中国科学院大学学报  2020, Vol. 37 Issue (1): 1-5   PDF    
Sharp bounds for fractional Hardy operator on higher-dimensional product spaces
LI Xiang1, WEI Mingquan2, YAN Dunyan1     
1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
2. School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, Henan, China
Abstract: In this paper, we get the sharp bounds for fractional Hardy operator on higherdimensional product spaces from $ {{L}^{1}}\left( {{\mathbb{R}}^{{{n}_{1}}}}\times \cdots \times {{\mathbb{R}}^{{{n}_{m}}}} \right)$ to the space $ w{{L}^{\mathit{\boldsymbol{Q}}}}\left( {{\mathbb{R}}^{{{n}_{1}}}}\times \cdots \times {{\mathbb{R}}^{{{n}_{m}}}} \right)$. More generally, the norm of fractional Hardy operator on higher-dimensional product spaces from $ {{L}^{\mathit{\boldsymbol{P}}}}\left( {{\mathbb{R}}^{{{n}_{1}}}}\times \cdots \times {{\mathbb{R}}^{{{n}_{m}}}} \right)$ to ${{L}^{{{\mathit{\boldsymbol{Q}}}_{I}}}}\left( {{\mathbb{R}}^{{{n}_{1}}}}\times \cdots \times {{\mathbb{R}}^{{{n}_{m}}}} \right) $ is obtained.
Keywords: fractional Hardy operator    operator norm    product space    LQI    
高维乘积空间上分数次Hardy算子的最佳界
李翔1, 魏明权2, 燕敦验1     
1. 中国科学院大学数学科学学院, 北京 100049;
2. 信阳师范学院数学与统计学院, 河南 信阳 464000
摘要: 得到高维乘积空间上分数次Hardy算子从$ {{L}^{1}}\left( {{\mathbb{R}}^{{{n}_{1}}}}\times \cdots \times {{\mathbb{R}}^{{{n}_{m}}}} \right)$$ w{{L}^{\mathit{\boldsymbol{Q}}}}\left( {{\mathbb{R}}^{{{n}_{1}}}}\times \cdots \times {{\mathbb{R}}^{{{n}_{m}}}} \right)$的最佳界。更一般地,还得到高维乘积空间上分数次Hardy算子从$ {{L}^{\mathit{\boldsymbol{P}}}}\left( {{\mathbb{R}}^{{{n}_{1}}}}\times \cdots \times {{\mathbb{R}}^{{{n}_{m}}}} \right)$${{L}^{{{\mathit{\boldsymbol{Q}}}_{I}}}}\left( {{\mathbb{R}}^{{{n}_{1}}}}\times \cdots \times {{\mathbb{R}}^{{{n}_{m}}}} \right) $的算子范数。
关键词: 分数次哈代算子    算子范数    乘积空间    LQI    

Let f be a non-negative integrable function on ${{\mathbb{R}}^{n}} $. The fractional Hardy operator on ${{\mathbb{R}}^{n}} $ is defined by

$ {\mathbb{H}_\beta }f\left( x \right): = \frac{1}{{{{\left| {B\left( {0,\left| x \right|} \right)} \right|}^{1 - \frac{\beta }{n}}}}}\int_{\left| y \right| < \left| x \right|} {f\left( y \right){\text{d}}y} , $ (1)

for $x\in {{\mathbb{R}}^{n}} $.

For weak and strong operator norms of fractional Hardy operator, the following Theorem due to Lu, Zhao, and Yan[1] is well-known.

Theorem A Suppose 0 < β < n, 1 < p < q < $\frac{n}{\beta } $, and $\frac{1}{p}-\frac{1}{q}=\frac{\beta}{n} $.

(ⅰ) If $f \in L^{p}\left(\mathbb{R}^{n}\right)$, we have

$ {\mathbb{H}_\beta }f\left\| {_{{L^q}\left( {{\mathbb{R}^n}} \right)}} \right. \leqslant C{\left\| f \right\|_{{L^p}\left( {{\mathbb{R}^n}} \right)}}, $

where

$ \begin{array}{*{20}{c}} {{{\left( {\frac{p}{q}} \right)}^{\frac{1}{q}}}{{\left( {\frac{p}{{p - 1}}} \right)}^{\frac{1}{q}}}{{\left( {\frac{q}{{q - 1}}} \right)}^{1 - \frac{1}{q}}}{{\left( {1 - \frac{p}{q}} \right)}^{\frac{1}{p} - \frac{1}{q}}}} \\ { \leqslant C \leqslant {{\left( {\frac{p}{{p - 1}}} \right)}^{\frac{p}{q}}}.} \end{array} $

(ⅱ) If $f \in L^{1}\left(\mathbb{R}^{n}\right) $, then for any λ>0,

$ \left| {x \in {\mathbb{R}^n}:\left| {{\mathbb{H}_\beta }\left( f \right)\left( x \right)} \right| > \lambda } \right| \leqslant {\left( {\frac{1}{\lambda }{{\left\| f \right\|}_{{L^1}}}} \right)^{\frac{n}{{n - \beta }}}}. $

Moreover,

$ {\left\| {{\mathbb{H}_\beta }} \right\|_{{L^1}\left( {{\mathbb{R}^n}} \right) \to {L^{\frac{n}{{n - \beta }},\infty }}\left( {{\mathbb{R}^n}} \right)}} = 1. $

Based on the previous work[1], Zhao and Lu[2] obtained the operator norm of fractional Hardy operators on ${{\mathbb{R}}^{n}} $.

