中国科学院大学学报  2020, Vol. 37 Issue (1): 6-12   PDF    
非零Gauss曲率Bonnet曲面的存在性及其相关性质
王珂, 吴英毅     
中国科学院大学数学科学学院, 北京 100049
摘要: 研究关于Bonnet曲面的两个问题。第一,通过研究Bonnet曲面的平均曲率所满足的常微分方程证明Gauss曲率不恒为零的Bonnet曲面一定存在。第二,证明若两张Bonnet曲面之间存在一个保主曲率且保定向的共形映射,则有以下两种情形:如果两曲面的Gauss曲率零点孤立,则该共形映射必为等距;如果两曲面的Gauss曲率恒为零,则该共形映射为相似变换。
关键词: Bonnet曲面    W-曲面    共形映射    相似变换    
Existence and related properties of non-zero Gaussian curvature Bonnet surfaces
WANG Ke, WU Yingyi     
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: We study two problems about Bonnet surfaces. First, we prove that the Bonnet surface whose Gaussian curvature is not identically zero must exist by studying the ordinary differential equation which the mean curvature of the Bonnet surface satisfies. Secondly, we prove that if there exists a conformal map which preserves the principal curvatures and the orientation between two Bonnet surfaces, then there are two cases as follows:1) If the zero points of the Gaussian curvature of the two surfaces are isolated, then the conformal map must be an isometry. 2) If the Gaussian curvature of the two surfaces is identically zero, then the conformal map is a similarity transformation.
Keywords: Bonnet surface    W-surface    conformal map    similarity transformation    

Bonnet曲面是指三维欧氏空间E3中一张可定向曲面,并且上面存在一个保主曲率且保定向的非平凡(即不是E3中的刚体运动在曲面上的限制)单参数等距变换族。Bonnet曲面的概念最初由Bonnet[1]提出,他证明E3中的常平均曲率曲面一定是Bonnet曲面。Bonnet之后,一直有数学家对Bonnet曲面进行研究,比如:Graustein,Hazzidakis,Cartan等。近二三十年,Bonnet曲面的研究取得了很大进展。Chern[2]利用活动标架法,给出非常平均曲率Bonnet曲面满足的充要条件,并利用该条件得到非常平均曲率Bonnet曲面的一些重要性质,包括非常平均曲率Bonnet曲面一定是W-曲面,即满足dH∧dK=0的曲面。Colares和Kenmotsu[3]系统地研究Gauss曲率为零的非常平均曲率Bonnet曲面,并且给出分类和等距族。Chen和Peng[4]在文献[2]的基础上进一步得到非常平均曲率Bonnet曲面的一些重要性质,并最终得到非常平均曲率Bonnet曲面的分类,以及非常平均曲率Bonnet曲面的平均曲率满足的常微分方程,这个方程与Hazzidakis在文献[5]中的结果等价。Peng与Lu[6]研究文献[4]中前两类Bonnet曲面的极限曲面。Bobenko和Eitner[7]用可积系统的方法,得到非常平均曲率Bonnet曲面平均曲率与Painlevé方程解之间的关系,并利用Painlevé方程的解表示出非常平均曲率Bonnet曲面的平均曲率。在文献[8]中,Chen和Li得到在空间形式$\mathbb{R}$3(c)中的Bonnet曲面和在$\mathbb{R}_1^3$(c)中类空Bonnet曲面的分类定理。

为方便叙述,下文中讨论的Bonnet曲面都是指非常平均曲率Bonnet曲面并且曲面上没有脐点,又假设在该曲面上dH≠0,并且文中提到的等距皆为保定向的等距。

在文献[4]中,作者提出一个问题,是否存在Gauss曲率不恒为0的Bonnet曲面。在本文中,通过研究Bonnet曲面平均曲率满足的微分方程,得到上述问题的肯定回答,即

定理A  存在Gauss曲率不恒为0的Bonnet曲面。

此外,利用文献[2, 4, 6]中的结果,又得到

定理B  如果两张Bonnet曲面之间存在一个保主曲率且保定向的共形映射,若两Bonnet曲面的Gauss曲率零点孤立,则该共形映射为等距;若两Bonnet曲面的Gauss曲率恒为0,则该共形映射为相似变换。

1 预备知识

SE3中一张局部浸入曲面,并且没有脐点。于是S上存在一个主方向标架场{p, e1, e2, e3},其中pS为位置向量,e1, e2为曲面的单位主方向,e3为单位法向量。记曲面的主曲率为ac (a>c),高斯曲率为K,即K=ac,平均曲率为H,即$H=\frac{a+c}{2}$,又令$G=\frac{a-c}{2}$,则G>0且$G=\sqrt{H^{2}-K}$

对于S,首先有标架运动方程:

$ \left\{ {\begin{array}{*{20}{l}} {{\rm{d}}p = {\omega _1}{e_1} + {\omega _2}{e_2}}\\ {{\rm{d}}{e_1} = {\omega _{12}}{e_2} + {\omega _{13}}{e_3}}\\ {{\rm{d}}{e_2} = - {\omega _{12}}{e_1} + {\omega _{23}}{e_3}}\\ {{\rm{d}}{e_3} = - {\omega _{13}}{e_1} - {\omega _{23}}{e_2}} \end{array}} \right., $

式中:ω1, ω2e1, e2的对偶1-形式,则ω13=1ω23=2ω12为曲面的联络形式,设$\omega_{12}=\tilde{h} \omega_{1}+\widetilde{k} \omega_{2}$。这些1-形式满足结构方程:

