中国科学院大学学报  2019, Vol. 36 Issue (5): 590-597   PDF    
平行/重合D膜超势,Ooguri-Vafa不变量与类型Ⅱ弦理论/F理论对偶
蒋笑添, 杨富中     
中国科学院大学物理科学学院, 北京 100049
摘要: 利用类型Ⅱ弦理论/F理论对偶,第一次在平行和重合相区计算一个具体的双D膜系统的超势,并提取Ooguri-Vafa不变量。平行D膜相与重合D膜相间的相变也对应着D膜世界叶上规范理论规范对称性的提升U(1)×…×U(1)→Un)。计算显示这两个相区的超势截然不同,并给出不同的Ooguri-Vafa不变量。这意味着相变的发生导致两个相区能谱结构的差异。
关键词: 类型Ⅱ弦理论/F理论对偶    相变    超势    Ooguri-Vafa不变量    
Parallel/coincident D-brane superpotentials, Ooguri-Vafa invariants, and Type Ⅱ/F theory duality
JIANG Xiaotian, YANG Fuzhong     
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: The superpotential is very important physical observation in the topological string theory, and it determines the F-term of the low-energy effective theory and the string vacuum structure. Ooguri-Vafa invariants, as the counting number of BPS states, can be extracted from the superpotential, giving rise to the energy spectrum of the D-brane system. We compute the superpotentials and Ooguri-Vafa invariants for complicated D-brane system, namely double D-branes system, in the parallel and coincident phases using the Type Ⅱ/F theory duality for the first time. The coincidence of parallel D-branes leads to the enhancement of gauge symmetry U(1)×…×U(1)→U(n) in terms of gauge theory on the worldvolume of the D-branes being known as the phase transition between the parallel D-brane phase and the coincident D-brane phase. We find the difference between the Ooguri-Vafa invariants for the two phases giving rise to the distinct spectra. It can be viewed as an evidence of the phase transition.
Keywords: Type Ⅱ/F-theory duality    phase transition    superpotential    Ooguri-Vafa invariants    

在拓扑弦理论中,N=2的镜像对称将两个几何上不同的作为弦紧致化的Calabi-Yau流形联系起来,给出等价的物理模型。其中一个是由Kahler模参数决定的A模型,另一个是由复结构参数决定的B模型。引入D膜后超对称破缺到N=1,对应地给出到N=1的特殊几何,此时A/B模型间存在开闭镜像对称。类似于N=2超对称拓扑弦论中的预势,超对称为N=1时,对应于预势的物理量被称为非微扰全纯超势。它决定了低能有效理论中的F项和弦真空结构。与预势类似,得益于N=1的镜像对称非微扰有效超势可以通过在B模型中微扰计算得到。

考虑嵌入在Calabi-Yau三流形M3的除子D中的可约曲线$C = \sum\limits_i {{C_i}} $,将时空填充的D膜缠绕在C上面,那么有效超势可以由相对周期给出。相对周期即全纯(3, 0)形式Ω(3, 0) $ \left( {z, \hat z} \right)$在相对同调群H3(M3, D)中的元素γ上的积分:

$ {W_{N = 1}}(z,\hat z) = {\Pi _\gamma }(z,\hat z) = \int\limits_\gamma {{\Omega ^{(3,0)}}(z,\hat z)} , $ (1)

式中:z${\hat z} $分别表示闭弦模参数和开弦模参数。因此四维有效超势可以表示为相对周期基矢的线性组合[1-2]

$ \begin{array}{l} {W_{N = 1}}(z,\hat z) = \sum {{N_\alpha }} {\Pi _\alpha }(z,\hat z)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {W_{open}}(z,\hat z) + {W_{closed}}(z). \end{array} $ (2)

其中的组合系数Nα由D膜与背景流的拓扑荷决定,而$ {\Pi _\alpha }(z, \hat z)$表示开闭混合的相对周期积分。

另一方面,类型Ⅱ弦理论中的超势可以在F理论中找到一个对偶的描述。使得类型Ⅱ弦理论中的D膜超势对偶于F理论中的背景流超势。而背景流超势由作为F理论紧化靶空间的四流形的复结构参数给出。换句话说,在F理论中,其对偶类型Ⅱ弦理论中的开弦模与闭弦模被等同化为复结构参数存在[3]。这个对偶的存在也就提供了一种计算类型Ⅱ弦理论中的D膜超势的思路,允许我们研究在类型Ⅱ弦理论意义下的更为复杂的D膜系统。紧化在Calabi-Yau三流形上的类型Ⅱ弦理论的D膜超势可以通过在其对偶的,紧化在Calabi-Yau四流形上的F理论中的计算得到[4]。四维F理论中,在Calabi-Yau四流形M4上的四形式流G4贡献的超势实际上是以复结构模空间MCS(M4)为底的一个复线丛截面,也就是著名的Gukov-Vafa-Witten超势[5],形式如下[6]

$ \begin{array}{l} {W_{{\rm{GVW}}}} = \int\limits_{{M_4}} {{G_4} \wedge {\Omega ^{(4,0)}}} \\ \;\;\;\;\;\;\;\; = \sum\limits_\sigma {{N_\sigma }} \left( {{G_4}} \right){\Pi _\sigma }(z,\hat z) + O\left( {{g_s}} \right) + \\ \;\;\;\;\;\;\;\;\;O\left( {{{\rm{e}}^{ - 1/{g_s}}}} \right). \end{array} $ (3)

式中:gs是弦耦合强度而等式右边的领头项正是D膜超势WN=1公式(1)。当取得弱耦合极限gs→0时,由F理论的GVW超势WGVW可以得到D膜超势WN=1

$ \begin{array}{l} \mathop {\lim }\limits_{{g_s} \to 0} {W_{{\rm{GVW}}}}\left( {{M_4}} \right) = \sum\limits_\sigma {{N_\sigma }} \left( {{G_4}} \right){\Pi _\sigma }(z,\hat z)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {W_{N = 1}}\left( {{M_3},D} \right). \end{array} $ (4)

