本文研究一类具有强奇性的矩阵型偏微分方程。
$ \left\{ {\begin{array}{*{20}{l}} { - {\mathop{\rm div}\nolimits} \left( {\mathit{\boldsymbol{M}}(x){\nabla _u}} \right) = f(x){u^{ - p}} + \lambda {u^q},}&{{\rm{in }}\;\;\;\Omega ,}\\ {u > 0,}&{{\rm{in }}\;\;\;\Omega ,}\\ {u = 0,}&{{\rm{on }}\;\;\;\partial \Omega ,} \end{array}} \right. $ | (1) |
其中
1991年, 美国数学家Lazer和McKenna[1]研究一类特殊情形M(x)≡I, λ=0, 即方程
定理1.1 设Ω是
$ \int_{\Omega} f(x)\left|u_{0}\right|^{1-p} \mathrm{d} x<+\infty, $ | (2) |
那么对每一个λ>0方程(1)都有
定理1.2 设Ω是
注:在定理1.1和定理1.2中, 要求Ω具有光滑边界, 实际上只要Ω具有锥性质就足够了。因为只需要保证Sobolev嵌入定理成立, 具体可见文献[12]。
我们称u是方程(1)的
由于M(x)是实对称矩阵
$ \begin{array}{l} I(u) = \frac{1}{2}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla u{\rm{d}}x + \\ \;\;\;\;\;\;\;\;\;\;\frac{1}{{p - 1}}\int_\Omega f (x)|u{|^{1 - p}}{\rm{d}}x - \\ \;\;\;\;\;\;\;\;\;\;\frac{\lambda }{{1 + q}}\int_\Omega | u{|^{1 + q}}{\rm{d}}x. \end{array} $ | (3) |
需要注意, 由于强奇性(-p < -1), 泛函I在
$ \begin{array}{l} {N_1}: = \left\{ {u \in H_0^1(\Omega ):u > 0{\rm{ a}}{\rm{.e}}{\rm{.e}}{\rm{.in }}\Omega {\rm{ and }}} \right.\\ \;\;\;\;\;\;\;\;\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla u{\rm{d}}x - \int_\Omega f (x){u^{1 - p}}{\rm{d}}x - \\ \;\;\;\;\;\;\;\;\left. {\lambda \int_\Omega {{u^{1 + q}}} {\rm{d}}x \ge 0} \right\}, \end{array} $ | (4) |
$ \begin{array}{l} {N_2}: = \left\{ {u \in H_0^1(\Omega ):u > 0{\rm{ a}}{\rm{.e}}{\rm{. in }}\Omega {\rm{ and }}} \right.\\ \;\;\;\;\;\;\;\;\;\int_\Omega M (x){\nabla _u} \cdot \nabla u{\rm{d}}x - \int_\Omega f (x){u^{1 - p}}{\rm{d}}x - \\ \;\;\;\;\;\;\;\;\;\left. {\lambda \int_\Omega {{u^{1 + q}}} {\rm{d}}x = 0} \right\}. \end{array} $ | (5) |
这里用‖·‖表示
先介绍一些引理。
引理2.1 设M(x)是定义Ω上实对称矩阵, 满足存在正常数α, β使得
$ \begin{array}{*{20}{c}} {|\mathit{\boldsymbol{M}}(x)\mathit{\boldsymbol{\xi }} \cdot \mathit{\boldsymbol{\eta }}| \leqslant \frac{\beta }{{{\alpha ^{n - 1}}}}|\mathit{\boldsymbol{\xi }}||\mathit{\boldsymbol{\eta }}|,} \\ {\forall x \in \Omega ,\forall \mathit{\boldsymbol{\xi }},\mathit{\boldsymbol{\eta }} \in {\mathbb{R}^n}.} \end{array} $ | (6) |
证明 固定x∈Ω。因为M(x)是实对称矩阵, 所以存在正交矩阵Q(x)使得
$ \mathit{\boldsymbol{Q}}{\left( x \right)^{\text{T}}}\mathit{\boldsymbol{M}}\left( x \right)\mathit{\boldsymbol{Q}}\left( x \right) = \left( {\begin{array}{*{20}{c}} {{\lambda _1}\left( x \right)}&{}&{} \\ {}& \ddots &{} \\ {}&{}&{{\lambda _n}\left( x \right)} \end{array}} \right) $ |
其中
对任意
$ \begin{array}{l} \left| {\mathit{\boldsymbol{M\xi }} \cdot \mathit{\boldsymbol{\eta }}} \right| = \left| {\sum\limits_{i = 1}^n {{\lambda _i}{x_i}{y_i}} } \right|\\ = \left| {\left( {\prod\limits_{i = 1}^n {{\lambda _i}} } \right)\left( {\frac{{{\lambda _1}}}{{\Pi {\lambda _i}}}{x_1}{y_1} + \frac{{{\lambda _2}}}{{\Pi {\lambda _i}}}{x_2}{y_2} + \cdots + \frac{{{\lambda _n}}}{{\Pi {\lambda _i}}}{x_n}{y_n}} \right)} \right|\\ = |\det \mathit{\boldsymbol{M}}(x)|\left| {\left( {\frac{{{\lambda _1}}}{{\Pi {\lambda _i}}}{x_1}{y_1} + \frac{{{\lambda _2}}}{{\Pi {\lambda _i}}}{x_2}{y_2} + \cdots + \frac{{{\lambda _n}}}{{\Pi {\lambda _i}}}{x_n}{y_n}} \right)} \right|\\ \le \frac{\beta }{{{\alpha ^{n - 1}}}}\left| \mathit{\boldsymbol{x}} \right|\left| \mathit{\boldsymbol{y}} \right| = \frac{\beta }{{{\alpha ^{n - 1}}}}|\mathit{\boldsymbol{\xi }}||\mathit{\boldsymbol{\eta }}|, \end{array} $ |