$ \left\{ {\begin{array}{*{20}{l}} {{\rm{d}}{\omega _1} = {\omega _{12}} \wedge {\omega _2}}\\ {{\rm{d}}{\omega _2} = {\omega _1} \wedge {\omega _{12}}}\\ {{\rm{d}}{\omega _{12}} = - K{\omega _1} \wedge {\omega _2}\left( {{\rm{Gauss }}方程} \right)}\\ {{\rm{d}}{\omega _{13}} = {\omega _{12}} \wedge {\omega _{23}}\left( {{\rm{Codazzi }}方程} \right)}\\ {{\rm{d}}{\omega _{23}} = {\omega _{13}} \wedge {\omega _{12}}\left( {{\rm{Codazzi }}方程} \right)} \end{array}} \right.~~~. $

由Codazzi方程,

$ \left[ {{\rm{d}}a - \left( {a - c} \right)\tilde h{\omega _2}} \right] \wedge {\omega _1} = 0, $
$ \left[ {{\rm{d}}c - \left( {a - c} \right)\tilde k{\omega _1}} \right] \wedge {\omega _2} = 0. $

于是令

$ 2{\rm{d}}H = \left( {a - c} \right)\left( {A{\omega _1} + B{\omega _2}} \right), $ (1)

$\frac{\mathrm{d} a}{a-c}=(A-\widetilde{k}) \omega_{1}+\widetilde{h} \omega_{2}$,

$ \frac{{{\rm{d}}c}}{{a - c}} = \tilde k{\omega _1} + \left( {B - \tilde h} \right){\omega _2}, $

因此,

$ {\rm dlog}\left( {a - c} \right) = \left( {A - 2\tilde k} \right){\omega _1} - \left( {B - 2\tilde h} \right){\omega _2}, $ (2)

并且|∇H|2=(H2-K)(A2+B2)。定义新的1-形式:

$ {\theta _1} = A{\omega _1} + B{\omega _2},{\theta _2} = - B{\omega _1} + A{\omega _2}, $
$ {\alpha _1} = A{\omega _1} - B{\omega _2},{\alpha _2} = B{\omega _1} + A{\omega _2}. $

再定义曲面上的*算子,

$ * {\omega _1} = {\omega _2}, * {\omega _2} = - {\omega _1}. $

于是有

$ * {\theta _1} = {\theta _2}, * {\theta _2} = - {\theta _1}, $
$ * {\alpha _1} = {\alpha _2}, * {\alpha _2} = - {\alpha _1}. $

(1) 和(2)可以写成

$ 2{\rm{d}}H = \left( {a - c} \right){\theta _1}, $
$ {\rm dlog}\left( {a - c} \right) = {\alpha _1} + 2 * {\omega _{12}}. $

如果dH≠0,可定义新的度量:

$ {\rm{d}}s_{ - 1}^2 = \theta _1^2 + \theta _2^2 = \alpha _1^2 + \alpha _2^2 = \frac{{{{\left| {\nabla H} \right|}^2}}}{{{H^2} - K}}{\rm{d}}{s^2}, $ (3)

其中ds2S上的诱导度量。

Chern在文献[2]中证明曲面S为Bonnet曲面的充要条件为

$ \left\{ {\begin{array}{*{20}{l}} {{\rm{d}}{\alpha _1} = 0}\\ {{\rm{d}}{\alpha _2} = {\alpha _1} \wedge {\alpha _2}} \end{array}} \right.. $ (4)

由(4)可知如果S为Bonnet曲面则ds-12的Gauss曲率为-1。在文献[2]中,作者还得到Bonnet曲面必为W-曲面,即满足dH∧dK=0,或者等价地,KH的函数。在文献[4]中,Chen和Peng证明Bonnet曲面不仅满足(4)还满足dθ1=0,并进一步得到文献[4]中的定理。

定理1.1  设S为Bonnet曲面,定义度量

$ {\rm{d}}s_0^2 = \frac{{{{\left( {{H^2} - K} \right)}^2}}}{{{{\left| {\nabla H} \right|}^2}}}{\rm{d}}{s^2}, $ (5)

则1)ds02的Gauss曲率为0,

2) |∇H|和ΔH都是H的函数。

由定理1.1可得[4],存在Bonnet曲面S上的等温坐标(u, v),使得ds02=du2+dv2,du∧dvω1ω2给定相同定向并且H只是u的函数。由dH≠0,可设H′(u)>0。结合(3)和(5),可设

$ {\rm{d}}s_{ - 1}^2 = {F^2}{\rm{d}}s_0^2, $

$F^{2}=\frac{|\nabla H|^{4}}{\left(H^{2}-K\right)^{3}}$。设F>0,则$F=\frac{|\nabla H|^{2}}{G^{3}}$,经过简单计算可知$H^{\prime}=\frac{|\nabla H|^{2}}{G^{2}}$,因此,$F=\frac{H^{\prime}}{G}$。并且在这个等温坐标下,曲面的第一基本型可写成

$ {\rm{d}}{s^2} = {{\rm{e}}^{2\rho }}\left( {{\rm{d}}{u^2} + {\rm{d}}{v^2}} \right), $ (6)

其中$\mathrm{e}^{2 \rho}=\frac{|\nabla H|^{2}}{\left(H^{2}-K\right)^{2}}=\frac{F^{2}}{H^{\prime}}$。令$\widetilde{\omega}_{1}=\mathrm{e}^{\rho} \mathrm{d} u, \widetilde{\omega}_{2}=e^{\rho} {\rm d} v$,设$\widetilde{\omega}_{12}$为关于$\left\{\tilde{\omega}_{1}, \tilde{\omega}_{2}\right\}$的联络1-形式,则$\widetilde{\omega}_{12}=\rho^{\prime}(u) \mathrm{d} v$。设

