \\ \leqslant {2^{(k - 1)\left( {\frac{n}{s} - n} \right)}}\left( {{2^{j - k + 1}} + {2^{(j - k + 1)\gamma }}\int_0^1 {\frac{{{\omega _s}(\delta )}}{\delta }{\text{d}}\delta } } \right) \hfill \\ \leqslant C{2^{\left( {k - 1} \right)\left( {\frac{n}{s} - n} \right)}}{2^{\left( {j - k} \right)\gamma }}. \hfill \\ \end{gathered} $ |
So by the generalized Hölder inequality we have
$ \begin{gathered} {U_{13}} = \int_{{B_j}} {\left\| {\left| {\frac{{\Omega ( \cdot - y)}}{{| \cdot - y{|^n}}} - \frac{{\Omega ( \cdot )}}{{| \cdot {|^n}}}} \right|} \right.} \hfill \\ \;\;\;\;\;\;\;\;\;\;\left| {b( \cdot ) - b(0)} \right|{\chi _k}( \cdot )\left\| {_{_{{L^{{q}}2}( \cdot )\left( {{\mathbb{R}^n}} \right)}}} \right.\left| {{a_j}(y)} \right|{\text{d}}y \hfill \\ \;\;\;\;\;\;\;\;\;\; \leqslant C{\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}}{2^{k\gamma }}{2^{(k - 1)\left( {\frac{n}{s} - n} \right)}}{2^{(j - k)\gamma }} \hfill \\ \;\;\;\;\;\;\;\;\;\;{\left\| {{\chi _{{B_k}}}} \right\|_{{L^{{q}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}}{\left| {{B_k}} \right|^{ - \frac{1}{s} - \frac{\gamma }{n}}}\int_{{B_j}} {\left| {{a_j}(y)} \right|{\text{d}}y} \hfill \\ \;\;\;\;\;\;\;\;\;\; \leqslant C{\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}}{2^{ - kn + \left( {j - k} \right)\gamma }}{\left\| {{\chi _{{B_k}}}} \right\|_{{L^{{q}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \hfill \\ \;\;\;\;\;\;\;\;\;\;{\left\| {{a_j}} \right\|_{{L^{{q}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}}{\left\| {{\chi _{{B_j}}}} \right\|_{{L^{{q'}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}}. \hfill \\ \end{gathered} $ | (5) |
For U14, similar to the method of U13 we have
$ \begin{gathered} {\left\| {\left| {\frac{{\Omega ( \cdot - y)}}{{| \cdot - y{|^n}}} - \frac{{\Omega ( \cdot )}}{{| \cdot {|^n}}}} \right|{\chi _k}( \cdot )} \right\|_{{L^{{q}}2}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \hfill \\ \leqslant {\left\| {\left| {\frac{{\Omega ( \cdot - y)}}{{| \cdot - y{|^n}}} - \frac{{\Omega ( \cdot )}}{{| \cdot {|^n}}}} \right|{\chi _k}( \cdot )} \right\|_{{L^s}\left( {{\mathbb{R}^n}} \right)}} \hfill \\ {\left\| {{\chi _k}( \cdot )} \right\|_{L{{\tilde q}_2}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \hfill \\ \leqslant {\left\| {\left| {\frac{{\Omega ( \cdot - y)}}{{| \cdot - y{|^n}}} - \frac{{\Omega ( \cdot )}}{{| \cdot {|^n}}}} \right|{\chi _k}( \cdot )} \right\|_{{L^s}\left( {{\mathbb{R}^n}} \right)}} \hfill \\ {\left\| {{\chi _{{B_k}}}} \right\|_{L{{\tilde q}_2}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \hfill \\ \leqslant C{2^{(k - 1)\left( {\frac{n}{s} - n} \right)}}{2^{(j - k)\gamma }}{\left\| {{\chi _{{B_k}}}} \right\|_{{L^{{\tilde q}}2}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \hfill \\ \leqslant C{2^{ - kn + (j - k)\gamma - k\gamma }}{\left\| {{\chi _{{B_k}}}} \right\|_{{L^{{q}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}}. \hfill \\ \end{gathered} $ |
So by the generalized Hölder inequality we have
