2. School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, Henan, China
2. 信阳师范学院数学与统计学院, 河南 信阳 464000
Let f be a non-negative integrable function on
$ {\mathbb{H}_\beta }f\left( x \right): = \frac{1}{{{{\left| {B\left( {0,\left| x \right|} \right)} \right|}^{1 - \frac{\beta }{n}}}}}\int_{\left| y \right| < \left| x \right|} {f\left( y \right){\text{d}}y} , $ | (1) |
for
For weak and strong operator norms of fractional Hardy operator, the following Theorem due to Lu, Zhao, and Yan[1] is well-known.
Theorem A Suppose 0 < β < n, 1 < p < q <
(ⅰ) If
$ {\mathbb{H}_\beta }f\left\| {_{{L^q}\left( {{\mathbb{R}^n}} \right)}} \right. \leqslant C{\left\| f \right\|_{{L^p}\left( {{\mathbb{R}^n}} \right)}}, $ |
where
$ \begin{array}{*{20}{c}} {{{\left( {\frac{p}{q}} \right)}^{\frac{1}{q}}}{{\left( {\frac{p}{{p - 1}}} \right)}^{\frac{1}{q}}}{{\left( {\frac{q}{{q - 1}}} \right)}^{1 - \frac{1}{q}}}{{\left( {1 - \frac{p}{q}} \right)}^{\frac{1}{p} - \frac{1}{q}}}} \\ { \leqslant C \leqslant {{\left( {\frac{p}{{p - 1}}} \right)}^{\frac{p}{q}}}.} \end{array} $ |
(ⅱ) If
$ \left| {x \in {\mathbb{R}^n}:\left| {{\mathbb{H}_\beta }\left( f \right)\left( x \right)} \right| > \lambda } \right| \leqslant {\left( {\frac{1}{\lambda }{{\left\| f \right\|}_{{L^1}}}} \right)^{\frac{n}{{n - \beta }}}}. $ |
Moreover,
$ {\left\| {{\mathbb{H}_\beta }} \right\|_{{L^1}\left( {{\mathbb{R}^n}} \right) \to {L^{\frac{n}{{n - \beta }},\infty }}\left( {{\mathbb{R}^n}} \right)}} = 1. $ |
Based on the previous work[1], Zhao and Lu[2] obtained the operator norm of fractional Hardy operators on
Theorem B Suppose that 0 < β < n, 1 < p < q < ∞, and
$ {\left\| {{\mathbb{H}_\beta }f} \right\|_{{L^q}\left( {{\mathbb{R}^n}} \right)}} \leqslant A{\left\| f \right\|_{{L^p}\left( {{\mathbb{R}^n}} \right)}}. $ |
Moreover,
$ {\left\| {{\mathbb{H}_\beta }} \right\|_{{L^q}\left( {{\mathbb{R}^n}} \right) \to {L^q}\left( {{\mathbb{R}^n}} \right)}} = A, $ |
where
$ A = \left( {\frac{{p'}}{q}} \right){\left( {\frac{n}{{q\beta }} \cdot B\left( {\frac{n}{{q\beta }},\frac{n}{{q'\beta }}} \right)} \right)^{\frac{{ - \beta }}{n}}}. $ |
In recent years, Hardy operator on product space has received much concern. In 2012, Wang, et al[3] introduced Hardy operator on product space and obtained the operator norm. Subsequently, Lu, et al[1] generalized Wang's work to higher-dimensional product space. Very recently, He, et al[4] investigated Hardy type operators on higher-dimensional product spaces and obtained the sharp bounds. Inspired by Refs.[1-4], we will compute the operator norm of fractional Hardy operator on higher-dimensional product space in the present paper.