$ \left\{ {\begin{array}{*{20}{l}} {{{\tilde \omega }_1} = \cos \theta {\omega _1} - \sin \theta {\omega _2}}\\ {{{\tilde \omega }_2} = \sin \theta {\omega _1} + \cos \theta {\omega _2}} \end{array}} \right., $

这里{ω1, ω2}为主方向标架。又设$\left\{\tilde{e}_{1}, \tilde{e}_{2}\right\}$$\left\{\tilde{\omega}_{1}, \tilde{\omega}_{2}\right\}$的对偶标架,则$\left\{p, \tilde{e}_{1}, \tilde{e}_{2}, e_{3}\right\}$S上新的标架。令

$ \left\{ {\begin{array}{*{20}{l}} {{{\tilde \omega }_{13}} = < {\rm{d}}{{\tilde e}_1},{e_3} > }\\ {{{\tilde \omega }_{23}} = < {\rm{d}}{{\tilde e}_2},{e_3} > } \end{array}} \right., $

$ \left\{ {\begin{array}{*{20}{l}} {{{\tilde \omega }_{13}} = {h_{11}}{{\tilde \omega }_1} + {h_{12}}{{\tilde \omega }_2}}\\ {{{\tilde \omega }_{23}} = {h_{21}}{{\tilde \omega }_1} + {h_{22}}{{\tilde \omega }_2}} \end{array}} \right., $ (7)

$ \left\{ {\begin{array}{*{20}{l}} {{h_{11}} = H + G\cos 2\theta }\\ {{h_{12}} = {h_{21}} = G\sin 2\theta }\\ {{h_{22}} = H - G\cos 2\theta } \end{array}} \right.. $ (8)

将(7)和(8)代入到关于$\left\{\tilde{\omega}_{1}, \tilde{\omega}_{2}, \tilde{\omega}_{12}, \tilde{\omega}_{13}, \tilde{\omega}_{23}\}\right.$的Codazzi方程中,可得

$ \left\{ {\begin{array}{*{20}{l}} {2{\theta _u} = - F\sin 2\theta }\\ {2{\theta _v} = F\cos 2\theta - {{\left( {\ln F} \right)}^\prime }} \end{array}} \right.. $ (9)

(9) 的可积性条件为F满足

$ {\left( {\ln F} \right)^{\prime \prime }} = {F^2}. $ (10)

解(10),得到

$ F = \pm \left\{ \begin{array}{l} \frac{1}{{u + t}}\\ \frac{\lambda }{{\sin \left( {\lambda \left( {u + t} \right)} \right)}}\\ \frac{\lambda }{{\sinh \left( {\lambda \left( {u + t} \right)} \right)}} \end{array} \right., $ (11)

这里的t, λ(λ>0)是常数。将(11)代入(9)中,解出θ

$ \tan \theta = \pm \left\{ \begin{array}{l} {\left( {\frac{{v + s}}{{u + t}}} \right)^{ \pm 1}},当\;F = \pm \frac{1}{{u + t}},\\ \tanh \frac{{\lambda v + s}}{2}{\left( {\cot \frac{{\lambda \left( {u + t} \right)}}{2}} \right)^{ \pm 1}}\\ 或\;{\rm coth}\frac{{\lambda v + s}}{2}{\left( {\cot \frac{{\lambda \left( {u + t} \right)}}{2}} \right)^{ \pm 1}},\\ \begin{array}{*{20}{c}} {当\;F = \pm \frac{\lambda }{{\sinh \left( {\lambda \left( {u + t} \right)} \right)}},}\\ { \pm \tan \frac{{\lambda v + s}}{2}{{\left( {\coth \frac{{\lambda \left( {u + t} \right)}}{2}} \right)}^{ \pm 1}},}\\ {当\;F = \pm \frac{\lambda }{{\sinh \left( {\lambda \left( {u + t} \right)} \right)}},} \end{array} \end{array} \right. $ (12)

这里的s是常数;或者

$ \tan \theta = \left\{ \begin{array}{l} 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;当\;F = - \frac{1}{{u + t}},\\ \pm \cot \frac{{\lambda \left( {u + t} \right)}}{2},\;\;\;\;当\;F = \frac{\lambda }{{\sinh \left( {\lambda \left( {u + t} \right)} \right)}},\\ \mp \tan \frac{{\lambda \left( {u + t} \right)}}{2},\;\;\;\;当\;F = \frac{\lambda }{{\sinh \left( {\lambda \left( {u + t} \right)} \right)}}, \end{array} \right. $ (13)

或者

$ \theta = \frac{{\rm{ \mathsf{ π} }}}{2},当\;F = \frac{1}{{u + t}}. $ (14)

注意,(13)和(14)是在(12)中令s→±∞的结果。再由(6),K=-ρ″e-2ρ得到

$ {\left( {\ln \frac{{H'}}{{{F^2}}}} \right)^{\prime \prime }}\frac{{H'}}{{{F^2}}} = 2\left( {{H^2} - \frac{{{{H'}^2}}}{{{F^2}}}} \right), $ (15)