Theorem B Suppose that 0 < β < n, 1 < p < q < ∞, and $\frac{1}{p}-\frac{1}{q}=\frac{\beta}{n} $. If $f\in {{L}^{p}}\left( {{\mathbb{R}}^{n}} \right)$, we have

$ {\left\| {{\mathbb{H}_\beta }f} \right\|_{{L^q}\left( {{\mathbb{R}^n}} \right)}} \leqslant A{\left\| f \right\|_{{L^p}\left( {{\mathbb{R}^n}} \right)}}. $

Moreover,

$ {\left\| {{\mathbb{H}_\beta }} \right\|_{{L^q}\left( {{\mathbb{R}^n}} \right) \to {L^q}\left( {{\mathbb{R}^n}} \right)}} = A, $

where

$ A = \left( {\frac{{p'}}{q}} \right){\left( {\frac{n}{{q\beta }} \cdot B\left( {\frac{n}{{q\beta }},\frac{n}{{q'\beta }}} \right)} \right)^{\frac{{ - \beta }}{n}}}. $

In recent years, Hardy operator on product space has received much concern. In 2012, Wang, et al[3] introduced Hardy operator on product space and obtained the operator norm. Subsequently, Lu, et al[1] generalized Wang's work to higher-dimensional product space. Very recently, He, et al[4] investigated Hardy type operators on higher-dimensional product spaces and obtained the sharp bounds. Inspired by Refs.[1-4], we will compute the operator norm of fractional Hardy operator on higher-dimensional product space in the present paper.

Now we are in a position to introduce fractional Hardy operator on higher-dimensional product space. Let f be a non-negative integrable function on $ \mathbb{R}^{n_{1}} \times \ldots \times \mathbb{R}^{n_{m}}$ and then the fractional Hardy operator on product space is defined by

$ \begin{gathered} {\mathbb{H}_{{\beta _1}, \cdots ,{\beta _m}}}f\left( x \right): = \frac{1}{{{{\left| {B\left( {0,\left| {{x_1}} \right|} \right)} \right|}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}}}} \cdots \hfill \\ \frac{1}{{{{\left| {B\left( {0,\left| {{x_m}} \right|} \right)} \right|}^{1 - \frac{{{\beta _m}}}{{{n_m}}}}}}} \times \int_{\left| {{y_1}} \right| < \left| {{x_1}} \right|} \cdots \hfill \\ \int_{\left| {{y_m}} \right| < \left| {{x_m}} \right|} {f\left( {{y_1}, \cdots ,{y_m}} \right){\text{d}}{y_1} \cdots {\text{d}}{y_m}} \hfill \\ \end{gathered} $ (2)

for $ x=\left(x_{1}, x_{2}, \cdots, x_{m}\right) \in \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \times \cdots \times \mathbb{R}^{n_{m}}$ and $0 <\beta_{i} <n_{i}, i=1, \cdots, m $.

1 Preliminaries

Before we present the main results, some useful lemmas and definitions are needed.

The mixed norm space was first defined in Ref.[5] by Benedek and Panzone and received much concern (See Refs.[6-10]). In 2018, Wei and Yan[11] defined a more general mixed norm space which is called weak and strong mixed-norm space. We list its definition for completeness.

Definition 1.1 Let (Xi, Si, μi), for 1≤in, be n given, totally σ-finite measure spaces and P=(p1, p2, …, pn) a given n-tuple with 1≤pi≤∞. The set I satisfies $ I \subset\{1, \cdots, n\}$. A function f(x1, x2, …, xn) measurable in the product spaces (X, S, μ)=$ \left( \prod\limits_{i=1}^{n}{{{X}_{i}}}, \prod\limits_{i=1}^{n}{{{S}_{i}}}, \prod\limits_{i=1}^{n}{{{\mu }_{i}}} \right)$ is said to belong to the space LPI(X) if the number obtained after subsequently taking successfully the mixed norm where we take pi-norm for iI while we take weak pj-norm for j∈{1, …, n}\I and in natural order is finite. The number so obtained, finite or not, will be denoted by ‖fPI.

We give some necessary remarks for the space LPI(X). For more properties, we refer readers to Ref.[11].

(ⅰ) If I={1, …, n}, we call LPI(X) strong mixed norm space, which is also denoted by LP(X) or Lp1, …, pn(X).