Now we are in a position to introduce fractional Hardy operator on higher-dimensional product space. Let f be a non-negative integrable function on
$ \begin{gathered} {\mathbb{H}_{{\beta _1}, \cdots ,{\beta _m}}}f\left( x \right): = \frac{1}{{{{\left| {B\left( {0,\left| {{x_1}} \right|} \right)} \right|}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}}}} \cdots \hfill \\ \frac{1}{{{{\left| {B\left( {0,\left| {{x_m}} \right|} \right)} \right|}^{1 - \frac{{{\beta _m}}}{{{n_m}}}}}}} \times \int_{\left| {{y_1}} \right| < \left| {{x_1}} \right|} \cdots \hfill \\ \int_{\left| {{y_m}} \right| < \left| {{x_m}} \right|} {f\left( {{y_1}, \cdots ,{y_m}} \right){\text{d}}{y_1} \cdots {\text{d}}{y_m}} \hfill \\ \end{gathered} $ | (2) |
for
Before we present the main results, some useful lemmas and definitions are needed.
The mixed norm space was first defined in Ref.[5] by Benedek and Panzone and received much concern (See Refs.[6-10]). In 2018, Wei and Yan[11] defined a more general mixed norm space which is called weak and strong mixed-norm space. We list its definition for completeness.
Definition 1.1 Let (Xi, Si, μi), for 1≤i≤n, be n given, totally σ-finite measure spaces and P=(p1, p2, …, pn) a given n-tuple with 1≤pi≤∞. The set I satisfies
We give some necessary remarks for the space LPI(X). For more properties, we refer readers to Ref.[11].
(ⅰ) If I={1, …, n}, we call LPI(X) strong mixed norm space, which is also denoted by LP(X) or Lp1, …, pn(X).
(ⅱ) If the set I is empty, we call LPI(X) weak mixed norm space, which is also denoted by wLP(X) or wLp1, …, pn(X).
(ⅲ) The space LPI(X) is a quasi-normed space for P≥1.
For the mixed norm, we have a basic lemma which plays an important role in the proof of our main theorems.
Lemma 1.1 Let (X, S, μ) be defined as in the above definitions. If pn≥…≥p1≥1 and f∈Lpn, …, p1(X), then f∈Lp1, …, pn(X) and there holds
$ {\left\| f \right\|_{{L^{{p_1}, \cdots ,{p_n}}}\left( X \right)}} \leqslant {\left\| f \right\|_{{L^{{p_n}, \cdots ,{p_1}}}\left( X \right)}}. $ |
Lemma 1.1 is a direct generation of the Minkowski's inequality. For the proof of the lemma, readers are referred to Ref.[12]. It is not hard to see Fubini's theorem is a special case of Lemma 1.1.
In the rest part of our paper, we always consider the spaces on Euclidean space.
2 Main results and proofNow we formulate our main theorems. We first give the boundedness of Hardy operator on product space from
Theorem 2.1 Let 0 < βi < ni, Q=
$ {\left\| {{\mathbb{H}_{{\beta _1}, \cdots ,{\beta _m}}}} \right\|_{{L^1}\left( {{\mathbb{R}^{{n_1}}} \times \cdots \times {\mathbb{R}^{{n_m}}}} \right) \to w{L^Q}\left( {{\mathbb{R}^{{n_1}}} \times \cdots \times {\mathbb{R}^{{n_m}}}} \right)}} = 1. $ | (3) |
Proof To make the arguments more easily understood, we prove the boundedness of the case m=2 first, and then the case m≥3 is just a repetition of the case m=2.