这就是Bonnet曲面的平均曲率所满足的微分方程。反之,我们也可以利用(15)的解和(9)的解构造Bonnet曲面。设H为(15)的解,令$\tilde{\omega}_{1}=\mathrm{e}^{\rho} \mathrm{d} u=\frac{F}{\sqrt{H^{\prime}}} \mathrm{d} u, \tilde{\omega}_{2}=\mathrm{e}^{\rho} \mathrm{d} v=\frac{F}{\sqrt{H^{\prime}}} \mathrm{d} v$,则存在唯一一个1-形式$\tilde{\omega}_{12}$满足$\mathrm{d} \widetilde{\omega}_{1}=\widetilde{\omega}_{12} \wedge \widetilde{\omega}_{2}, \mathrm{d} \widetilde{\omega}_{2}=\widetilde{\omega}_{1} ∧\widetilde{\omega}_{12}$,不难得到$\widetilde{\omega}_{12}=\rho^{\prime} \mathrm{d} v$。定义$G=\frac{H^{\prime}}{F}$,令

$ \left\{ {\begin{array}{*{20}{l}} {{h_{11}} = H + G\cos 2\theta }\\ {{h_{12}} = {h_{21}} = G\sin 2\theta }\\ {{h_{22}} = H - G\cos 2\theta } \end{array}} \right., $

这里θ为(9)的解,再令$\widetilde{\omega}_{13}=h_{11} \widetilde{\omega}_{1}+h_{12} \widetilde{\omega}_{2}, \widetilde{\omega}_{23}=h_{21} \widetilde{\omega}_{1}+h_{22} \widetilde{\omega}_{2}$。由于H为(15)的解,可得

$ {\rm{d}}{{\tilde \omega }_{12}} = - {{\tilde \omega }_{13}} \wedge {{\tilde \omega }_{23}}. $

再由θ为(9)的解,可得

$ \left\{ {\begin{array}{*{20}{l}} {{\rm{d}}{{\tilde \omega }_{13}} = {{\tilde \omega }_{12}} \wedge {{\tilde \omega }_{23}}}\\ {{\rm{d}}{{\tilde \omega }_{23}} = {{\tilde \omega }_{13}} \wedge {{\tilde \omega }_{12}}} \end{array}} \right.. $

$\left\{\tilde{\omega}_{12}, \tilde{\omega}_{13}, \tilde{\omega}_{23}\right\}$满足Gauss方程和Codazzi方程。从而由曲面论基本定理,存在E3中的曲面S,以Ⅰ=$\left(\widetilde{\omega}_{1}\right)^{2}+\left(\widetilde{\omega}_{2}\right)^{2}$和Ⅱ=$\widetilde{\omega}_{1} \widetilde{\omega}_{13}+\widetilde{\omega}_{2} \widetilde{\omega}_{23}$为其第一和第二基本型,并且S的Gauss曲率K=H2-G2,平均曲率为H。进一步,由于H2-K=G2>0,S上无脐点,并且S上两主曲率分别为H+GH-G。然后对$\widetilde{\omega}_{1}, \widetilde{\omega}_{2}$旋转θ角,得到新标架

$ \left( {\begin{array}{*{20}{c}} {{\omega _1}}\\ {{\omega _2}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {\cos \theta }&{\sin \theta }\\ { - \sin \theta }&{\cos \theta } \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{{\tilde \omega }_1}}\\ {{{\tilde \omega }_2}} \end{array}} \right), $

经计算ω13=(H+G)ω1ω23=(H-G)ω2,即{ω1, ω2}为主方向标架。再设$\frac{\mathrm{d} H}{G}=A \omega_{1}+B \omega_{2}$,令α1=1-2α2=1+2。则$A=\sqrt{H^{\prime}} \cos \theta, B=-\sqrt{H^{\prime}} \sin \theta$,于是$\alpha_{1}=\sqrt{H^{\prime}} \cos 2 \theta \widetilde{\omega}_{1}+$$\sqrt{H^{\prime}} \sin 2 \theta \widetilde{\omega}_{2}, \alpha_{2}=-\sqrt{H^{\prime}} \sin 2 \theta \widetilde{\omega}_{1}+\sqrt{H^{\prime}} \cos 2 \theta \widetilde{\omega}_{2}$。直接计算得α1α2满足(4)。因此,S为Bonnet曲面。综上,文献[4]中定理可改写为:

定理1.2  设S是一个Bonnet曲面,则S上存在一个等温坐标(u, v),使得S的平均曲率H只是u的函数,H′>0并且满足方程(15);此时,S的第一基本型$I=\frac{F^{2}}{H^{\prime}}\left(\mathrm{d} u^{2}+\mathrm{d} v^{2}\right)$。进一步,令$\tilde{\omega}_{1}=\frac{F}{\sqrt{H^{\prime}}} \mathrm{d} u, \tilde{\omega}_{2}=\frac{F}{\sqrt{H^{\prime}}} \mathrm{d} v$,设$\left\{\tilde{\omega}_{1}, \tilde{\omega}_{2}\right\}$与主方向标架夹角为θ,则θ满足(9),具体地,θ满足(12)或(13)或(14)。

反之,设H为(15)的解,θ为(9)的解,则存在Bonnet曲面S,使得平均曲率为H,第一基本型$I=\frac{F^{2}}{H^{\prime}}\left(\mathrm{d} u^{2}+\mathrm{d} v^{2}\right)$,令$\tilde{\omega}_{1}=\frac{F}{\sqrt{H^{\prime}}} \mathrm{d} u, \tilde{\omega}_{2}=\frac{F}{\sqrt{H^{\prime}}} \mathrm{d} v$,则θ$\left\{\tilde{\omega}_{1}, \tilde{\omega}_{2}\right\}$与主方向标架的夹角。

2 定理A的证明

在这一节中,首先研究Gauss曲率恒为0的Bonnet曲面,得到命题2.1,再对(15)降阶,得到命题2.2,最后对降阶后的方程用常微分方程解的存在性定理证明定理A。