(ⅱ) If the set I is empty, we call LPI(X) weak mixed norm space, which is also denoted by wLP(X) or wLp1, …, pn(X).

(ⅲ) The space LPI(X) is a quasi-normed space for P1.

For the mixed norm, we have a basic lemma which plays an important role in the proof of our main theorems.

Lemma 1.1 Let (X, S, μ) be defined as in the above definitions. If pn≥…≥p1≥1 and fLpn, …, p1(X), then fLp1, …, pn(X) and there holds

$ {\left\| f \right\|_{{L^{{p_1}, \cdots ,{p_n}}}\left( X \right)}} \leqslant {\left\| f \right\|_{{L^{{p_n}, \cdots ,{p_1}}}\left( X \right)}}. $

Lemma 1.1 is a direct generation of the Minkowski's inequality. For the proof of the lemma, readers are referred to Ref.[12]. It is not hard to see Fubini's theorem is a special case of Lemma 1.1.

In the rest part of our paper, we always consider the spaces on Euclidean space.

2 Main results and proof

Now we formulate our main theorems. We first give the boundedness of Hardy operator on product space from $ L^{1}\left(\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{m}}\right)$ to $ w L^{\mathit{\boldsymbol{Q}}}\left(\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{m}}\right)$.

Theorem 2.1 Let 0 < βi < ni, Q= $ \left(\frac{n_{1}}{n_{1}-\beta_{2}}, \cdots, \frac{n_{m}}{n_{m}-\beta_{m}}\right), i=1, \cdots, m$. Then the operator $ \mathbb{H}{_{{\beta _1}, \cdots , {\beta _n}}}$ defined by (2) is bounded from $L^{1}\left(\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{m}}\right) $ to $ w L^{\mathit{\boldsymbol{Q}}}\left(\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{m}}\right)$. Furthermore,

$ {\left\| {{\mathbb{H}_{{\beta _1}, \cdots ,{\beta _m}}}} \right\|_{{L^1}\left( {{\mathbb{R}^{{n_1}}} \times \cdots \times {\mathbb{R}^{{n_m}}}} \right) \to w{L^Q}\left( {{\mathbb{R}^{{n_1}}} \times \cdots \times {\mathbb{R}^{{n_m}}}} \right)}} = 1. $ (3)

Proof To make the arguments more easily understood, we prove the boundedness of the case m=2 first, and then the case m≥3 is just a repetition of the case m=2.

For m=2, the operator ${{\mathbb{H}}_{{{\beta }_{1}}, {{\beta }_{2}}}} $ can be written as

$ \begin{array}{*{20}{c}} {\left( {{\mathbb{H}_{{\beta _1},{\beta _2}}}f} \right)\left( {{x_1},{x_2}} \right) = \frac{1}{{{{\left| {B\left( {0,\left| {{x_1}} \right|} \right)} \right|}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}}}}} \\ {\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_1}} \right| < \left| {{x_1}} \right|} {\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {f\left( {{y_1},{y_2}} \right){\text{d}}{y_1}{\text{d}}{y_2}} } .} \end{array} $

When $f \in L^{1}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right) $, we have

$ \frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {f\left( { \cdot ,{y_2}} \right){\text{d}}{y_2}} \in {L^1}\left( {{\mathbb{R}^{{n_1}}}} \right) $

for all $ x_{2} \in \mathbb{R}^{n_{2}}$. Then Theorem A yields that

$ \begin{array}{*{20}{c}} {{{\left\| {\left( {{\mathbb{H}_{{\beta _1},{\beta _2}}}f} \right)\left( { \cdot ,{x_2}} \right)} \right\|}_{{L^{\frac{{{n_1}}}{{{n_1} - {\beta _1}}},\infty }}\left( {{R^{{n_1}}}} \right)}} = } \\ {\mathop {\sup }\limits_{{\lambda _1} > 0} {\lambda _1}{{\left| {\left\{ {{x_1}:\left( {{\mathbb{H}_{{\beta _1},{\beta _2}}}f} \right)\left( {{x_1},{x_2}} \right) > {\lambda _1}} \right\}} \right|}^{\frac{{{n_1}}}{{{n_1} - {\beta _1}}}}} \leqslant } \\ {1 \cdot {{\left\| {\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {f\left( { \cdot ,{y_2}} \right){\text{d}}{y_2}} } \right\|}_{{L^1}\left( {{\mathbb{R}^{{n_1}}}} \right)}}.} \end{array} $ (4)

Using Lemma 1.1 (or Fubini's theorem), it is not hard for us to get

$ \begin{gathered} {\left\| {\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {f\left( { \cdot ,{y_2}} \right){\text{d}}{y_2}} } \right\|_{{L^1}\left( {{\mathbb{R}^{{n_1}}}} \right)}} \hfill \\ = \frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{{\mathbb{R}^{{n_1}}}} {\left| {\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {f\left( {{y_1},{y_2}} \right){\text{d}}{y_2}} } \right|{\text{d}}{y_1}} \hfill \\ \leqslant \frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {\int_{{\mathbb{R}^{{n_1}}}} {\left| {f\left( {{y_1},{y_2}} \right)} \right|{\text{d}}{y_1}{\text{d}}{y_2}} } . \hfill \\ \end{gathered} $ (5)