For m=2, the operator
$ \begin{array}{*{20}{c}} {\left( {{\mathbb{H}_{{\beta _1},{\beta _2}}}f} \right)\left( {{x_1},{x_2}} \right) = \frac{1}{{{{\left| {B\left( {0,\left| {{x_1}} \right|} \right)} \right|}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}}}}} \\ {\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_1}} \right| < \left| {{x_1}} \right|} {\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {f\left( {{y_1},{y_2}} \right){\text{d}}{y_1}{\text{d}}{y_2}} } .} \end{array} $ |
When
$ \frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {f\left( { \cdot ,{y_2}} \right){\text{d}}{y_2}} \in {L^1}\left( {{\mathbb{R}^{{n_1}}}} \right) $ |
for all
$ \begin{array}{*{20}{c}} {{{\left\| {\left( {{\mathbb{H}_{{\beta _1},{\beta _2}}}f} \right)\left( { \cdot ,{x_2}} \right)} \right\|}_{{L^{\frac{{{n_1}}}{{{n_1} - {\beta _1}}},\infty }}\left( {{R^{{n_1}}}} \right)}} = } \\ {\mathop {\sup }\limits_{{\lambda _1} > 0} {\lambda _1}{{\left| {\left\{ {{x_1}:\left( {{\mathbb{H}_{{\beta _1},{\beta _2}}}f} \right)\left( {{x_1},{x_2}} \right) > {\lambda _1}} \right\}} \right|}^{\frac{{{n_1}}}{{{n_1} - {\beta _1}}}}} \leqslant } \\ {1 \cdot {{\left\| {\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {f\left( { \cdot ,{y_2}} \right){\text{d}}{y_2}} } \right\|}_{{L^1}\left( {{\mathbb{R}^{{n_1}}}} \right)}}.} \end{array} $ | (4) |
Using Lemma 1.1 (or Fubini's theorem), it is not hard for us to get
$ \begin{gathered} {\left\| {\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {f\left( { \cdot ,{y_2}} \right){\text{d}}{y_2}} } \right\|_{{L^1}\left( {{\mathbb{R}^{{n_1}}}} \right)}} \hfill \\ = \frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{{\mathbb{R}^{{n_1}}}} {\left| {\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {f\left( {{y_1},{y_2}} \right){\text{d}}{y_2}} } \right|{\text{d}}{y_1}} \hfill \\ \leqslant \frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {\int_{{\mathbb{R}^{{n_1}}}} {\left| {f\left( {{y_1},{y_2}} \right)} \right|{\text{d}}{y_1}{\text{d}}{y_2}} } . \hfill \\ \end{gathered} $ | (5) |
Obviously,
$ \begin{array}{*{20}{c}} {\left\| {\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {} } \right.} \\ {{{\left. {\left( {\int_{{\mathbb{R}^{{n_1}}}} {\left| {f\left( {{y_1},{y_2}} \right)} \right|{\text{d}}{y_1}} } \right){\text{d}}{y_2}} \right\|}_{{L^{\frac{{{n_2}}}{{{n_2} - {\beta _2}}},\infty }}\left( {{\mathbb{R}^{{n_2}}}} \right)}}} \\ { = \mathop {\sup }\limits_{{\lambda _2} > 0} {\lambda _2}\left| {\left\{ {{x_2}:\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {} } \right.} \right.} \\ {{{\left. {\left. {\left( {\int_{{\mathbb{R}^{{n_1}}}} {\left| {f\left( {{y_1},{y_2}} \right)} \right|{\text{d}}{y_1}} } \right){\text{d}}{y_2} > {\lambda _2}} \right\}} \right|}^{\frac{{{n_2}}}{{{n_2} - {\beta _2}}}}}} \\ { \leqslant 1 \cdot \int_{{\mathbb{R}^{{n_2}}}} {\int_{{\mathbb{R}^{{n_1}}}} {\left| {f\left( {{y_1},{y_2}} \right)} \right|} } {\text{d}}{y_1}{\text{d}}{y_2}} \\ { = {{\left\| f \right\|}_{{L^1}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}}.} \end{array} $ | (6) |
Combining (4), (5), and (6), we obtain
$ \begin{array}{*{20}{c}} {{{\left\| {{\mathbb{H}_{{\beta _1},{\beta _2}}}f} \right\|}_{w{L^{\frac{{{n_2}}}{{{n_1} - {\beta _2}}},\frac{{{n_2}}}{{{n_2} - {\beta _2}}}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}} \leqslant } \\ {1 \cdot {{\left\| f \right\|}_{{L^1}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}},} \end{array} $ |