此时大部分的耦合自由度不再贡献到超势中来。

迄今为止,对于靶空间紧致的大部分D膜系统的超势计算都只涉及一个开弦形变参数[4, 7-13]。我们利用类型Ⅱ弦理论/F理论对偶中开闭弦模等价于复结构参数,以及复结构等信息完全包含在F理论的紧化四流形的组合数据中的优点,研究包含两张D膜的复杂D膜系统。D膜系统的平行相区与重合相区分别对应于D膜世界叶上的U(1)×…×U(1)与U(n)非阿贝尔规范理论。本文利用类型Ⅱ弦理论/F理论对偶,计算以P(1, 1, 2, 2, 6)为靶空间的双D膜系统的超势,并提取对应于平行相与重合相的U(1)和U(2) Ooguri-Vafa不变量。

1 平行/重合相的对偶四流形构造

本文讨论的Calabi-Yau流形为环簇环绕空间中的超曲面。篇幅所限,更详细的环簇的背景知识参见文献[14-17]。这里给出符号定义如下:$ \left( {{\nabla _4}, {\Delta _4}} \right)$是一对相互反射的多面体。(W3, M3)是一对镜像三流形,由环绕环簇$ \left(P_{\mathit{\Sigma}\left(\nabla_{4}\right)}, P_{\mathit{\Sigma}\left(\Delta_{4}\right)}\right)$中的超曲面定义。环簇${{P_{\mathit{\Sigma} \left( {{\Delta _4}} \right)}}} $由扇Σ(Δ4)给出,而扇由一组包含多面体Δ4各个面的锥构成。超曲面M3则由多面体$ {{\nabla _4}}$上的p个整点定义,即多项式P在环簇$ {{P_{\mathit{\Sigma} \left( {{\Delta _4}} \right)}}}$中的零截面:

$ P = \sum\limits_{i = 0}^{p - 1} {{a_i}} \prod\limits_{{v_j} \in {\Delta _4}} {x_j^{\left\langle {{v_j},v_i^*} \right\rangle + 1}} , $ (5)

式中:vi*$ {{\nabla _4}}$上的整点,vj是对偶多面体Δ4的顶点,而系数aj是与M3复结构参数相关的复参数。

我们考虑的n个平行D膜由可约除子表示:

$ \begin{array}{l} Q(D) = \prod\limits_{m = 0}^{n - 1} {\left( {{\phi _m}{a_0}\prod\limits_{{v_j} \in {\Delta _4}} {{x_j}} + {a_i}\prod\limits_{{v_j} \in {\Delta _4}} {x_j^{\left\langle {v,v_i^*} \right\rangle + 1}} } \right)} \\ \;\;\;\;\;\;\;\;\; = \sum\limits_{k = 0}^n {{b_k}} \prod\limits_{{\nu _j} \in {\Delta _4}} {x_j^{k\left( {v,v_i^*} \right) + n}} . \end{array} $ (6)

式中的不可约分支位于同一个单参数除子族${D_s} \equiv \phi {a_0}\prod\limits_{{v_j} \in {\Delta _4}} {{x_j}} + {a_{{_i}}}\prod\limits_{{v_j} \in {\Delta _4}} {x_j^{\left\langle {v, v_i^*} \right\rangle + 1}} $。参数bk描述n个D膜的开弦形变,而单个D膜的形变参数${\phi _m} $则分别描述n个平行D膜的位置状态。平行D膜相对应于规范理论的库伦分支,此时规范对称群为U(1)×U(1)×…×U(1), nU(1)相乘, 其中每个U(1)群描述包含库伦场的电磁理论。

类似于文献[13]中的构造,平行D膜的组合数据可以完全由一个高一维的多面体$ {{\tilde \nabla }_5}$记录。$ {{\tilde \nabla }_5}$则给出非紧的四流形${{\tilde W}_4} $。扩展多面体$ {{\tilde \nabla }_5}$的构造方式如下:

$ \tilde v_j^* = \left\{ {\begin{array}{*{20}{l}} {\left( {v_j^*,0} \right)}&{j = 0, \cdots ,p - 1}\\ {\left( {mv_i^*,1} \right)}&{j = p + m,0 \le m \le n} \end{array}} \right.. $ (7)

当平行D膜相互靠近并重合在一起时,规范群U(1)×U(1)×…×U(1)提升为U(n)。几何上看,非阿贝尔规范群与新构造的Calabi-Yau流形上的奇异性有关。这里用环几何的语言来描述,奇异曲线对应于对偶多面体的一维棱上的整点。环几何意义下的奇点减消过程是标准化的[18],即将这些棱上的整点全部补入环簇的定义点集,而补入的每一个点都对应于一个奇点减消后的Calabi-Yau流形上的例外除子,这个过程被称为吹胀(blow up)。

注意到我们在构造库伦相的扩展多面体时,在一条棱上加了n+1个新点描述n个平行的D膜,而填充在中间的n-1个整点正好减消了忽略它们时带来的$ {{\mathbb{Z}}_{n}}$奇异性。反过来想,可以通过抹去这n-1个内点恢复四流形的奇异性,进而构造重合相对应的多面体,给出提升后的U(n)规范群[19]。值得一提的是$ {{\mathbb{Z}}_{n}}$曲线奇异性对应的例外除子的相交矩阵与An-1的卡丹矩阵只相差一个自交归一化参数-1。

另外为了得到真正的F理论紧化四流形,进一步紧化非紧四流形${{\tilde W}_4} $。在超平面$Y = \left\{ {v \in {{\mathbb{R}}^5}} \right.|{v_5} = 0\left. {} \right\} $下方补充一个点,加上描述原紧化空间的点与描述D膜的点,所有的点定义了多面体${\nabla _5} $,也给出了真正的F理论紧化四流形W4