Obviously, $ \int_{\mathbb{R}^{n_{1}}}\left|f\left(y_{1}, y_{2}\right)\right| \mathrm{d} y_{1} \in L^{1}\left(\mathbb{R}^{n_{2}}\right)$ if $ f\in {{L}^{1}}\left( {{\mathbb{R}}^{{{n}_{1}}}}\times {{\mathbb{R}}^{{{n}_{2}}}} \right)$. Then, applying Lemma 1.1 again, we obtain

$ \begin{array}{*{20}{c}} {\left\| {\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {} } \right.} \\ {{{\left. {\left( {\int_{{\mathbb{R}^{{n_1}}}} {\left| {f\left( {{y_1},{y_2}} \right)} \right|{\text{d}}{y_1}} } \right){\text{d}}{y_2}} \right\|}_{{L^{\frac{{{n_2}}}{{{n_2} - {\beta _2}}},\infty }}\left( {{\mathbb{R}^{{n_2}}}} \right)}}} \\ { = \mathop {\sup }\limits_{{\lambda _2} > 0} {\lambda _2}\left| {\left\{ {{x_2}:\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {} } \right.} \right.} \\ {{{\left. {\left. {\left( {\int_{{\mathbb{R}^{{n_1}}}} {\left| {f\left( {{y_1},{y_2}} \right)} \right|{\text{d}}{y_1}} } \right){\text{d}}{y_2} > {\lambda _2}} \right\}} \right|}^{\frac{{{n_2}}}{{{n_2} - {\beta _2}}}}}} \\ { \leqslant 1 \cdot \int_{{\mathbb{R}^{{n_2}}}} {\int_{{\mathbb{R}^{{n_1}}}} {\left| {f\left( {{y_1},{y_2}} \right)} \right|} } {\text{d}}{y_1}{\text{d}}{y_2}} \\ { = {{\left\| f \right\|}_{{L^1}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}}.} \end{array} $ (6)

Combining (4), (5), and (6), we obtain

$ \begin{array}{*{20}{c}} {{{\left\| {{\mathbb{H}_{{\beta _1},{\beta _2}}}f} \right\|}_{w{L^{\frac{{{n_2}}}{{{n_1} - {\beta _2}}},\frac{{{n_2}}}{{{n_2} - {\beta _2}}}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}} \leqslant } \\ {1 \cdot {{\left\| f \right\|}_{{L^1}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}},} \end{array} $

for all $ f\in {{L}^{1}}\left( {{\mathbb{R}}^{{{n}_{1}}}}\times {{\mathbb{R}}^{{{n}_{2}}}} \right)$.

On the other hand, we will show that the constant 1 is the best possible. Denote χ[0, 1] by χ1. Takingf0(r)=χ1(r), r>0 and choosing F(x1, x2)=f0(|x1|)f0(|x2|), where $ x_{1} \in \mathbb{R}^{n_{1}}, x_{2} \in \mathbb{R}^{n_{2}}$, we get from the definition of $ {{\mathbb{H}}_{{{\beta }_{1}}, {{\beta }_{2}}}}$ that

$ \begin{array}{*{20}{c}} {{\mathbb{H}_{{\beta _1}{\beta _2}}}F\left( {{x_1},{x_2}} \right) = \frac{1}{{{{\left| {B\left( {0,\left| {{x_1}} \right|} \right)} \right|}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}}{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}} \\ {\int_{\left| {{y_1}} \right| < \left| {{x_1}} \right|} {\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {{f_0}} } \left( {\left| {{y_1}} \right|} \right){f_0}\left( {\left| {{y_2}} \right|} \right){\text{d}}{y_1}{\text{d}}{y_2}} \\ { = \frac{1}{{{{\left| {B\left( {0,\left| {{x_1}} \right|} \right)} \right|}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}}}}\int_{\left| {{y_1}} \right| < \left| {{x_1}} \right|} {{f_0}\left( {\left| {{y_1}} \right|} \right){\text{d}}{y_1}} } \\ {\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {{f_0}\left( {\left| {{y_2}} \right|} \right){\text{d}}{y_2}} } \\ { = {\mathbb{H}_{{\beta _{\text{1}}}}}{f_0}\left( {\left| {{x_1}} \right|} \right){\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right).} \end{array} $

For $ 0 <{{\lambda }_{1}} <\frac{1}{{{\left| B\left( 0, \left| {{x}_{2}} \right| \right) \right|}^{1-\frac{{{\beta }_{2}}}{{{n}_{2}}}}}}\int_{{|{y}_{2}|} <\left| {{x}_{2}} \right|}{{}}{{f}_{0}}\left( \left| {{y}_{2}} \right| \right)\text{d}{{y}_{2}}={{\mathbb{H}}_{{{\beta }_{2}}}}{{f}_{0}}\left( \left| {{x}_{2}} \right| \right)$, we divide x1 into two cases:

(ⅰ) when |x1| < 1,

$ \begin{gathered} \left| {{\mathbb{H}_{{\beta _{\text{1}}}}}{f_0}\left( {\left| {{x_1}} \right|} \right)} \right| = \frac{1}{{{{\left| {B\left( {0,\left| {{x_1}} \right|} \right)} \right|}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}}}}\int_{\left| {{y_1}} \right| < \left| {{x_1}} \right|} {{f_0}\left( {\left| {{y_1}} \right|} \right){\text{d}}{y_1}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{1}{{{{\left| {B\left( {0,\left| {{x_1}} \right|} \right)} \right|}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}}}}\int_{\left| {{y_1}} \right| < \left| {{x_1}} \right|} {{\chi _1}\left( {\left| {{y_1}} \right|} \right){\text{d}}{y_1}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{{{v_{{n_1}}}{{\left| {{x_1}} \right|}^{{n_1}}}}}{{v_{{n_1}}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}{{\left| {{x_1}} \right|}^{{n_1} - {\beta _1}}}}}; \hfill \\ \end{gathered} $

(ⅱ) when |x1|≥1,

$ \begin{gathered} \left| {{\mathbb{H}_{{\beta _{\text{1}}}}}{f_0}\left( {\left| {{x_1}} \right|} \right)} \right| = \frac{1}{{{{\left| {B\left( {0,\left| {{x_1}} \right|} \right)} \right|}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}}}}\int_{\left| {{y_1}} \right| < \left| {{x_1}} \right|} {{\chi _0}\left( {\left| {{y_1}} \right|} \right){\text{d}}{y_1}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{1}{{{{\left| {B\left( {0,\left| {{x_1}} \right|} \right)} \right|}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}}}}\int_{\left| {{y_1}} \right| < 1} {{\text{d}}{y_1}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{{{v_{{n_1}}}}}{{v_{{n_1}}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}{{\left| {{x_1}} \right|}^{{n_1} - {\beta _1}}}}}. \hfill \\ \end{gathered} $

Then, combining both the cases we obtain

$ \begin{array}{*{20}{c}} {\left| {\left\{ {{x_1} \in {\mathbb{R}^{{n_1}}}:\left| {{\mathbb{H}_{{\beta _1},{\beta _2}}}F\left( {{x_1},{x_2}} \right)} \right| > {\lambda _1}} \right\}} \right| = } \\ {\left| {B\left( {0,1} \right) \cap \left\{ {{x_1} \in {\mathbb{R}^{{n_1}}}:} \right.} \right.} \\ {\left. {\left. {v_{{n_1}}^{\frac{{{\beta _1}}}{{{n_1}}}}{{\left| {{x_1}} \right|}^{{\beta _1}}}{\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right) > {\lambda _1}} \right\}} \right| + } \\ {\left| {B{{\left( {0,1} \right)}^c} \cap \left\{ {{x_1} \in {\mathbb{R}^{{n_1}}}:} \right.} \right.} \\ {\left. {\left. {v_{{n_1}}^{\frac{{{\beta _1}}}{{{n_1}}}}{{\left| {{x_1}} \right|}^{{\beta _1} - {n_1}}}{\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right) > {\lambda _1}} \right\}} \right|} \\ { = \left| {\left\{ {{x_1} \in {\mathbb{R}^{{n_1}}}:\frac{{\lambda _1^{\frac{1}{{{\beta _1}}}}}}{{v_{{n_1}}^{\frac{1}{{{n_1}}}}\mathbb{H}_{{\beta _2}}^{\frac{1}{{{\beta _1}}}}{f_0}\left( {\left| {{x_2}} \right|} \right)}} < \left| {{x_1}} \right| < 1} \right\}} \right| + } \\ {\left| {\left\{ {{x_1} \in {\mathbb{R}^{{n_1}}}:1 \leqslant \left| {{x_1}} \right| < {{\left( {\frac{{v_{{n_1}}^{\frac{{{\beta _1}}}{{{n_1}}}}{\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right)}}{{{\lambda _1}}}} \right)}^{\frac{1}{{{n_1} - {\beta _1}}}}}} \right\}} \right|} \\ { = {{\left( {\frac{{{v_{{n_1}}}{\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right)}}{{{\lambda _1}}}} \right)}^{\frac{{{n_1}}}{{{n_1} - {\beta _1}}}}} - {{\left( {\frac{{{\lambda _1}}}{{{\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right)}}} \right)}^{\frac{{{n_1}}}{{{\beta _1}}}}}.} \end{array} $