$ \begin{gathered} {U_{14}} = \int_{{B_j}} {{{\left\| {\left| {\frac{{\Omega ( \cdot - y)}}{{| \cdot - y{|^n}}} - \frac{{\Omega ( \cdot )}}{{| \cdot {|^n}}}} \right|{\chi _k}( \cdot )} \right\|}_{{L^{{q}}2}( \cdot )\left( {{\mathbb{R}^n}} \right)}}} \hfill \\ \;\;\;\;\;\;\;\;\;|b(0) - b(y)|\left| {{a_j}(y)} \right|{\text{d}}y \hfill \\ \;\;\;\;\;\;\;\;\; \leqslant C{2^{ - kn + (j - k)\gamma - k\gamma }}{\left\| {{\chi _{{B_k}}}} \right\|_{{L^{{q}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \hfill \\ \;\;\;\;\;\;\int_{{B_j}} {\left| {b(0) - b(y)} \right|} \left| {{a_j}(y)} \right|{\text{d}}y \hfill \\ \;\;\;\;\;\;\;\;\; \leqslant C{\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}}{2^{ - kn + 2(j - k)\gamma }}{\left\| {{\chi _{{B_k}}}} \right\|_{{L^{{q}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \hfill \\ \;\;\;\;\;\;\;\;\;{\left\| {{\chi _{{B_j}}}} \right\|_{{L^{{q'}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}}{\left\| {{a_j}} \right\|_{{L^{{q}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \hfill \\ \;\;\;\;\;\;\;\;\; \leqslant C{\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}}{2^{ - kn + 2(j - k)\gamma }}{\left\| {{\chi _{{B_k}}}} \right\|_{{L^{{q}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \hfill \\ \;\;\;\;\;\;\;\;\;{\left\| {{\chi _{{B_j}}}} \right\|_{{L^{{q'}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}}{\left\| {{a_j}} \right\|_{{L^{{q}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}}. \hfill \\ \end{gathered} $ | (6) |
By (5), (6), Lemma 1.2 and Lemma 1.3 we have
$ \begin{gathered} {\left\| {\left[ {b,{\mu _\Omega }} \right]\left( {{a_j}} \right){\chi _k}} \right\|_{{L^{{q}}2}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \hfill \\ \leqslant C{\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}}{2^{ - kn + (j - k)\gamma }}{\left\| {{\chi _{{B_k}}}} \right\|_{{L^{{q}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \hfill \\ {\left\| {{a_j}} \right\|_{{L^{{q}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}}{\left\| {{X_{{B_j}}}} \right\|_{{L^{{q'}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}} \hfill \\ \leqslant C{\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}}{2^{(j - k)\gamma }}{\left\| {{a_j}} \right\|_{{L^{{q}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}}\frac{{{{\left\| {{\chi _{{B_j}}}} \right\|}_{{L^{{q'}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}}}}{{{{\left\| {{\chi _{{B_k}}}} \right\|}_{{L^{{q'}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}}}} \hfill \\ \leqslant C{2^{ - j\alpha + (j - k)\left( {\gamma + n{\delta _2}} \right)}}{\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}}. \hfill \\ \end{gathered} $ |
So we have
$ \begin{gathered} {U_1} \leqslant C\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}^{{p_1}}\sum\limits_{k = - \infty }^\infty {{2^{k\alpha {p_1}}}} \hfill \\ \;\;\;\;\;\;{\left( {\sum\limits_{j = - \infty }^{k - 2} {\left| {{\lambda _j}} \right|} {2^{ - j\alpha + (j - k)\left( {\gamma + n{\delta _2}} \right)}}} \right)^{{p_1}}} \hfill \\ \;\;\; = C\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}^{{p_1}} \hfill \\ \;\;\;\;\;\sum\limits_{k = - \infty }^\infty {{{\left( {\sum\limits_{j = - \infty }^{k - 2} {\left| {{\lambda _j}} \right|} {2^{(j - k)\left( {\gamma + n{\delta _2} - \alpha } \right)}}} \right)}^{{p_1}}}} . \hfill \\ \end{gathered} $ |
When 1 < p1 < ∞, take 1/p1+1/p1′=1. Since γ+nδ2-α>0, by the Hölder inequality we have
$ \begin{array}{l} {U_1} \leqslant C\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}^{{p_1}} \hfill \\ \;\;\;\;\;\;\;\sum\limits_{k = - \infty }^\infty {\left( {\sum\limits_{j = - \infty }^{k - 2} {{{\left| {{\lambda _j}} \right|}^{{p_1}}}} {2^{(j - k)\left( {\gamma + n{\delta _2} - \alpha } \right){p_1}/2}}} \right)} \hfill \\ \;\;\;\;\;\;{\left( {\sum\limits_{j = - \infty }^{k - 2} {{2^{(j - k)\left( {\gamma + n{\delta _2} - \alpha } \right)p_1^\prime /2}}} } \right)^{{p_1}/p_1^\prime }} \hfill \\ \;\;\;\; \leqslant C\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}^{{p_1}} \hfill \\ \;\;\;\;\;\sum\limits_{k = - \infty }^\infty {\left( {\sum\limits_{j = - \infty }^{k - 2} {{{\left| {{\lambda _j}} \right|}^{{p_1}}}} {2^{(j - k)\left( {\gamma + n{\delta _2} - \alpha } \right){p_1}/2}}} \right)} \hfill \\ \;\;\; = C\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}^{{p_1}} \hfill \\ \;\;\;\sum\limits_{j = - \infty }^\infty {{{\left| {{\lambda _j}} \right|}^{{p_1}}}} \left( {\sum\limits_{k = j + 2}^\infty {{2^{(j - k)\left( {\gamma + n{\delta _2} - \alpha } \right){p_1}/2}}} } \right) \hfill \\ \;\;\; \leqslant C\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}^{{p_1}}\sum\limits_{j = - \infty }^\infty {{{\left| {{\lambda _j}} \right|}^{{p_1}}}} . \hfill \\ \end{array} $ | (7) |
When 0 < p1≤1, we have
$ \begin{array}{l} {U_1} \leqslant C\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}^{{p_1}} \hfill \\ \;\;\;\;\;\;\sum\limits_{k = - \infty }^\infty {\left( {\sum\limits_{j = - \infty }^{k - 2} {{{\left| {{\lambda _j}} \right|}^{{p_1}}}} {2^{(j - k)\left( {\gamma + n{\delta _2} - \alpha } \right){p_1}}}} \right)} \hfill \\ \;\;\;\;\; = C\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}^{{p_1}} \hfill \\ \;\;\;\;\;\;\sum\limits_{j = - \infty }^\infty {{{\left| {{\lambda _j}} \right|}^{{p_1}}}} \left( {\sum\limits_{k = j + 1}^\infty {{2^{(j - k)\left( {\gamma + n{\delta _2} - \alpha } \right){p_1}}}} } \right) \hfill \\ \;\;\;\;\; \leqslant C\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}^{{p_1}}\sum\limits_{j = - \infty }^\infty {{{\left| {{\lambda _j}} \right|}^{{p_1}}}} . \hfill \\ \end{array} $ | (8) |
Next we estimate U2, by the (Lq1(·)(ℝn), Lq2(·)(ℝn))-boundedness of the commutator [b, μΩ] we have
$ \begin{gathered} {U_2} \leqslant C\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}^{{p_1}} \hfill \\ \;\;\;\;\;\;\;\;\sum\limits_{k = - \infty }^\infty {{2^{k\alpha {p_1}}}} {\left( {\sum\limits_{j = k - 1}^\infty {\left| {{\lambda _j}} \right|} {{\left\| {{a_j}} \right\|}_{{L^{{q}}1}( \cdot )\left( {{\mathbb{R}^n}} \right)}}} \right)^{{p_1}}} \hfill \\ \;\;\;\;\;\;\;\; \leqslant C\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}^{{p_1}}\sum\limits_{k = - \infty }^\infty {{{\left( {\sum\limits_{j = k - 1}^\infty {\left| {{\lambda _j}} \right|} {2^{(k - j)\alpha }}} \right)}^{{p_1}}}} . \hfill \\ \end{gathered} $ |
If 0<p1≤1, then we have
$ \begin{gathered} {U_2} \leqslant C\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}^{{p_1}}\sum\limits_{j = - \infty }^\infty {{{\left| {{\lambda _j}} \right|}^{{p_1}}}} \sum\limits_{k = - \infty }^{j + 1} {{2^{(k - j)\alpha {p_1}}}} \hfill \\ \;\;\;\;\; \leqslant C\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}^{{p_1}}\sum\limits_{j = - \infty }^\infty {{{\left| {{\lambda _j}} \right|}^{{p_1}}}} . \hfill \\ \end{gathered} $ | (9) |
If 1 < p1 < ∞, by the Hölder inequality we have
$ \begin{gathered} {U_2} \leqslant C\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}^{{p_1}}\sum\limits_{k = - \infty }^\infty {\left( {\sum\limits_{j = k - 1}^\infty {{{\left| {{\lambda _j}} \right|}^{{p_1}}}} {2^{(k - j)\alpha {p_1}/2}}} \right)} \hfill \\ \;\;\;\;\;\;\;{\left( {\sum\limits_{j = k - 1}^\infty {{2^{(k - j)\alpha {p^\prime }1/2}}} } \right)^{{p_1}/{p^\prime }_1}} \hfill \\ \;\;\;\;\; \leqslant C\left\| b \right\|_{{\text{Li}}{{\text{p}}_\gamma }}^{{p_1}}\sum\limits_{j = - \infty }^\infty {{{\left| {{\lambda _j}} \right|}^{{p_1}}}} . \hfill \\ \end{gathered} $ | (10) |
Thus, by (3), (7)-(10) we complete the proof of Theorem 2.2.