for all
On the other hand, we will show that the constant 1 is the best possible. Denote χ[0, 1] by χ1. Takingf0(r)=χ1(r), r>0 and choosing F(x1, x2)=f0(|x1|)f0(|x2|), where
$ \begin{array}{*{20}{c}} {{\mathbb{H}_{{\beta _1}{\beta _2}}}F\left( {{x_1},{x_2}} \right) = \frac{1}{{{{\left| {B\left( {0,\left| {{x_1}} \right|} \right)} \right|}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}}{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}} \\ {\int_{\left| {{y_1}} \right| < \left| {{x_1}} \right|} {\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {{f_0}} } \left( {\left| {{y_1}} \right|} \right){f_0}\left( {\left| {{y_2}} \right|} \right){\text{d}}{y_1}{\text{d}}{y_2}} \\ { = \frac{1}{{{{\left| {B\left( {0,\left| {{x_1}} \right|} \right)} \right|}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}}}}\int_{\left| {{y_1}} \right| < \left| {{x_1}} \right|} {{f_0}\left( {\left| {{y_1}} \right|} \right){\text{d}}{y_1}} } \\ {\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {{f_0}\left( {\left| {{y_2}} \right|} \right){\text{d}}{y_2}} } \\ { = {\mathbb{H}_{{\beta _{\text{1}}}}}{f_0}\left( {\left| {{x_1}} \right|} \right){\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right).} \end{array} $ |
For
(ⅰ) when |x1| < 1,
$ \begin{gathered} \left| {{\mathbb{H}_{{\beta _{\text{1}}}}}{f_0}\left( {\left| {{x_1}} \right|} \right)} \right| = \frac{1}{{{{\left| {B\left( {0,\left| {{x_1}} \right|} \right)} \right|}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}}}}\int_{\left| {{y_1}} \right| < \left| {{x_1}} \right|} {{f_0}\left( {\left| {{y_1}} \right|} \right){\text{d}}{y_1}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{1}{{{{\left| {B\left( {0,\left| {{x_1}} \right|} \right)} \right|}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}}}}\int_{\left| {{y_1}} \right| < \left| {{x_1}} \right|} {{\chi _1}\left( {\left| {{y_1}} \right|} \right){\text{d}}{y_1}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{{{v_{{n_1}}}{{\left| {{x_1}} \right|}^{{n_1}}}}}{{v_{{n_1}}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}{{\left| {{x_1}} \right|}^{{n_1} - {\beta _1}}}}}; \hfill \\ \end{gathered} $ |
(ⅱ) when |x1|≥1,
$ \begin{gathered} \left| {{\mathbb{H}_{{\beta _{\text{1}}}}}{f_0}\left( {\left| {{x_1}} \right|} \right)} \right| = \frac{1}{{{{\left| {B\left( {0,\left| {{x_1}} \right|} \right)} \right|}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}}}}\int_{\left| {{y_1}} \right| < \left| {{x_1}} \right|} {{\chi _0}\left( {\left| {{y_1}} \right|} \right){\text{d}}{y_1}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{1}{{{{\left| {B\left( {0,\left| {{x_1}} \right|} \right)} \right|}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}}}}\int_{\left| {{y_1}} \right| < 1} {{\text{d}}{y_1}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{{{v_{{n_1}}}}}{{v_{{n_1}}^{1 - \frac{{{\beta _1}}}{{{n_1}}}}{{\left| {{x_1}} \right|}^{{n_1} - {\beta _1}}}}}. \hfill \\ \end{gathered} $ |
Then, combining both the cases we obtain