2 Picard-Fuchs微分方程组,局域解与相对周期

相对周期满足Picard-Fuchs微分方程组,而其微分算子可由GKZ系统较为方便地导出:

$ \begin{array}{*{20}{r}} {L\left( {{l^a}} \right) = \prod\limits_{k = 1}^{l_0^a} {\left( {{\vartheta _0} - k} \right)} \prod\limits_{l_j^a > 0} {\prod\limits_{k = 0}^{l_j^a - 1} {\left( {{\vartheta _j} - k} \right)} } }\\ { - {{( - 1)}^{l_0^a}}{z_a}\prod\limits_{k = 1}^{ - l_0^a} {\left( {{\vartheta _0} - k} \right)} \prod\limits_{l_j^a < 0} {\prod\limits_{k = 0}^{ - l_j^a - 1} {\left( {{\vartheta _j} - k} \right)} } ,} \end{array} $ (8)

式中:$ \vartheta_{j}=a_{j} \frac{\partial}{\partial a_{j}}$是对aj的对数求导算符,la是环簇(${{P_{\mathit{\Sigma} \left( {{\nabla _5}} \right)}}}$)的Mori锥生成元[20-23]。这些生成元也被称为规范线性西格玛模型(GLSM)的荷矢量[24]a∈{1, …, k=h1, 1(W4)}。

一方面,荷矢量la对应于$ {\nabla _5}$的最大三角剖分,也就给出了M4模空间中大复结构极限点附近的局域坐标:

$ {z_a} = {( - 1)^{l_0^a}}\prod\limits_j {a_{{j^j}}^{{l^a}}} . $ (9)

在大复结构相区,非微扰瞬子修正被以指数形式压制在这些复结构参数中。这组代数坐标环操作不变,可以对该相区进行很好的描述。另一方面,Mori锥与Kahler锥相互对偶,Mori锥生成元la的选定也给出了Kahler锥的一组对偶基,记做JaH1, 1(W4)。将对应的局域坐标记为ka,由于大复结构极限点对偶于大半径极限点,ka即Kahler模空间中的大半径极限点附近坐标,也被称为平坦坐标。

从F理论的观点来看,GKZ系统的算子由对应四流形的5维多面体的组合数据导出。所以该微分系统的解描述了四流形的周期积分,并依赖于四流形的复结构参数。然而从类型Ⅱ弦理论的观点来看,由于拓展多面体描述的是D膜系统的几何结构,这些局域解记录着开闭镜像映射,D膜超势等与开闭弦模相关的物理量。

在四流形这边,由文献[17]可知GKZ系统的局域解可以由基本周期导出,基本周期为

$ {w_0}(z;\rho ) = \sum\limits_{{m_1}, \cdots ,{m_a} \ge 0} {\frac{{\Gamma \left( { - \sum\limits_a {\left( {{m_a} + {\rho _a}} \right)} l_0^a + 1} \right)}}{{\prod\limits_{1 \le i \le p} \Gamma \left( {\sum\limits_a {\left( {{m_a} + {\rho _a}} \right)} l_i^a + 1} \right)}}{z^{m + \rho }}} . $ (10)

使用Frobenius方法可以得到整个周期矢量如下

$ \mathit{\boldsymbol{ \boldsymbol{\varPi} }}\left( z \right) = \left( {\begin{array}{*{20}{c}} {{\mathit{\Pi }_0} = }&{{{\left. {{w_0}(z;\rho )} \right|}_{\rho = 0}}}&{}\\ {{\mathit{\Pi }_{1,a}} = }&{{{\left. {{\partial _{{\rho _a}}}{w_0}(z;\rho )} \right|}_{\rho = 0}}}&{}\\ {{\mathit{\Pi }_{2,n}} = }&{{{\left. {\sum\limits_{{a_1},{a_2}} {{K_{{a_1},{a_2};n}}} {\partial _{{\rho _{{a_1}}}}}{\partial _{{\rho _{{a_2}}}}}{w_0}(z;\rho )} \right|}_{\rho = 0}}}&{}\\ {}& \vdots &{} \end{array}} \right). $ (11)

式中:n∈{1, …, h},h等于上同调群H4(M4)的维数。公式(11)中Ka1, a2; n为基本周期w0二阶导的组合系数。镜像对称猜想给出A模型一侧的对偶周期矢量如下:

$ {\mathit{\boldsymbol{ \boldsymbol{\varPi} }}^*}(k) = \left( {\begin{array}{*{20}{c}} {\mathit{\Pi }_0^* = }&1&{}\\ {\mathit{\Pi }_{1,a}^* = }&{{k_a}}&{}\\ {\mathit{\Pi }_{2,n}^* = }&{\sum\limits_{{a_1},{a_2}} {K_{{a_1},{a_2};n}^*} {k_{{a_1}}}{k_{{a_2}}} + {b_n} + F_n^{{\rm{inst}}}}&{}\\ {}& \vdots &{} \end{array}} \right). $ (12)

式中:ka=Π1, a/Π即上文所提的平坦坐标,且K*a1, a2; n=Ka1, a2; n。领头阶的组合系数K*a1, a2; n决定了超势的经典项,它可以由对偶于四形式背景流G4的四维环π4*H4(W4, Z)上的积分得到。bn是与我们讨论无关的常数,Fninst为解的瞬子修正部分。

在D膜几何的相对周期这侧,取到弱耦合极限时,上面四流形对应的GKZ系统的解将给出对应于开闭镜像映射,体势能(bulk potential),超势的相对周期。相对周期矢量有如下形式

$ \mathop {\lim }\limits_{{g_s} \to 0} {\mathit{\boldsymbol{ \boldsymbol{\varPi} }}^*}(k) = \left( {1,t,\hat t,{F_t}(t),W(t,\hat t), \cdots } \right). $ (13)