Based on the above results, let λ1→0+ and we have the estimate

$ \begin{array}{*{20}{c}} {\mathop {\lim }\limits_{{\lambda _1} \to 0} {\lambda _1}{{\left| {\left\{ {{x_1} \in \mathbb{R}:\left| {{\mathbb{H}_{{\beta _1},{\beta _2}}}F\left( {{x_1},{x_2}} \right)} \right| > {\lambda _1}} \right\}} \right|}^{\frac{{{n_1} - {\beta _1}}}{{{n_1}}}}}} \\ { = {v_{{n_1}}}{\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right),} \end{array} $ (7)

which implies that

$ \begin{array}{*{20}{c}} {\mathop {\sup }\limits_{0 < {\lambda _1} < {\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right)} {\lambda _1}\left| {\left\{ {{x_1}:\left| {{\mathbb{H}_{{\beta _1},{\beta _2}}}F\left( {{x_1},{x_2}} \right)} \right|} \right.} \right.} \\ {{{\left. {\left. { > {\lambda _1}} \right\}} \right|}^{\frac{{{n_1}}}{{{n_1} - {\beta _1}}}}} = {v_{{n_1}}}{\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right).} \end{array} $ (8)

For $0 <\lambda_{2} <v_{n_{1}} $, we also divide x2 into two cases: |x2| < 1 and |x2|≥1. As above, we obtain

$ \begin{array}{*{20}{c}} {\mathop {\sup }\limits_{0 < {\lambda _2} < {v_{{n_1}}}} {\lambda _2}\left| {\left\{ {{x_2} \in {\mathbb{R}^{{n_2}}}:{v_{{n_1}}}{\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right)} \right.} \right.} \\ {{{\left. {\left. { > {\lambda _2}} \right\}} \right|}^{\frac{{{n_2}}}{{{n_2} - {\beta _2}}}}} = {v_{{n_1}}}{v_{{n_2}}}.} \end{array} $ (9)

Since $\|F{{\|}_{{{L}^{1}}\left( {{\mathbb{R}}^{{{n}_{1}}\times {{n}_{2}}}} \right)}}={{v}_{{{n}_{1}}}}{{v}_{{{n}_{2}}}} $, by combining (8) with (9) we obtain

$ \begin{array}{*{20}{c}} {{{\left\| {{\mathbb{H}_{{\beta _1},{\beta _2}}}F} \right\|}_{w{L^{\frac{{{n_1}}}{{{n_1} - {\beta _1}}},\frac{{{n_2}}}{{{n_2} - {\beta _2}}}}}}}_{\left( {{\mathbb{R}^{{n_1} \times {n_2}}}} \right)}} \\ { = 1 \cdot {{\left\| F \right\|}_{{L^1}\left( {{\mathbb{R}^{{n_1} \times {n_2}}}} \right)}}.} \end{array} $

This finishes the proof of Theorem 2.1.

At last, we prove a more general result involved the weak and strong mixed-norm space.

Theorem 2.2 Suppose P=(p1, …, pm)≥1, Q=(q1, …, qm)≥1, and for all i=1, …, m, 0 < $ \beta_{i} <n, \frac{1}{p_{i}}-\frac{1}{q_{i}}=\frac{\beta_{i}}{n_{i}}$ . Let $ I \subset\{1, \cdots, m\}$, and we further suppose 1 < pi < ∞ if iI. Then the operator $ {{\mathbb{H}}_{{{\beta }_{1}}, \cdots , {{\beta }_{m}}}}$ defined by (2) is bounded from ${{L}^{\mathit{\boldsymbol{P}}}}\left( {{\mathbb{R}}^{{{n}_{1}}}}\times \cdots \times {{\mathbb{R}}^{{{n}_{m}}}} \right) $ to $ {{L}^{{{\mathit{\boldsymbol{Q}}}_{I}}}}\left( {{\mathbb{R}}^{{{n}_{1}}}}\times \cdots \times {{\mathbb{R}}^{{{n}_{m}}}} \right)$. Moreover, there holds

$ {\left\| {{H_{{\beta _1}, \cdots ,{\beta _m}}}} \right\|_{{L^\mathit{\boldsymbol{p}}}\left( {{\mathbb{R}^{{n_1}}} \times \cdots \times {\mathbb{R}^{{n_m}}}} \right) \to {L^{{\mathit{\boldsymbol{Q}}_I}}}\left( {{\mathbb{R}^{{n_1}}} \times \cdots \times {\mathbb{R}^{{n_m}}}} \right)}} = \prod\limits_{i \in I} {{C_i}} , $ (10)

where

$ {C_i} = {\left( {\frac{{{{p'}_i}}}{{{q_i}}}} \right)^{\frac{1}{{{q_i}}}}}{\left( {\frac{{{n_i}}}{{{q_i}{\beta _i}}} \cdot B\left( {\frac{{{n_i}}}{{{q_i}{\beta _i}}},\frac{{{n_i}}}{{{{q'}_i}{\beta _i}}}} \right)} \right)^{ - \frac{{{\beta _i}}}{{{n_i}}}}}. $

Proof We only prove the case m=2 and I={1} for simplification, that is to say, for p1>1 and p2≥1 we need to verify

$ {\left\| {{\mathbb{H}_{{\beta _1},{\beta _2}}}f} \right\|_{{L^{{\mathit{\boldsymbol{Q}}_I}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}} \leqslant {C_1} \cdot {\left\| f \right\|_{{L^{{p_1} \cdot {p_2}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}}, $ (11)

where the constant C1 is sharp.