[1] |
Kováčik O, Rákosník J. On spaces Lp(x) and Wk, p(x)[J]. Czechoslovak Math J, 1991, 41(4): 592-618. |
[2] |
Capone C, Cruz-Uribe D, Fiorenza A. The fractional maximal operators and fractional integrals on variable Lp spaces[J]. Rev Mat Iberoamericana, 2007, 23(3): 743-770. |
[3] |
Cruz-Uribe D, Fiorenza A. Variable Lebesgue spaces:foundations and harmonic analysis (applied and numerical harmonic analysis)[M]. Heidelberg: Springer, 2013.
|
[4] |
Cruz-Uribe D, Fiorenza A, Martell J M, et al. The boundedness of classical operators on variable Lp spaces[J]. Ann Acad Sci Fen Math, 2006, 31(1): 239-264. |
[5] |
Diening L, Harjulehto P, Hästö P, et al. Lebesgue and Sobolev spaces with variable exponents[M]//Lecture Notes in Math, vol.2017. Heidelberg: Springer, 2011.
|
[6] |
Wang H, Fu Z, Liu Z. Higher-order commutators of Marcinkiewicz integrals and fractional integrals on variable Lebesgue spaces[J]. Acta Math Sci Ser A Chin Ed, 2012, 32(6): 1092-1101. |
[7] |
Izuki M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization[J]. Anal Math, 2010, 36(1): 33-50. |
[8] |
Wang H, Liu Z. The Herz-type Hardy spaces with variable exponent and their applications[J]. Taiwanese J Math, 2012, 16(4): 1363-1389. DOI:10.11650/twjm/1500406739 |
[9] |
Wang H. The continuity of commutators on Herz-type Hardy spaces with variable exponent[J]. Kyoto J Math, 2016, 56(3): 559-573. DOI:10.1215/21562261-3600175 |
[10] |
Wang H. Boundedness of commutators on Herz-type Hardy spaces with variable exponent[J]. Jordan J Math Stat, 2016, 9(1): 17-30. |
[11] |
Wang H. Commutators of singular integral operator on Herz-type Hardy spaces with variable exponent[J]. J Korean Math Soc, 2017, 54(3): 713-732. DOI:10.4134/JKMS.j150771 |
[12] |
Wang H. Commutators of homogeneous fractional integrals on Herz-type Hardy spaces with variable exponent[J]. J Contemp Math Anal, 2017, 52(3): 134-143. |
[13] |
Stein E M. On the function of Littlewood-Paley, Lusin and Marcinkiewicz[J]. Trans Amer Math Soc, 1958, 88(2): 430-466. DOI:10.1090/S0002-9947-1958-0112932-2 |
[14] |
Liu Z, Wang H. Boundedness of Marcinkiewicz integrals on Herz spaces with variable exponent[J]. Jordan J Math Stat, 2012, 5(4): 223-239. |
[15] |
Tan J, Liu Z. Some boundedness of homogeneous fractional integrals on variable exponent function spaces[J]. Acta Math Sinica (Chin Ser), 2015, 58(2): 309-320. |
[16] |
Wu H, Lan J. Lipschitz estimates for fractional multilinear singular integral on variable exponent Lebesgue spaces[J/OL]. Abstract and Applied Analysis, 2013, Article ID 632384. http://dx.doi.org/10.1155/2013/632384.
|
[17] |
Nakai E, Sawano Y. Hardy spaces with variable exponents and generalized Campanato spaces[J]. J Funct Anal, 2012, 262(9): 3665-3748. DOI:10.1016/j.jfa.2012.01.004 |
[18] |
Lu S, Ding Y, Yan D. Singular integrals and related topics[M]. Beijing: World Scientific Press, 2011.
|
[19] |
Wang H, Liu Z. Some characterizations of Herz-type Hardy spaces with variable exponent[J]. Ann Funct Anal, 2015, 6(2): 224-233. DOI:10.15352/afa/06-2-19 |