式中:t$ {\hat t}$分别为开闭平坦坐标;$ F_{t}(t) \equiv \partial_{t} F ( t )$只依赖于闭弦模tF(t)为N=2预势,它在开弦部分的对应项为超势$W\left( {t, \hat t} \right) $。平坦坐标可以分别在A模型的大半径极限点与B模型的大复结构极限点附近找到,它们之间的对应关系定义了镜像映射如下

$ {k_a}(z) = \frac{{{\mathit{\Pi }_{1,a}}(z)}}{{{\mathit{\Pi }_0}}}. $ (14)

通过对{ka}线性组合可以将开闭弦Kahler模参数分离。

瞬子修正项可以写为$q_{i}=\exp \left(2 \pi \mathrm{i} t_{i}\right) $${{\hat q}_i} = \exp \left( {2\pi {\rm{i}}{{\hat t}_i}} \right) $的级数展开:

$ {F^{{\rm{inst}}}}(t,\hat t) = \sum\limits_{\vec r,\vec s} {{G_{\vec r,\vec s}}} {q^r}{\hat q^s} = \sum\limits_n {\sum\limits_{\vec r,\vec s} {\frac{{{N_{r,s}}}}{{{n^2}}}} } {q^{nr}}{\hat q^{ns}}. $ (15)

(15) 式中以相对同伦类$\boldsymbol{s} \in H_{1}(L), \boldsymbol{r} \in H_{2}\left(W_{3}\right) $为指标的{Gr, s}为Gromov-Witten不变量,{Nr, s}为Ooguri-Vafa不变量。

3 超势计算与Ooguri-Vafa不变量提取

本节我们将以双D膜在P(1, 1, 2, 2, 6)上为例,利用类型Ⅱ弦理论/F理论对偶进行超势的计算与Ooguri-Vafa不变量的提取。三流形P(1, 1, 2, 2, 6)是由在环绕环簇$ {{P_{\mathit{\Sigma} \left( {{\Delta _4}} \right)}}}$中的多项式

$ \begin{array}{l} P = {a_1}x_1^{12} + {a_2}x_2^{12} + {a_3}x_3^6 + {a_4}x_4^6 + {a_5}x_5^2 + {a_6}x_1^6x_2^6 + \\ \;\;\;\;\;\;{a_0}{x_1}{x_2}{x_3}{x_4}{x_5} \end{array} $ (16)

定义的超曲面给出的。定义环簇的多面体Δ4顶点如下:

$ \begin{array}{*{20}{l}} {{v_1} = (1,1,1,1),{v_2} = ( - 11,1,1,1),}\\ {{v_3} = (1, - 5,1,1),}\\ {{v_4} = (1,1, - 5,1),{v_5} = (1,1,1, - 1).} \end{array} $ (17)
3.1 平行D膜相

我们考虑由可约除子D=D1+D2描述的平行D膜。其定义多项式为

$ \begin{array}{*{20}{c}} {Q = {b_0}{{\left( {{x_1}{x_2}{x_3}{x_4}{x_5}} \right)}^2} + {b_1}{x_1}{x_2}{x_3}{x_4}x_5^3 + {b_2}x_5^4}\\ { \sim \prod\limits_{i = 1}^2 {\left( {{\phi _i}{a_0}{x_1}{x_2}{x_3}{x_4}{x_5} + {a_2}x_5^2} \right)} .} \end{array} $ (18)

根据第2节阐述的构造方法,描述开闭系统的扩展多面体${{\tilde \nabla }_5} $顶点如下:

$ \begin{array}{*{20}{l}} {\tilde v_0^* = (0,0,0,0,0),\tilde v_1^* = (1,2,2,6,0),\tilde v_2^* = ( - 1)}\\ {0,0,0,0),\tilde v_3^* = (0, - 1,0,0,0),\tilde v_4^* = (0,0, - 1}\\ {0,0),\tilde v_5^* = (0,0,0, - 1,0),\tilde v_6^* = (0,1,1,3,0)}\\ {\tilde v_7^* = (0,0,0,0,1),\tilde v_8^* = (0,0,0, - 1,1),\tilde v_9^* = (0}\\ {0,0, - 2,1).} \end{array} $ (19)

此时${{\tilde \nabla }_5} $对应的四流形非紧,为得到F理论紧化四流形W4对应的多面体${{\tilde \nabla }_5} $,除(19)中的顶点补充一个顶点$ \tilde{v}_{c}^{*}=(0, 0, 0, 0, -1)$

${{\tilde \nabla }_5} $对应的Mori锥生成元为:

$ \begin{array}{*{20}{c}} {}&{}&{\begin{array}{*{20}{c}} 0&1&2&3&4&5&6&7&8&9&c \end{array}}\\ {{l^1}}& = &{\left( {\begin{array}{*{20}{c}} { - 3}&0&0&1&1&0&1&{ - 3}&3&0&0 \end{array}} \right)}\\ {{l^2}}& = &{\left( {\begin{array}{*{20}{c}} 0&1&1&0&0&0&{ - 2}&0&0&0&0 \end{array}} \right)}\\ {{l^3}}& = &{\left( {\begin{array}{*{20}{c}} 0&0&0&0&0&0&0&1&{ - 2}&1&0 \end{array}} \right)}\\ {{l^4}}& = &{\left( {\begin{array}{*{20}{c}} { - 1}&0&0&0&0&1&0&0&1&{ - 1}&0 \end{array}} \right)}\\ {{l^5}}& = &{\left( {\begin{array}{*{20}{c}} 0&0&0&0&0&{ - 2}&0&0&0&1&1 \end{array}} \right)} \end{array}. $ (20)