Noting that, when $ f \in L^{p_{1}, p_{2}}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)$, $\frac{1}{{{\left| B\left( 0,\left| {{x}_{2}} \right| \right) \right|}^{1-\frac{{{\beta }_{2}}}{{{n}_{2}}}}}}\int_{|{{y}_{2}}| <\left| {{x}_{2}} \right|}{{}} f\left(\cdot, y_{2}\right) \mathrm{d} y_{2} \in L^{p_{1}}\left(\mathbb{R}^{n_{1}}\right)$, for all $x_{2} \in \mathbb{R}^{n_{2}} $, we get from Theorem B that

$ \begin{array}{*{20}{c}} {{{\left\| {\left( {{\mathbb{H}_{{\beta _1},{\beta _2}}}f} \right)\left( { \cdot ,{x_2}} \right)} \right\|}_{{L^{{q_1}}}\left( {{\mathbb{R}^{{n_1}}}} \right)}} \leqslant {C_1} \times } \\ {{{\left\| {\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {f\left( { \cdot ,{y_2}} \right){\text{d}}{y_2}} } \right\|}_{{L^{{p_1}}}\left( {{\mathbb{R}^{{n_1}}}} \right)}}.} \end{array} $ (12)

Using Lemma 1.1 (or Fubini's theorem), it is not hard for us to get

$ \begin{array}{*{20}{c}} {{{\left\| {\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} f \left( { \cdot ,{y_2}} \right){\text{d}}{y_2}} \right\|}_{{L^{{p_1}}}\left( {{\mathbb{R}^{{n_1}}}} \right)}}} \\ { = \frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}{{\left[ {\int_{{\mathbb{R}^{{n_1}}}} {{{\left| {\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} f \left( {{y_1},{y_2}} \right){\text{d}}{y_2}} \right|}^{{p_1}}}} {\text{d}}{y_1}} \right]}^{\frac{1}{{{p_1}}}}}} \\ { \leqslant \frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {{{\left[ {\int_{{\mathbb{R}^{{n_1}}}} {{{\left| {f\left( {{y_1},{y_2}} \right)} \right|}^{{p_1}}}} {\text{d}}{y_1}} \right]}^{\frac{1}{{{p_1}}}}}{\text{d}}{y_2}} .} \end{array} $

Theorem B tells us that, when $ f\in {{L}^{{{p}_{1}}, {{p}_{2}}}}\left( {{\mathbb{R}}^{{{n}_{1}}}}\times {{\mathbb{R}}^{{{n}_{2}}}} \right)$, there holds

$ \begin{array}{*{20}{c}} {\left\| \; \right\|\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {{{\left[ {\int_{{\mathbb{R}^{{n_1}}}} {{{\left| {f\left( {{y_1},{y_2}} \right)} \right|}^{{p_1}}}} {\text{d}}{y_1}} \right]}^{\frac{1}{{{p_1}}}}}} } \\ {{\text{d}}{y_2}\left\| {_{{L^{{p_1}}}\left( {{\mathbb{R}^{{n_1}}}} \right)}} \right.\left\| {_{{L^{{q_2},\infty }}\left( {{\mathbb{R}^{{n_2}}}} \right)}} \right. \leqslant 1 \cdot {{\left\| f \right\|}_{{L^{{p_1},{p_2}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}}.} \end{array} $

Based on the above estimates, we immediately obtain the inequality (11).

In order to show that C1 is the best, we construct a sharp function

$ F\left( {{x_1},{x_2}} \right) = {f_1}\left( {{x_1}} \right){f_2}\left( {{x_2}} \right), $

where

$ {f_1}\left( {{x_1}} \right) = \frac{1}{{{{\left( {1 + {{\left| {{x_1}} \right|}^{{q_1}{\beta _1}}}} \right)}^{1 + \frac{{{n_1}}}{{{q_1}{\beta _1}}}}}}}, $

and

$ {f_2}\left( {{x_2}} \right) = {\chi _1}\left( {\left| {{x_2}} \right|} \right). $

As stated in Theorem B, it means

$ \frac{{{{\left\| {{\mathbb{H}_{{\beta _{\text{1}}}}}{f_1}} \right\|}_{{L^{{p_1}}}\left( {{\mathbb{R}^{{n_1}}}} \right)}}}}{{{{\left\| {{f_1}} \right\|}_{_{{L^{{p_1}}}\left( {{\mathbb{R}^{{n_1}}}} \right)}}}}} = {C_1}. $ (13)