首先,得到

命题2.1  设S为Bonnet曲面,若S的Gauss曲率K恒为0,则在定理1.2中,$F=\pm \frac{1}{u+t}$,此时$H=-\frac{\beta}{u+t}$,这里β为常数且β>0。

证明  若Gauss曲率K恒为0,由定理1.2,H满足

$ {\left( {\ln \frac{{H'}}{{{F^2}}}} \right)^{\prime \prime }} = 0, $ (16)

$ {H^2} = {\left( {\frac{{H'}}{F}} \right)^2}. $ (17)

由(17),$H=\frac{H^{\prime}}{F}$或者$H=-\frac{H^{\prime}}{F}$。由(16),$\frac{H^{\prime}}{F^{2}}=\beta \mathrm{e}^{\alpha u}$,这里β, α为常数且β>0。于是H=βeαuF或者H=-βeαuF

H=βeαuF时,H′=β(αeαuF+eαuF′),此时,F满足αF+F′=F2,即α+(lnF)′=F,因此,(lnF)″=F′,由(10),

$ {F^2} = F', $ (18)

于是α=0。将$F=\pm \frac{1}{u+t}, F=\pm \frac{\lambda}{\sin (\lambda(u+t))}$$F=\pm \frac{\lambda}{\sinh (\lambda(u+t))}$代入到(18)中,得只有当$F=-\frac{1}{u+t}$时,(18)成立,并且此时$H=-\frac{\beta}{u+t}$

H=-βeαuF时,H′=-β(αeαuF+eαuF′),此时,F满足αF+F′=-F2,得

$ {F^2} = - F', $ (19)

于是α=0。类似地,将$F=\pm \frac{1}{u+t}, F=\pm\frac{\lambda}{\sin (\lambda(u+t))}$$F=\pm \frac{\lambda}{\sinh (\lambda(u+t))}$代入到(19)中,得只有当$F=\frac{1}{u+t}$时,(19)成立,并且此时$H=-\frac{\beta}{u+t}$

然后,对(15)降阶得到

命题2.2  若H是(15)的解则存在常数C使得H满足

$ {\left( {\ln \frac{{H'}}{{{F^2}}}} \right)^\prime }^2 = - 4\left[ {\frac{{{H^2}{F^2}}}{{H'}} + H' - 2H{{\left( {\ln F} \right)}^\prime }} \right] + C. $ (20)

反之,如果存在常数C使得H满足(20)且$\left(\frac{H^{\prime}}{F^{2}}\right)^{\prime}$不在某区间上恒为0则H满足(15)。

证明  令$\ln \frac{H^{\prime}}{F^{2}}=h, 2\left(H^{2}-\frac{H^{\prime 2}}{F^{2}}\right)=f$则由(15)有h″eh=f,

$ h'' = f{{\rm{e}}^{ - h}}. $ (21)

在(21)两边同乘2h′,得2hh″=2fe-hh′,

$ {\left( {{{h'}^2}} \right)^\prime } = - 2f{\left( {{{\rm{e}}^{ - h}}} \right)^\prime }. $ (22)

对(22)两边积分一次得

$ {\left( {h'} \right)^2} = - 2\int f {\left( {{{\rm{e}}^{ - h}}} \right)^\prime }{\rm{d}}u + C, $ (23)

其中C为常数。下面利用分部积分法计算积分∫f(e-h)′du

$ \begin{array}{l} \int f {\left( {{{\rm{e}}^{ - h}}} \right)^\prime }{\rm{d}}u = f{{\rm{e}}^{ - h}} - \int {f'{{\rm{e}}^{ - h}}{\rm{d}}u} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = f{{\rm{e}}^{ - h}} - 2\int {\frac{{{F^2}}}{{{H^\prime }}}} {\left( {{H^2} - \frac{{{H^{\prime 2}}}}{{{F^2}}}} \right)^\prime }{\rm{d}}u\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = f{{\rm{e}}^{ - h}} - 2\int {\frac{{{F^2}}}{{{H^\prime }}}} \left( {2H{H^\prime } - 2\frac{{{H^\prime }}}{F}{{\left( {\frac{{{H^\prime }}}{F}} \right)}^\prime }} \right){\rm{d}}u\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = f{{\rm{e}}^{ - h}} - 4\int H {F^2}{\rm{d}}u + 4\int F {\left( {\frac{{{H^\prime }}}{F}} \right)^\prime }{\rm{d}}u\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = f{{\rm{e}}^{ - h}} - 4\int H {F^2}{\rm{d}}u + 4F\frac{{{H^\prime }}}{F} - 4\int {{F^\prime }} \frac{{{H^\prime }}}{F}{\rm{d}}u\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = f{{\rm{e}}^{ - h}} - 4\int H {F^2}{\rm{d}}u + 4{H^\prime } - 4\int {{H^\prime }} {(\ln F)^\prime }{\rm{d}}u\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = f{{\rm{e}}^{ - h}} - 4\int H {F^2}{\rm{d}}u + 4{H^\prime } - 4H{(\ln F)^\prime } + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;4\int H {(\ln F)^{\prime \prime }}{\rm{d}}u\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = f{{\rm{e}}^{ - h}} - 4\int H {F^2}{\rm{d}}u + 4{H^\prime } - 4H{(\ln F)^\prime } + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;4\int H {F^2}{\rm{d}}u\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = f{{\rm{e}}^{ - h}} + 4{H^\prime } - 4H{(\ln F)^\prime }, \end{array} $