Kahler形式可写为$ J=\sum\limits_{a} k_{a} J_{a}, \left\{J_{a}\right\}$对偶于Mori锥生成元(20),构成上同调群H1, 1(W4)的基。这里的ka即镜像四流形W4的Kahler模空间的平坦坐标。多面体${\nabla _5} $中的每个顶点$ \tilde v_i^*$对应一个环除子Di。遍历任意两个环除子的交$ D_{\mathrm{i}} \cap D_{\mathrm{j}}$,构造同调群H4(W4)的基。这里挑选出对应于预势与超势的群元:

$ {\gamma _1} = {D_1} \cap {D_{10}},{\gamma _2} = {D_7} \cap {D_8},{\gamma _3} = {D_8} \cap {D_9}, $ (21)

为分离开闭弦模参数,做如下变量代换:

$ {t_1} = {k_1} + 3\left( {{k_3} + {k_4}} \right),{t_2} = {k_2},{\hat t_1} = {k_3} + {k_4},{\hat t_2} = {k_4}. $ (22)

那么对应于γ1γ2γ3的周期积分的领头项如下:

$ \begin{array}{*{20}{l}} {\mathit{\tilde \Pi }_{2,1}^* = t_1^2,\mathit{\tilde \Pi }_{2,2}^* = 3{{\left( {{t_1} - {{\hat t}_1}} \right)}^2} + 3\left( {{t_1} - {{\hat t}_1}} \right){t_2},}\\ {\mathit{\tilde \Pi }_{2,3}^* = 3{{\left( {{t_1} - {{\hat t}_2}} \right)}^2} + 3\left( {{t_1} - {{\hat t}_2}} \right){t_2}.} \end{array} $ (23)

其中$\mathit{\widetilde \Pi} _{2, 1}^* $仅依赖于闭弦模,对应于体势能(bulk potential)函数Ft(t)。而$\mathit{\widetilde \Pi} _{2, 2}^* $, $ \mathit{\widetilde \Pi} _{2, 3}^*$则即依赖开弦模也依赖闭弦模,即D模超势的领头项。

下面从GKZ系统的解中挑选出领头项与$\mathit{\widetilde \Pi} _{2, 1}^* $, $\mathit{\widetilde \Pi} _{2, 2}^* $$\mathit{\widetilde \Pi} _{2, 3}^* $匹配的解,得到完整的体势能与超势。使用代数坐标:

$ {z_1} = \frac{{{a_3}{a_4}{a_6}b_1^3}}{{a_0^3b_0^3}},{z_2} = \frac{{{a_1}{a_2}}}{{a_6^2}},{z_3} = \frac{{{b_0}{b_2}}}{{b_1^2}},{z_4} = \frac{{{a_5}{b_1}}}{{{a_0}{b_2}}}. $ (24)

由公式(10)可得基本周期与对数周期:

$ \begin{array}{*{20}{c}} {{\mathit{\Pi }_0}(z) = {w_0}(z;0),{\mathit{\Pi }_{1,i}}(z) = {{\left. {{\partial _{{\rho _i}}}{w_0}(z;\rho )} \right|}_{{\rho _i} = 0}},}\\ {{\mathit{\Pi }_{2,n}}(z) = \sum\limits_{i,j} {{K_{i,j:n}}{{\left. {{\partial _{{\rho _i}}}{\partial _{{\rho _j}}}{w_0}(z;\rho )} \right|}_{\rho = 0}}} .} \end{array} $ (25)

平坦坐标有

$ {k_i} = \frac{{{\mathit{\Pi }_{1,i}}(z)}}{{{\mathit{\Pi }_0}(z)}} = \frac{1}{{2{\rm{ \mathsf{ π} i}}}}\log {z_i} + \cdots , $ (26)

$ q_{i}=\exp \left(2 \pi \mathrm{i} k_{i}\right), i=1, 2, 3, 4$,则开闭混合镜像逆映射为:

$ \begin{array}{l} {z_1} = {q_1} + 7{q_1}{q_2} + 21{q_1}q_2^2 + {q_1}{q_3} + 7{q_1}{q_2}{q_3} + \\ 21{q_1}q_2^q{q_3} - 2{q_1}{q_3}{q_4} + 6q_1^2{q_3}{q_4} - 14{q_1}{q_2}{q_3}{q_4} + \cdots ,\\ {z_2} = {q_2} - 2q_2^2 - 2{q_1}{q_2}{q_3}{q_4} + 36{q_1}q_2^2{q_4} + \\ 5q_1^2{q_2}{q_3}q_4^2 - 140q_1^2q_2^2q_3^2q_4^2 + \cdots ,\\ {z_3} = {q_3} - 2q_3^2 - {q_3}{q_4} + 5q_3^2{q_4} - 3q_3^2q_4^2 + \cdots ,\\ {z_4} = {q_4} + {q_3}{q_4} + q_4^2 + q_3^2q_4^2 + \cdots . \end{array} $ (27)

由领头项(23),得到A模型中的闭弦周期与D膜超势如下:

$ \begin{array}{l} {F_t}(t) = t_1^2 + \frac{1}{{4{\pi ^2}}}\left( {2{q_2} + 2496{q_1}{q_2} + \frac{{q_2^2}}{2} + \frac{{2q_2^3}}{9} + } \right.\\ \left. {\frac{{q_2^4}}{8} + \cdots } \right),\\ {W_1}\left( {t,{{\hat t}_1}} \right) = 3{\left( {{t_1} - {{\hat t}_1}} \right)^2} - 3\left( {{t_1} - {{\hat t}_1}} \right){t_2} + \\ \frac{1}{{4{\pi ^2}}}\left( {3744{q_1} + 3744{q_1}{q_2} - 2538{q_1}\hat q_1^{ - 1} - 2538{q_1}{q_2}\hat q_1^{ - 1} + } \right.\\ \left. {108{{\hat q}_1} + 2538{q_1}{{\hat q}_1} + 2538{q_1}{q_2}{{\hat q}_1} + 27\hat q_1^2 + \cdots } \right),\\ {W_2}\left( {t,{{\hat t}_2}} \right) = 3{\left( {{t_1} - {{\hat t}_2}} \right)^2} - 3\left( {{t_1} - {{\hat t}_2}} \right){t_2} + \\ \frac{1}{{4{\pi ^2}}}\left( {3744{q_1} + 3744{q_1}{q_2} - 2538{q_1}\hat q_2^{ - 1} - 2538{q_1}{q_2}\hat q_2^{ - 1} + } \right.\\ \left. {108{{\hat q}_2} + 2538{q_1}{{\hat q}_2} + 2538{q_1}{q_2}{{\hat q}_2} + 27{{\hat q}_2} + \cdots } \right). \end{array} $ (28)