$ \begin{array}{*{20}{c}} {\left| {\left\{ {{x_1} \in {\mathbb{R}^{{n_1}}}:\left| {{\mathbb{H}_{{\beta _1},{\beta _2}}}F\left( {{x_1},{x_2}} \right)} \right| > {\lambda _1}} \right\}} \right| = } \\ {\left| {B\left( {0,1} \right) \cap \left\{ {{x_1} \in {\mathbb{R}^{{n_1}}}:} \right.} \right.} \\ {\left. {\left. {v_{{n_1}}^{\frac{{{\beta _1}}}{{{n_1}}}}{{\left| {{x_1}} \right|}^{{\beta _1}}}{\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right) > {\lambda _1}} \right\}} \right| + } \\ {\left| {B{{\left( {0,1} \right)}^c} \cap \left\{ {{x_1} \in {\mathbb{R}^{{n_1}}}:} \right.} \right.} \\ {\left. {\left. {v_{{n_1}}^{\frac{{{\beta _1}}}{{{n_1}}}}{{\left| {{x_1}} \right|}^{{\beta _1} - {n_1}}}{\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right) > {\lambda _1}} \right\}} \right|} \\ { = \left| {\left\{ {{x_1} \in {\mathbb{R}^{{n_1}}}:\frac{{\lambda _1^{\frac{1}{{{\beta _1}}}}}}{{v_{{n_1}}^{\frac{1}{{{n_1}}}}\mathbb{H}_{{\beta _2}}^{\frac{1}{{{\beta _1}}}}{f_0}\left( {\left| {{x_2}} \right|} \right)}} < \left| {{x_1}} \right| < 1} \right\}} \right| + } \\ {\left| {\left\{ {{x_1} \in {\mathbb{R}^{{n_1}}}:1 \leqslant \left| {{x_1}} \right| < {{\left( {\frac{{v_{{n_1}}^{\frac{{{\beta _1}}}{{{n_1}}}}{\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right)}}{{{\lambda _1}}}} \right)}^{\frac{1}{{{n_1} - {\beta _1}}}}}} \right\}} \right|} \\ { = {{\left( {\frac{{{v_{{n_1}}}{\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right)}}{{{\lambda _1}}}} \right)}^{\frac{{{n_1}}}{{{n_1} - {\beta _1}}}}} - {{\left( {\frac{{{\lambda _1}}}{{{\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right)}}} \right)}^{\frac{{{n_1}}}{{{\beta _1}}}}}.} \end{array} $ |
Based on the above results, let λ1→0+ and we have the estimate
$ \begin{array}{*{20}{c}} {\mathop {\lim }\limits_{{\lambda _1} \to 0} {\lambda _1}{{\left| {\left\{ {{x_1} \in \mathbb{R}:\left| {{\mathbb{H}_{{\beta _1},{\beta _2}}}F\left( {{x_1},{x_2}} \right)} \right| > {\lambda _1}} \right\}} \right|}^{\frac{{{n_1} - {\beta _1}}}{{{n_1}}}}}} \\ { = {v_{{n_1}}}{\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right),} \end{array} $ | (7) |
which implies that
$ \begin{array}{*{20}{c}} {\mathop {\sup }\limits_{0 < {\lambda _1} < {\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right)} {\lambda _1}\left| {\left\{ {{x_1}:\left| {{\mathbb{H}_{{\beta _1},{\beta _2}}}F\left( {{x_1},{x_2}} \right)} \right|} \right.} \right.} \\ {{{\left. {\left. { > {\lambda _1}} \right\}} \right|}^{\frac{{{n_1}}}{{{n_1} - {\beta _1}}}}} = {v_{{n_1}}}{\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right).} \end{array} $ | (8) |
For
$ \begin{array}{*{20}{c}} {\mathop {\sup }\limits_{0 < {\lambda _2} < {v_{{n_1}}}} {\lambda _2}\left| {\left\{ {{x_2} \in {\mathbb{R}^{{n_2}}}:{v_{{n_1}}}{\mathbb{H}_{{\beta _2}}}{f_0}\left( {\left| {{x_2}} \right|} \right)} \right.} \right.} \\ {{{\left. {\left. { > {\lambda _2}} \right\}} \right|}^{\frac{{{n_2}}}{{{n_2} - {\beta _2}}}}} = {v_{{n_1}}}{v_{{n_2}}}.} \end{array} $ | (9) |
Since
$ \begin{array}{*{20}{c}} {{{\left\| {{\mathbb{H}_{{\beta _1},{\beta _2}}}F} \right\|}_{w{L^{\frac{{{n_1}}}{{{n_1} - {\beta _1}}},\frac{{{n_2}}}{{{n_2} - {\beta _2}}}}}}}_{\left( {{\mathbb{R}^{{n_1} \times {n_2}}}} \right)}} \\ { = 1 \cdot {{\left\| F \right\|}_{{L^1}\left( {{\mathbb{R}^{{n_1} \times {n_2}}}} \right)}}.} \end{array} $ |
This finishes the proof of Theorem 2.1.