$ \begin{array}{l} \int f {\left( {{{\rm{e}}^{ - h}}} \right)^\prime }{\rm{d}}u = 2\left( {{H^2} - \frac{{{H^{\prime 2}}}}{{{F^2}}}} \right)\frac{{{F^2}}}{{{H^\prime }}} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;4{H^\prime } - 4H{(\ln F)^\prime }. \end{array} $ (24)

将(24)代入(23)得(20)成立。

反之,如果存在常数C使得H满足(20),令$\ln \frac{H^{\prime}}{F^{2}}=h, 2\left(H^{2}-\frac{H^{\prime 2}}{F^{2}}\right)=f$,则(21)成立。又由于$\left(\frac{H^{\prime}}{F^{2}}\right)^{\prime}$不在某区间上恒为0,即h′不在某区间上恒为0,则(21)成立,即H满足(15)。

注:Hazzidakis在文献[5]中得到一个与(15)等价的方程,因此,在文献[7]中,作者称文献[5]中的方程为Hazzidakis方程。在文献[5]中,Hazzidakis也将得到的方程进行了降阶,但与(20)在形式上有较大差别。

下面,通过研究(20)的解证明定理A。

定理A的证明  设0在F的定义域内,在$\mathbb{R}$2上取一点(x0, y0)(y0>0)以及取C$\mathbb{R}$充分大使得

$ Cy_0^2 - 4\left[ {{F^2}\left( 0 \right)x_0^2{y_0} + y_0^3 - 2{x_0}y_0^2\frac{{{F^\prime }\left( 0 \right)}}{{F\left( 0 \right)}}} \right] > 0. $

于是存在ε>0以及(x0, y0)的开邻域U,使得∀(x, y)∈Uy>0且∀(u, x, y)∈(-ε, εU

$ C{y^2} - 4\left[ {{F^2}\left( u \right){x^2}y + {y^3} - 2x{y^2}\frac{{{F^\prime }\left( u \right)}}{{F\left( u \right)}}} \right] > 0. $ (25)

在(-ε, εU上考虑方程组

$ \left\{ \begin{array}{l} \frac{{{\rm{d}}x}}{{{\rm{d}}u}} = y\\ \frac{{{\rm{d}}y}}{{{\rm{d}}u}} = 2{(\ln F)^\prime }y + \\ \;\;\;\;\;\;\;\sqrt {C{y^2} - 4\left[ {{F^2}{x^2}y + {y^3} - 2x{y^2}{{(\ln F)}^\prime }} \right]} \\ x\left( 0 \right) = {x_0}\\ y\left( 0 \right) = {y_0} \end{array} \right.. $ (26)

由(25),

$ 2{(\ln F)^\prime }y + \sqrt {C{y^2} - 4\left[ {{F^2}{x^2}y + {y^3} - 2x{y^2}{{(\ln F)}^\prime }} \right]} $

为(-ε, εU上光滑函数。于是由常微分方程组解的存在唯一性,存在0 < δε满足在(-δ, δ)上(26)存在唯一一组光滑解(x(u), y(u))。下面证明x(u)满足(15)。

首先,由(x(u), y(u))为(26)的解,∀u∈(-δ, δ),(x(u), y(u))∈Ux′=y>0,且

$ \begin{array}{*{20}{c}} {{x^{\prime \prime }} = 2{{(\ln F)}^\prime }{x^\prime } + }\\ {\sqrt {C{x^{\prime 2}} - 4\left[ {{F^2}{x^2}{x^\prime } + {x^{\prime 3}} - 2x{x^{\prime 2}}{{(\ln F)}^\prime }} \right]} .} \end{array} $

于是x(u)满足

$ {\left( {\ln \frac{{{x^\prime }}}{{{F^2}}}} \right)^\prime } = \sqrt {C - 4\left[ {{F^2}\frac{{{x^2}}}{{{x^\prime }}} + {x^\prime } - 2x{{(\ln F)}^\prime }} \right]} . $ (27)

因此,x(u)满足(20)。另外,由(x(u), y(u))为(26)的解,∀u∈(-δ, δ),(x(u), y(u))∈U,从而

$ C{x^{\prime 2}} - 4\left[ {{F^2}{x^2}{x^\prime } + {x^{\prime 3}} - 2x{x^{\prime 2}}{{(\ln F)}^\prime }} \right] > 0, $

$C-4\left[F^{2} \frac{x^{2}}{x^{\prime}}+x^{\prime}-2 x(\ln F)^{\prime}\right]>0$.

于是由(27),$\left(\ln \frac{x^{\prime}}{F^{2}}\right)^{\prime}$恒不为0,从而由命题2.2,x(u)满足(15)。

由定理1.2,存在Bonnet曲面S,使得平均曲率为x(u),第一基本型为$I=\frac{F^{2}}{x^{\prime}}\left(\mathrm{d} u^{2}+\mathrm{d} v^{2}\right)$。此时,S的Gauss曲率为

$ \frac{1}{2}{\left( {\ln \frac{{{x^\prime }}}{{{F^2}}}} \right)^{\prime \prime }}\frac{{{x^\prime }}}{{{F^2}}} = {x^2} - {\left( {\frac{{{x^\prime }}}{F}} \right)^2}. $

如果S的Gauss曲率恒为0,由命题2.1,$F^2=\frac{1}{(u+t)^{2}}$,设$x=-\frac{\beta}{u+t}$,于是$\frac{x^{\prime}}{F^{2}}=\beta$。这与x(u)满足

$ {\left( {\ln \frac{{{x^\prime }}}{{{F^2}}}} \right)^\prime } = \sqrt {C - 4\left[ {{F^2}\frac{{{x^2}}}{{{x^\prime }}} + {x^\prime } - 2x{{(\ln F)}^\prime }} \right]} > 0 $