式中:$q_{i}=\exp \left(2 \pi \mathrm{i} t_{i}\right), \hat{q}_{i}=\exp \left(2 \pi i \hat{t}_{i}\right)\{i=1, 2\} $。闭弦周期Ft(t)仅依赖于闭弦模参数t1t2。而D膜超势$ {W_1}\left( {t, {{\hat t}_1}} \right)$$ {W_2}\left( {t, {{\hat t}_2}} \right)$则同时依赖于开闭弦模参数,并在交换开弦模参数${{{\hat t}_1}} $$ {{{\hat t}_2}}$得到相同的超势的意义下,表现出Z2对称性。这与相互平行的两张D膜存在的位置上的Z2对称性相符。

表 1列出从平行相D膜超势$ {W_1}\left( {t, {{\hat t}_1}} \right)$中提取出的U(1)Ooguri-Vafa不变量。

表 1 P(1, 1, 2, 2, 6)中平行D膜超势${W_1}\left( {t, {{\hat t}_1}} \right) $U(1)Ooguri-Vafa不变量$\left\{N_{n_{1}, n_{2}, n_{3}, n_{4}}\right\} $ Table 1 The U(1) Ooguri-Vafa invariants $\left\{N_{n_{1}, n_{2}, n_{3}, n_{4}}\right\} $ for the superpotential ${W_1}\left( {t, {{\hat t}_1}} \right) $ of parallel D-branes on the P(1, 1, 2, 2, 6)
3.2 重合D膜相

根据扩展多面体${\nabla _5} $,在B模型一侧的对偶四流形M4的定义多项式

$ \begin{array}{*{20}{l}} {\tilde P = {a_1}x_1^{12}x_6^6 + {a_2}x_2^{12}x_7^6 + {a_3}x_3^6x_8^3 + {a_4}x_4^6x_9^3 + {a_5}x_5^2{x_6}{x_7}{x_8}{x_9}x_{10}^2 + }\\ {{a_6}x_1^6x_2^6x_6^3x_7^3 + {a_7}x_1^2x_2^2x_3^2x_4^2x_5^2 + {a_8}x_5^3{x_1}{x_2}{x_3}{x_4}{x_{10}} + {a_9}x_5^4x_{10}^2 + }\\ {{a_{10}}x_6^2x_7^2x_8^2x_9^2x_{10}^2 + {a_0}{x_1}{x_2}{x_3}{x_4}{x_5}{x_6}{x_7}{x_8}{x_9}{x_{10}}.} \end{array} $ (29)

为简化符号,仍使用ai计为定义多项式的系数。与上一子节中D膜几何定义多项式中的系数关系如下:

$ {a_i} = \left\{ {\begin{array}{*{20}{l}} {{a_i}}&{0 \le i \le 6,}\\ {{b_{i - 6}}}&{7 \le i \le 9,}\\ c&{i = 10.} \end{array}} \right. $ (30)

b12=4b0b2时,D膜的定义方程变为$Q \sim\left(\phi a_{0} x_{2} x_{3} x_{4} x_{5}+a_{5} x_{5}^{2}\right)^{2} $.这意味着两张平行D膜的位置参数相等$\phi_{1}=\phi_{2}=\phi $,即D膜重合。此时多项式$ \widetilde P$中出现完全平方项$ \left(x_{1} x_{2} x_{3} x_{4} x_{5} \pm x_{5}^{2} x_{10}\right)^{2}$,对应的在四流形M4上产生奇点。在A模型一侧,D膜重合对应着例外除子的吹落(blow down)并在W4上产生曲线奇异性。

注意到点$ \tilde{v}_{7}^{*}, \tilde{v}_{8}^{*}, \tilde{v}_{9}^{*}$位于同一条一维棱上,我们通过将点$\tilde v_8^* $抹去来恢复D膜重合时产生的奇异性。则重合D膜相区对应的荷矢量为:

$ \begin{array}{*{20}{c}} {}&{}&{\begin{array}{*{20}{c}} 0&1&2&3&4&5&6&7&9&c \end{array}}\\ {{l^1}}& = &{\left( {\begin{array}{*{20}{c}} { - 6}&0&0&2&2&0&2&{ - 3}&3&0 \end{array}} \right)}\\ {{l^2}}& = &{\left( {\begin{array}{*{20}{c}} 0&1&1&0&0&0&{ - 2}&0&0&0 \end{array}} \right)}\\ {{l^3}}& = &{\left( {\begin{array}{*{20}{c}} { - 2}&0&0&0&0&2&0&1&{ - 1}&0 \end{array}} \right)}\\ {{l^4}}& = &{\left( {\begin{array}{*{20}{c}} 0&0&0&0&0&{ - 2}&0&0&1&1 \end{array}} \right)} \end{array}. $ (31)

与平行相区类似,遍历任意两个环除子的交$ D_{\mathrm{i}} \cap D_{\mathrm{j}}$,构造同调群H4(W4)的基,并挑选出对应于预势与超势的群元:

$ {\gamma _1} = {D_1} \cap {D_9},{\gamma _2} = {D_2} \cap {D_8}. $ (32)