At last, we prove a more general result involved the weak and strong mixed-norm space.
Theorem 2.2 Suppose P=(p1, …, pm)≥1, Q=(q1, …, qm)≥1, and for all i=1, …, m, 0 <
$ {\left\| {{H_{{\beta _1}, \cdots ,{\beta _m}}}} \right\|_{{L^\mathit{\boldsymbol{p}}}\left( {{\mathbb{R}^{{n_1}}} \times \cdots \times {\mathbb{R}^{{n_m}}}} \right) \to {L^{{\mathit{\boldsymbol{Q}}_I}}}\left( {{\mathbb{R}^{{n_1}}} \times \cdots \times {\mathbb{R}^{{n_m}}}} \right)}} = \prod\limits_{i \in I} {{C_i}} , $ | (10) |
where
$ {C_i} = {\left( {\frac{{{{p'}_i}}}{{{q_i}}}} \right)^{\frac{1}{{{q_i}}}}}{\left( {\frac{{{n_i}}}{{{q_i}{\beta _i}}} \cdot B\left( {\frac{{{n_i}}}{{{q_i}{\beta _i}}},\frac{{{n_i}}}{{{{q'}_i}{\beta _i}}}} \right)} \right)^{ - \frac{{{\beta _i}}}{{{n_i}}}}}. $ |
Proof We only prove the case m=2 and I={1} for simplification, that is to say, for p1>1 and p2≥1 we need to verify
$ {\left\| {{\mathbb{H}_{{\beta _1},{\beta _2}}}f} \right\|_{{L^{{\mathit{\boldsymbol{Q}}_I}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}} \leqslant {C_1} \cdot {\left\| f \right\|_{{L^{{p_1} \cdot {p_2}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}}, $ | (11) |
where the constant C1 is sharp.
Noting that, when
$ \begin{array}{*{20}{c}} {{{\left\| {\left( {{\mathbb{H}_{{\beta _1},{\beta _2}}}f} \right)\left( { \cdot ,{x_2}} \right)} \right\|}_{{L^{{q_1}}}\left( {{\mathbb{R}^{{n_1}}}} \right)}} \leqslant {C_1} \times } \\ {{{\left\| {\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {f\left( { \cdot ,{y_2}} \right){\text{d}}{y_2}} } \right\|}_{{L^{{p_1}}}\left( {{\mathbb{R}^{{n_1}}}} \right)}}.} \end{array} $ | (12) |
Using Lemma 1.1 (or Fubini's theorem), it is not hard for us to get
$ \begin{array}{*{20}{c}} {{{\left\| {\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} f \left( { \cdot ,{y_2}} \right){\text{d}}{y_2}} \right\|}_{{L^{{p_1}}}\left( {{\mathbb{R}^{{n_1}}}} \right)}}} \\ { = \frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}{{\left[ {\int_{{\mathbb{R}^{{n_1}}}} {{{\left| {\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} f \left( {{y_1},{y_2}} \right){\text{d}}{y_2}} \right|}^{{p_1}}}} {\text{d}}{y_1}} \right]}^{\frac{1}{{{p_1}}}}}} \\ { \leqslant \frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {{{\left[ {\int_{{\mathbb{R}^{{n_1}}}} {{{\left| {f\left( {{y_1},{y_2}} \right)} \right|}^{{p_1}}}} {\text{d}}{y_1}} \right]}^{\frac{1}{{{p_1}}}}}{\text{d}}{y_2}} .} \end{array} $ |
Theorem B tells us that, when