矛盾。因此,S的Gauss曲率不恒为0。这就证明了定理A。

3 定理B的证明

$S, \hat{S}$为两Bonnet曲面,且$S, \hat{S}$之间存在一个保主曲率保定向的共形变换$\sigma: S \rightarrow \hat{S}$,这里的定向是指由主曲率标架确定的定向。设S$\hat{S}$的第一基本型分别为ds2$\mathrm{d} \hat{s}^{2}$,由于σ是共形变换,$\sigma^{*} \mathrm{d} \hat{s}^{2}=M^{2} \mathrm{d} s^{2}$,这里MS上正的光滑函数。设S上的主曲率为a, c(a>c),平均曲率为H,Gauss曲率为K$\hat{S}$上的主曲率为$\hat{a}, \hat{c}(\hat{a}>\hat{c})$,平均曲率为$\hat{H}$,Gauss曲率为$\hat{K}$。则$\sigma^{*}(\hat{a})=a$$\boldsymbol{\sigma}^{*}(\hat{c})=c, \sigma^{*}(\hat{H})=H, \sigma^{*}(\hat{K})=K$。再分别取S$\hat{S}$上主曲率标架{ω1, ω2}与$\left\{\hat{\omega}_{1}, \hat{\omega}_{2}\right\}$,由σ保持定向,设

$ \frac{1}{M}\left( {\begin{array}{*{20}{l}} {{\sigma ^*}{{\hat \omega }_1}}\\ {{\sigma ^*}{{\hat \omega }_2}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {\cos \varphi }&{\sin \varphi }\\ { - \sin \varphi }&{\cos \varphi } \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{\omega _1}}\\ {{\omega _2}} \end{array}} \right). $ (28)

下面将要证明,若K的零点孤立则M=1,即σ为等距;若K恒为0,则M为常数。

首先,可定义S上*算子,

$ * {\omega _1} = {\omega _2}, * {\omega _2} = - {\omega _1}, $

也可定义$\hat{S}$上的★算子,

$ \star {{\hat \omega }_1} = {{\hat \omega }_2}, \star {{\hat \omega }_2} = - {{\hat \omega }_1}. $

由(28),

$ * \left( {{\sigma ^ * }{{\hat \omega }_1}} \right) = {\sigma ^ * }{{\hat \omega }_2}, * \left( {{\sigma ^ * }{{\hat \omega }_2}} \right) = - {\sigma ^ * }{{\hat \omega }_1}, $

因此,有

$ * \circ {\sigma ^ * } = {\sigma ^ * } \circ \star . $ (29)

$ 2{\rm{d}}H = (a - c)\left( {A{\omega _1} + B{\omega _2}} \right), $
$ {\theta _1} = A{\omega _1} + B{\omega _2},{\theta _2} = - B{\omega _1} + A{\omega _2}, $
$ {\alpha _1} = A{\omega _1} - B{\omega _2},{\alpha _2} = B{\omega _1} + A{\omega _2}, $
$ 2{\rm{d}}\hat H = \left( {\hat a - \hat c} \right)\left( {\hat A{{\hat \omega }_1} + \hat B{{\hat \omega }_2}} \right), $
$ {{\hat \theta }_1} = \hat A{{\hat \omega }_1} + \hat B{{\hat \omega }_2},{{\hat \theta }_2} = - \hat B{{\hat \omega }_1} + \hat A{{\hat \omega }_2}, $
$ {{\hat \alpha }_1} = \hat A{{\hat \omega }_1} - \hat B{{\hat \omega }_2},{{\hat \alpha }_2} = \hat B{{\hat \omega }_1} + \hat A{{\hat \omega }_2}. $

再设ω12S上关于{ω1, ω2}的联络1-形式,$\hat{\omega}_{12}$$\hat{S}$上关于$\left\{\hat{\omega}_{1}, \hat{\omega}_{2}\right\}$的联络1-形式。则有

$ 2{\rm{d}}H = (a - c){\theta _1}, $
$ 2{\rm{d}}\hat H = (\hat a - \hat c){{\hat \theta }_1}, $ (30)
$ {\rm dlog}(a - c) = {\alpha _1} + 2 * {\omega _{12}}, $ (31)
$ {\rm dlog}(\hat a - \hat c) = {{\hat \alpha }_1} + 2 \star {{\hat \omega }_{12}}. $ (32)

σ将(30)两边拉回有

$ 2{\rm{d}}H = (a - c){\sigma ^ * }{{\hat \theta }_1}, $

因此,

$ {\theta _1} = {\sigma ^ * }{{\hat \theta }_1}. $ (33)

在(33)两边作用*,并用(29)得

$ {\theta _2} = {\sigma ^ * }{{\hat \theta }_2}. $

因此,$\theta_{1} \wedge \theta_{2}=\sigma^{*}\left(\hat{\theta}_{1} \wedge \hat{\theta}_{2}\right)$.

注意到

$ {\theta _1} \wedge {\theta _2} = {\alpha _1} \wedge {\alpha _2} = d{\alpha _2},{{\hat \theta }_1} \wedge {{\hat \theta }_2} = {{\hat \alpha }_1} \wedge {{\hat \alpha }_2} = {\rm{d}}{{\hat \alpha }_2}, $

于是,

$ {\rm{d}}{\alpha _2} = {\rm{d}}{\sigma ^ * }{{\hat \alpha }_2}. $ (34)

在(31)两边作用*,得

$ * {\rm dlog}(a - c) = {\alpha _2} - 2{\omega _{12}}. $

在(32)两边作用★,得

$ \star {\rm dlog}(\hat a - \hat c) = {{\hat \alpha }_2} - 2{{\hat \omega }_{12}}. $ (35)

再用σ将(35)两边拉回得

$ * {\sigma ^ * }{\rm dlog}(\hat a - \hat c) = {\sigma ^ * }{{\hat \alpha }_2} - 2{\sigma ^ * }{{\hat \omega }_{12}}. $ (36)

这里用到(29)。(36)左边为*dlog(a-c),因此,有$\alpha_{2}-2 \omega_{12}=\sigma^{*} \hat{\alpha}_{2}-2 \sigma^{*} \hat{\omega}_{12}$.