通过坐标变换

$ {t_1} = {k_1} + 3{k_3},{t_2} = {k_2},\hat t = {k_3} $ (33)

分离开闭弦模参数,则对应于γ1与2γ2的周期积分领头项为

$ \mathit{\tilde \Pi }_{2,1}^* = t_1^2,\mathit{\tilde \Pi }_{2,2}^* = 3{\left( {{t_1} - \hat t} \right)^2} + 3\left( {{t_1} - \hat t} \right){t_2}. $ (34)

注意到$\mathit{\widetilde \Pi} _{2, 1}^* $只依赖于闭弦模参数t1,即为闭弦周期的领头项,而$\mathit{\widetilde \Pi} _{2, 2}^* $则同时依赖于开闭弦模参数,即为我们感兴趣的重合D膜超势的领头项。

使用代数坐标:

$ {z_1} = \frac{{a_3^2a_4^2a_6^2a_9^3}}{{a_0^6a_7^3}},{z_2} = \frac{{{a_1}{a_2}}}{{a_6^2}},{z_3} = \frac{{a_5^2{a_7}}}{{a_0^2{a_9}}}. $ (35)

由公式(10)得到基本周期与对数周期如下:

$ \begin{array}{*{20}{c}} {{\mathit{\Pi }_0}(z) = {w_0}(z;0),{\mathit{\Pi }_{1,i}}(z) = {{\left. {{\partial _{{\rho _i}}}{w_0}(z;\rho )} \right|}_{{\rho _i} = 0}},}\\ {{\mathit{\Pi }_{2,n}}(z) = {{\left. {\sum\limits_{i,j} {{K_{i,j;n}}} {\partial _{{\rho _i}}}{\partial _{{\rho _j}}}{w_0}(z;\rho )} \right|}_{\rho = 0}}.} \end{array} $ (36)

平坦坐标有

$ {k_i} = \frac{{{\mathit{\Pi }_{1,i}}(z)}}{{{\mathit{\Pi }_0}(z)}} = \frac{1}{{2\pi {\rm{i}}}}\log {z_i} + \cdots . $ (37)

$ q_{i}=\exp \left(2 \pi \mathrm{i} k_{i}\right), i=1, 2, 3$,则开闭混合镜像逆映射为:

$ \begin{array}{l} {z_1} = {q_1} + 90q_1^2 + 2{q_1}{q_2} + 540q_1^2{q_2} + {q_1}q_2^2 - 3{q_1}{q_3} - \\ 4230q_1^2{q_3} - 6{q_1}{q_2}{q_3} + 3{q_1}q_3^2 + \cdots ,\\ {z_2} = {q_2} - 2q_2^2 + 3q_2^3 - 4q_2^4 + 166320{q_1}q_2^2q_3^3 - \\ 166320{q_1}q_2^3q_3^3 + \cdots ,\\ {z_3} = {q_3} - 30{q_1}{q_3} + 3525q_1^2{q_3} - 120{q_1}{q_2}{q_3} + q_3^2 + \\ 1290{q_1}q_3^2 + \ldots . \end{array} $ (38)

由领头项(34),得到A模型中的闭弦周期与D膜超势如下:

$ \begin{array}{l} {F_t}(t) = t_1^2 + \frac{1}{{4{\pi ^2}}}\left( {2214144{q_1} + 8{q_2}} \right. + \\ 22366944{q_1}{q_2} + 2q_2^2 - 1368144{q_1}q_2^2 + \frac{{8q_2^3}}{9} + \\ \left. {73266624{q_1}q_2^3 + \frac{{q_2^4}}{2} - 1351896{q_1}q_2^4 + \cdots } \right),\\ {W_c}(t,\hat t) = 3{\left( {{t_1} - \hat t} \right)^2} - 18\left( {{t_1} - \hat t} \right){t_2} + 27t_2^2 + \\ \frac{1}{{4{\pi ^2}}}\left( {\frac{{8972596{q_1}}}{5} + 12{q_2} + \frac{{389037924{q_1}{q_2}}}{5} + 3q_2^2} \right. - \\ 2532276{q_1}{{\hat q}^{ - 1}} - 10903464{q_1}{q_2}{{\hat q}^{ - 1}} + 216\hat q + \\ \left. {\frac{{394081848{q_1}\hat q}}{7} + 63{{\hat q}^2} + \cdots } \right). \end{array} $ (39)

式中:$q_{i}=\exp \left(2 \pi \mathrm{i} t_{i}\right), \hat{q}=\exp (2 \pi \mathrm{i} \hat{t})\{i=1, 2\} $。闭弦周期Ft(t)仅依赖于闭弦模参数t1t2。而D膜超势${W_{\rm{c}}}\left( {t, \hat t} \right) $则同时依赖于开闭弦模参数,表 2列出从重合D膜超势${W_{\rm{c}}}\left( {t, \hat t} \right) $中提取出的U(2)Ooguri-Vafa不变量。

表 2 P(1, 1, 2, 2, 6)中重合D膜超势$ {W_c}\left( {t, \hat t} \right)$U(2)Ooguri-Vafa不变量$\left\{ {{N_{{n_1}, {n_2}, {n_3}}}} \right\} $ Table 2 The U(2) Ooguri-Vafa invariants $\left\{ {{N_{{n_1}, {n_2}, {n_3}}}} \right\} $ for the superpotential ${W_{\rm{c}}}\left( {t, \hat t} \right) $ of coincident D-branes on the P(1, 1, 2, 2, 6)
4 总结

本文就双D膜在紧化空间P(1, 1, 2, 2, 6)上为例,用环簇的语言具体地构造了对应于平行D膜相与重合D膜相的对偶四流形。利用类型Ⅱ弦理论/F理论对偶得到了平行与重合时D膜贡献的超势,并分别提取对应的Ooguri-Vafa不变量。