$ \begin{array}{*{20}{c}} {\left\| \; \right\|\frac{1}{{{{\left| {B\left( {0,\left| {{x_2}} \right|} \right)} \right|}^{1 - \frac{{{\beta _2}}}{{{n_2}}}}}}}\int_{\left| {{y_2}} \right| < \left| {{x_2}} \right|} {{{\left[ {\int_{{\mathbb{R}^{{n_1}}}} {{{\left| {f\left( {{y_1},{y_2}} \right)} \right|}^{{p_1}}}} {\text{d}}{y_1}} \right]}^{\frac{1}{{{p_1}}}}}} } \\ {{\text{d}}{y_2}\left\| {_{{L^{{p_1}}}\left( {{\mathbb{R}^{{n_1}}}} \right)}} \right.\left\| {_{{L^{{q_2},\infty }}\left( {{\mathbb{R}^{{n_2}}}} \right)}} \right. \leqslant 1 \cdot {{\left\| f \right\|}_{{L^{{p_1},{p_2}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}}.} \end{array} $ |
Based on the above estimates, we immediately obtain the inequality (11).
In order to show that C1 is the best, we construct a sharp function
$ F\left( {{x_1},{x_2}} \right) = {f_1}\left( {{x_1}} \right){f_2}\left( {{x_2}} \right), $ |
where
$ {f_1}\left( {{x_1}} \right) = \frac{1}{{{{\left( {1 + {{\left| {{x_1}} \right|}^{{q_1}{\beta _1}}}} \right)}^{1 + \frac{{{n_1}}}{{{q_1}{\beta _1}}}}}}}, $ |
and
$ {f_2}\left( {{x_2}} \right) = {\chi _1}\left( {\left| {{x_2}} \right|} \right). $ |
As stated in Theorem B, it means
$ \frac{{{{\left\| {{\mathbb{H}_{{\beta _{\text{1}}}}}{f_1}} \right\|}_{{L^{{p_1}}}\left( {{\mathbb{R}^{{n_1}}}} \right)}}}}{{{{\left\| {{f_1}} \right\|}_{_{{L^{{p_1}}}\left( {{\mathbb{R}^{{n_1}}}} \right)}}}}} = {C_1}. $ | (13) |
From the proof of Theorem A, we have
$ \frac{{{{\left\| {{\mathbb{H}_{{\beta _{\text{2}}}}}{f_2}} \right\|}_{w{L^{{p_2}}}\left( {{\mathbb{R}^{{n_2}}}} \right)}}}}{{{{\left\| {{f_2}} \right\|}_{_{{L^{{p_2}}}\left( {{\mathbb{R}^{{n_2}}}} \right)}}}}} = 1. $ | (14) |
Combining (13) with (14) we obtain
$ \begin{array}{*{20}{c}} {{{\left\| {{\mathbb{H}_{{\beta _1},{\beta _2}}}} \right\|}_{{L^{{p_1},{p_2}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right) \to {L^{{Q_I}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}}} \\ { = \mathop {\sup }\limits_{{{\left\| F \right\|}_{{L^{{p_1},{p_2}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}} \ne 0} \frac{{{{\left\| {{\mathbb{H}_{{\beta _1},{\beta _2}}}F} \right\|}_{{L^{{Q_I}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}}}}{{{{\left\| F \right\|}_{{L^{{p_1},{p_2}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}}}}} \\ { \geqslant \frac{{{{\left\| {{\mathbb{H}_{{\beta _1},{\beta _2}}}{f_1}{f_2}} \right\|}_{{L^{{Q_I}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}}}}{{{{\left\| {{f_1}{f_2}} \right\|}_{{L^{{p_1},{p_2}}}\left( {{\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}}} \right)}}}}} \\ { = \frac{{{{\left\| {{\mathbb{H}_{{\beta _1}}}{f_1}} \right\|}_{{L^{{p_1}}}\left( {{\mathbb{R}^{{n_1}}}} \right)}}}}{{{{\left\| {{f_1}} \right\|}_{{L^{{p_1}}}\left( {{\mathbb{R}^{{n_1}}}} \right)}}}} \cdot \frac{{{{\left\| {{\mathbb{H}_{{\beta _2}}}{f_2}} \right\|}_{{L^{{p_2}}}\left( {{\mathbb{R}^{{n_2}}}} \right)}}}}{{{{\left\| {{f_2}} \right\|}_{{L^{{p_2}}}\left( {{\mathbb{R}^{{n_2}}}} \right)}}}} = {C_1}.} \end{array} $ |
Thus we finish the proof.