From the proof of Theorem A, we have

$ \frac{{{{\left\| {{\mathbb{H}_{{\beta _{\text{2}}}}}{f_2}} \right\|}_{w{L^{{p_2}}}\left( {{\mathbb{R}^{{n_2}}}} \right)}}}}{{{{\left\| {{f_2}} \right\|}_{_{{L^{{p_2}}}\left( {{\mathbb{R}^{{n_2}}}} \right)}}}}} = 1. $ (14)

Combining (13) with (14) we obtain

$ \begin{array}{*{20}{c}} {{{\left\| {{\mathbb{H}_{{\beta _1},{\beta _2}}}} \right\|}_{{L^{{p_1},{p_2}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right) \to {L^{{Q_I}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}}} \\ { = \mathop {\sup }\limits_{{{\left\| F \right\|}_{{L^{{p_1},{p_2}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}} \ne 0} \frac{{{{\left\| {{\mathbb{H}_{{\beta _1},{\beta _2}}}F} \right\|}_{{L^{{Q_I}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}}}}{{{{\left\| F \right\|}_{{L^{{p_1},{p_2}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}}}}} \\ { \geqslant \frac{{{{\left\| {{\mathbb{H}_{{\beta _1},{\beta _2}}}{f_1}{f_2}} \right\|}_{{L^{{Q_I}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}}}}{{{{\left\| {{f_1}{f_2}} \right\|}_{{L^{{p_1},{p_2}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}}}}} \\ { = \frac{{{{\left\| {{\mathbb{H}_{{\beta _1}}}{f_1}} \right\|}_{{L^{{p_1}}}\left( {{\mathbb{R}^{{n_1}}}} \right)}}}}{{{{\left\| {{f_1}} \right\|}_{{L^{{p_1}}}\left( {{\mathbb{R}^{{n_1}}}} \right)}}}} \cdot \frac{{{{\left\| {{\mathbb{H}_{{\beta _2}}}{f_2}} \right\|}_{{L^{{p_2}}}\left( {{\mathbb{R}^{{n_2}}}} \right)}}}}{{{{\left\| {{f_2}} \right\|}_{{L^{{p_2}}}\left( {{\mathbb{R}^{{n_2}}}} \right)}}}} = {C_1}.} \end{array} $

Thus we finish the proof.

We would like to remark that similar results have been deduced by authors of Ref.[11] for Hardy operator on higher-dimensional product spaces.

References
[1]
Lu S Z, Zhao F Y, Yan D Y. Sharp bounds for Hardy type operators on higher-dimensional product spaces[J]. Journal of Inequalities and Applications, 2013, 2013(1): 1-11. DOI:10.1186/1029-242X-2013-1
[2]
Zhao F Y, Lu S Z. The best bound for n-dimensional fractional Hardy operators[J]. Mathematical Inequalities and Appllications, 2015, 18(1): 233-240.
[3]
Wang S M, Lu S Z, Yan D Y. Explicit constants for Hardy's inequality with power weight on n-dimensional product spaces[J]. Science China Mathematics, 2012, 55(12): 2469-2480. DOI:10.1007/s11425-012-4453-4
[4]
He Q J, Li X, Yan D Y. Sharp bounds for Hardy type operators on higher-dimensional product spaces[J]. Frontiers of Mathematics in China, 2018, 13(6): 1341-1353. DOI:10.1007/s11464-018-0740-x
[5]
Benedek A, Panzone R. The space Lp with mixed norm[J]. Duke Mathematical Journal, 1961, 28(3): 301-324. DOI:10.1215/S0012-7094-61-02828-9
[6]
Benedek A, Calderón P, Panzone R. Convolution operators on Banach space valued functions[J]. Proceedings of the National Academy of Sciences, 1962, 48(3): 356-365. DOI:10.1073/pnas.48.3.356
[7]
Fefferman R, Stein E M. Singular integrals on product spaces[J]. Advances in Mathematics, 1982, 45(2): 117-143. DOI:10.1016/S0001-8708(82)80001-7
[8]
Journé J L. Calderón-Zygmund operators on product spaces[J]. Revista Matemática Iberoamericana, 1985, 1(3): 55-91.
[9]
Fernandez D L. Vector-valued singular integral operators on Lp-spaces with mixed norms and applications[J]. Pacific Journal of Mathematics, 1987, 129(2): 257-275. DOI:10.2140/pjm.1987.129.257
[10]
Stefanov A, Torres R H. Calderón-Zygmund operators on mixed Lebesgue spaces and applications to null forms[J]. Journal of the London Mathematical Society, 2004, 70(2): 447-462. DOI:10.1112/S0024610704005502
[11]
Wei M Q, Yan D Y. Sharp bounds for Hardy operators on product spaces[J]. Acta Mathematica Scientia, 2018, 38(2): 441-449. DOI:10.1016/S0252-9602(18)30759-8
[12]
Hardy G H, Littlewood J E, Polya G. Inequalities[M]. New York: Cambridge University Press, 1934.