两张处于不同位置的平行D膜间存在的离散Z2对称群被解释为非微扰的U(2)规范理论的外尔对称性,而该D膜系统的平行相也对应于U(2)规范理论的库伦分支。平行相区中的计算正如我们所预期的,由两张平行D膜分别贡献的超势在瞬子展开下也展现出了同样的外尔对称性。而在重合相区,D膜系统由平行D膜相相变为重合D膜相,开闭混合模空间中的形变参数自由度减少,原本相互独立的两个开弦参数约化为一个。D膜世界叶上的规范群也由原来的U(1)×U(1)提升为U(2)。

另外从平行、重合相区分别得到不同的Ooguri-Vafa不变量。即这两个相区对应着不同的BPS态能谱,这可以作为相变发生的一个证据。

参考文献
[1]
Lerche W, Mayr P, Warner N. Holomorphic N=1 special geometry of open-closed type-Ⅱ strings[EB/OL]. (2002-08-07)[2018-04-15]. https://arxiv.org/abs/hep-th/0207259.
[2]
Lerche W, Mayr P, Warner N. N=1 special geometry, mixed Hodge variations and toric geometry[EB/OL]. (2002-08-06)[2018-04-15]. https://arxiv.org/abs/hep-th/0208039.
[3]
Mayr P. N=1 mirror symmetry and open/closed string duality[J]. Advances in Theoretical and Mathematical Physics, 2002, 5: 213-242.
[4]
Alim M, Hecht M, Jockers H, et al. Hints for off-shell mirror symmetry in type Ⅱ/F-theory compactifications[EB/OL]. (2010-09-23)[2018-04-15]. https://arxiv.org/abs/0909.1842.
[5]
Gukov S, Vafa C, Witten E. CFT's from Calabi-Yau four-folds[J]. Nuclear Physics B, 2000, 584: 69-108. Doi:10.1016/S0550-3213(00)00373-4
[6]
Jockers H, Mayr P, Walcher J. On N=14d effective couplings for F-theory and heterotic Vacua[J]. Advances in Theoretical and Mathematical Physics, 2010, 14: 1 433-1 514. Doi:10.4310/ATMP.2010.v14.n5.a3
[7]
Jockers H, Soroush M. Effective superpotentials for compact D5-brane Calabi-Yau geometries[J]. Communications in Mathematical Physics, 2009, 290: 249-290. Doi:10.1007/s00220-008-0727-7
[8]
Xu F J, Yang F Z. Ooguri-Vafa invariants and off-shell superpotentials of Type-Ⅱ/F-theory compactification[J]. Chinese Physics C, 2014, 38(3): 33 103. Doi:10.1088/1674-1137/38/3/033103
[9]
Xu F J, Yang F Z. Type Ⅱ/F-theory superpotentials and Ooguri-Vafa invariants of compact Calabi-Yau threefolds with three deformations[J]. Modern Physics Letters A, 2014, 29: 1 450 062.
[10]
Cheng S, Xu F J, Yang F Z. Off-shell D-brane/F-theory effective superpotentials and Ooguri-Vafa invariants of several compact Calabi-Yau manifolds[J]. Modern Physics Letters A, 2014, 29: 1 450 061.
[11]
Zhang S S, Yang F Z. Mirror Symmetry, D-brane superpotential and Ooguri-Vafa invariants of compact Calabi-Yau manifolds[J]. Chinese Physics C, 2015, 39(12): 121 002. Doi:10.1088/1674-1137/39/12/121002
[12]
Zou H, Yang F Z. Effective superpotentials of type Ⅱ D-brane/F-theory on compact complete intersection Calabi-Yau threefolds[J]. Modern Physiscs Letters A, 2016, 31: 1 650 094. Doi:10.1142/S0217732316500942
[13]
Alim M, Hecht M, Mayr P, et al. Mirror symmetry for toric Branes on compact hypersurfaces[J]. Journal of High Energy Physics, 2009(9): 126. Doi:10.1088/1126-6708/2009/09/126
[14]
Batyrev V V. Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties[J]. Journal of Algebraic Geometry, 1994, 3: 493-545.
[15]
Hosomo S, Klemm A, Theisen S, et al. Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces[J]. Nuclear Physics B, 1995, 433: 501-554. Doi:10.1016/0550-3213(94)00440-P
[16]
Hosomo S, Klemm A, Theisen S, et al. Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces[J]. Communications in Mathematical Physics, 1995, 167: 301-350. Doi:10.1007/BF02100589
[17]
Hosono S, Lian B H, Yau S T. GKZ-generalized hypergeometric systems in mirror symmetry of Calabi-Yau hypersurfaces[J]. Communications in Mathematical Physics, 1996, 182: 535-557. Doi:10.1007/BF02506417
[18]
Fulton W. Introduction to toric varieties[M]. Princeton: Princeton University Press, 1993.
[19]
Bershadsky M, Vafa C. D-strings on D-manifolds[J]. Nuclear Physics B, 1996, 463: 398-414. Doi:10.1016/0550-3213(96)00024-7
[20]
Fujino O, Sato H. Introduction to the toric Mori theory[EB/OL]. (2004-04-04)[2018-04-15]. https://arxiv.org/abs/math/0307180.
[21]
Fujino O. Notes on toric varieties from Mori theoretic viewpoint[EB/OL]. (2001-12-10)[2018-04-15]. https://arxiv.org/abs/math/0112090v1.
[22]
Scaramuzza A. Smooth complete toric varieties: an algorithmic approach[D]. Rome: University of Roma Tre, 2007.
[23]
Renesse C V. Combinatiorial aspects of toric varieties[D]. University of Massachusetts Amherst, 2007.
[24]
Witten E. Phases of N=2 theories in two-dimensions[J]. Nuclear Physics B, 1993, 403: 159-222. Doi:10.1016/0550-3213(93)90033-L