We would like to remark that similar results have been deduced by authors of Ref.[11] for Hardy operator on higher-dimensional product spaces.
[1] |
Lu S Z, Zhao F Y, Yan D Y. Sharp bounds for Hardy type operators on higher-dimensional product spaces[J]. Journal of Inequalities and Applications, 2013, 2013(1): 1-11. DOI:10.1186/1029-242X-2013-1 |
[2] |
Zhao F Y, Lu S Z. The best bound for n-dimensional fractional Hardy operators[J]. Mathematical Inequalities and Appllications, 2015, 18(1): 233-240. |
[3] |
Wang S M, Lu S Z, Yan D Y. Explicit constants for Hardy's inequality with power weight on n-dimensional product spaces[J]. Science China Mathematics, 2012, 55(12): 2469-2480. DOI:10.1007/s11425-012-4453-4 |
[4] |
He Q J, Li X, Yan D Y. Sharp bounds for Hardy type operators on higher-dimensional product spaces[J]. Frontiers of Mathematics in China, 2018, 13(6): 1341-1353. DOI:10.1007/s11464-018-0740-x |
[5] |
Benedek A, Panzone R. The space Lp with mixed norm[J]. Duke Mathematical Journal, 1961, 28(3): 301-324. DOI:10.1215/S0012-7094-61-02828-9 |
[6] |
Benedek A, Calderón P, Panzone R. Convolution operators on Banach space valued functions[J]. Proceedings of the National Academy of Sciences, 1962, 48(3): 356-365. DOI:10.1073/pnas.48.3.356 |
[7] |
Fefferman R, Stein E M. Singular integrals on product spaces[J]. Advances in Mathematics, 1982, 45(2): 117-143. DOI:10.1016/S0001-8708(82)80001-7 |
[8] |
Journé J L. Calderón-Zygmund operators on product spaces[J]. Revista Matemática Iberoamericana, 1985, 1(3): 55-91. |
[9] |
Fernandez D L. Vector-valued singular integral operators on Lp-spaces with mixed norms and applications[J]. Pacific Journal of Mathematics, 1987, 129(2): 257-275. DOI:10.2140/pjm.1987.129.257 |
[10] |
Stefanov A, Torres R H. Calderón-Zygmund operators on mixed Lebesgue spaces and applications to null forms[J]. Journal of the London Mathematical Society, 2004, 70(2): 447-462. DOI:10.1112/S0024610704005502 |
[11] |
Wei M Q, Yan D Y. Sharp bounds for Hardy operators on product spaces[J]. Acta Mathematica Scientia, 2018, 38(2): 441-449. DOI:10.1016/S0252-9602(18)30759-8 |
[12] |
Hardy G H, Littlewood J E, Polya G. Inequalities[M]. New York: Cambridge University Press, 1934.
|