由(34),

$ {\rm{d}}{\omega _{12}} = {\rm{d}}{\sigma ^ * }{{\hat \omega }_{12}} = {\sigma ^ * }{\rm{d}}{{\hat \omega }_{12}}. $ (37)

S$\hat{S}$上的Gauss方程分别为

$ {\rm{d}}{\omega _{12}} = - K{\omega _1} \wedge {\omega _2}, $ (38)
$ {\rm{d}}{{\hat \omega }_{12}} = - \hat K{{\hat \omega }_1} \wedge {{\hat \omega }_2}. $ (39)

σ将(39)两边拉回得

$ {\sigma ^ * }{\rm{d}}{{\hat \omega }_{12}} = - K{\sigma ^ * }{{\hat \omega }_1} \wedge {\sigma ^ * }{{\hat \omega }_2}. $

由(28),(37)和(38),

$ K\left( {{M^2} - 1} \right) = 0. $

因此,如果K的零点孤立,M=1。

K恒为0。首先,由定理2,在S上存在与定向相容的等温坐标(u, v)使得H只是u的函数,H′(u)>0并且满足(15),此时,S的第一基本型$\mathrm{d} s^{2}=\frac{F^{2}}{H^{\prime}}\left(\mathrm{d} u^{2}+\mathrm{d} v^{2}\right)$。因为K恒为0,由命题2.1,$F^{2}=\frac{1}{(u+t)^{2}}, H=-\frac{\beta}{u+t}$,这里t, β为常数且β>0。因此,$\mathrm{d} s^{2}=\frac{1}{\beta}\left(\mathrm{d} u^{2}+\mathrm{d} v^{2}\right)$。由于K恒为0,$\sigma^{*} \hat{K}=K \hat{K}$恒为0。类似地,在$\hat{S}$上存在与定向相容的等温坐标$(\hat{u}, \hat{v})$使得$\hat{H}=-\frac{\hat{\beta}}{\hat{u}+\hat{t}}, \mathrm{d} \hat{s}^{2}=\frac{1}{\hat{\beta}}\left(\mathrm{d} \hat{u}^{2}+\mathrm{d} \hat{v}^{2}\right)$,这里的$\hat{t}, \hat{\beta}$为常数且$\hat{\beta}>0$。注意到σ为保定向的共形映射,因此,有Cauchy-Riemann方程

$ \frac{{\partial \hat u}}{{\partial u}} = \frac{{\partial \hat v}}{{\partial v}},\frac{{\partial \hat u}}{{\partial v}} = - \frac{{\partial \hat v}}{{\partial u}}. $ (40)

而由$\sigma^{*} \hat{H}=H, \hat{u}=\frac{\hat{\beta}}{\beta} u+\frac{\hat{\beta}}{\beta} t+\hat{t}$,因此,利用(40),

$ \frac{{\partial \hat v}}{{\partial v}} = \frac{{\hat \beta }}{\beta },\frac{{\partial \hat u}}{{\partial v}} = \frac{{\partial \hat v}}{{\partial u}} = 0 $

于是

$ {\sigma ^ * }{\rm{d}}{{\hat s}^2} = \frac{1}{{\hat \beta }}\frac{{{{\hat \beta }^2}}}{{{\beta ^2}}}\left( {{\rm{d}}{u^2} + {\rm{d}}{v^2}} \right) = \frac{{\hat \beta }}{\beta }{\rm{d}}{s^2}. $

因此,M为常数,不必为1。即完成定理B的证明。

作者非常感谢彭家贵教授,彭教授为作者提供了很多资料并与作者进行了非常有益的讨论。
参考文献
[1]
Bonnet O. Memoire sur la theorie des surfaces applicables[J]. Ec Polyt, 1867, 42: 79-92.
[2]
Chern S S. Deformation of surfaces preserving principal curvatures[C]//Chavel I. Differential geometry and complex analysis. New York: Springer, 1985: 155-163.
[3]
Colares A G, Kenmotsu K. Isometric deformation of surfaces in $ \mathbb{R}^{3}$ preserving the mean curvature function[J]. Pacific Journal of Mathematics, 1987, 136(1): 71-80.
[4]
Chen X X, Peng C K. Derformation of surfaces preserving principal curvatures[C]//Jiang B J, Peng C K. Differential geometry and topology. New York: Springer, 1989: 63-70.
[5]
Hazzidakis J N. Biegung mit erhaltung der hauptkrummüngsradien[J]. Reine Angew Math, 1897, 117: 42-56.
[6]
Peng C K, Lu S N. On the classification of the Bonnet surfaces[J]. Journal of the Graduate School Academia Sinica, 1992, 9(2): 107-116.
[7]
Bobenko A, Eitner U. Bonnet surfaces and Painlevé equations[J]. Reine Angew Math, 1998, 499: 47-81.
[8]
Chen W H, Li H Z. Bonnet surfaces and isothermic surfaces[J]. Results in Mathematics, 1997, 31: 40-52. Doi:10.1007/BF03322150