因为
引理2.2 在
$ \left(H_{0}^{1}(\Omega),\|\cdot\|_{1}\right)^{*}=\left(H_{0}^{1}(\Omega),\|\cdot\|\right)^{*}。$ |
证明 根据M(x)的性质和引理2.1, 可以得到
$ \begin{array}{l} 0 \le \alpha \int_\Omega | \nabla u{|^2} \le \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla u\\ \;\; \le \int_\Omega {\left| {\mathit{\boldsymbol{M}}(x)\nabla u \cdot \nabla u} \right|} \le \frac{\beta }{{{\alpha ^{n - 1}}}}\int_\Omega | \nabla u{|^2} < + \infty . \end{array} $ |
从而‖·‖1:
$ \begin{array}{l} \left\| {u + v} \right\|_1^2 = \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla (u + v) \cdot \nabla (u + v)\\ \;\;\;\;\;\;\;\;\;\;\;\; = \int_\Omega \mathit{\boldsymbol{M}} \nabla u \cdot \nabla u + 2\int_\Omega \mathit{\boldsymbol{M}} \nabla u \cdot \nabla v + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\int_\Omega \mathit{\boldsymbol{M}} \nabla v \cdot \nabla v, \end{array} $ | (7) |
$ \begin{array}{*{20}{r}} {{{\left( {{{\left\| u \right\|}_1} + {{\left\| v \right\|}_1}} \right)}^2} = \int_\Omega \mathit{\boldsymbol{M}} \nabla u \cdot \nabla u + \int_\Omega \mathit{\boldsymbol{M}} \nabla v \cdot \nabla v + }\\ {2{{\left( {\int_\Omega \mathit{\boldsymbol{M}} \nabla u \cdot \nabla u} \right)}^{\frac{1}{2}}}{{\left( {\int_\Omega \mathit{\boldsymbol{M}} \nabla v \cdot \nabla v} \right)}^{\frac{1}{2}}}.} \end{array} $ |
由于M(x)是正定矩阵, 从而存在实可逆矩阵M1(x)使得
$ \begin{array}{l} \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla v \le \int_\Omega {\left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla u \cdot {\mathit{\boldsymbol{M}}_1}(x)\nabla v} \right|} \\ \;\;\;\; \le \int_\Omega {\left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla u} \right|} \cdot \left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla v} \right|\\ \;\;\;\; \le {\left( {\int_\Omega {{{\left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla u} \right|}^2}} } \right)^{\frac{1}{2}}}{\left( {\int_\Omega {{{\left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla v} \right|}^2}} } \right)^{\frac{1}{2}}}\\ \;\;\;\; = {\left( {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla u} \right)^{\frac{1}{2}}}{\left( {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla v \cdot \nabla v} \right)^{\frac{1}{2}}}. \end{array} $ | (8) |
结合式(7), 可推得
$ \|u+v\|_{1} \leqslant\|u\|_{1}+\|v\|_{1} . $ |
故‖·‖1是
$ \left(H_{0}^{1}(\Omega),\|\cdot\|_{1}\right)^{*}=\left(H_{0}^{1}(\Omega),\|\cdot\|\right)^{*}. $ |
引理2.3 N1是闭集。
证明 设
$ \begin{array}{l} \int_\Omega f (x)u_i^{1 - p}{\rm{d}}x \le \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla u\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le \frac{\beta }{{{\alpha ^{n - 1}}}}\int_\Omega {{{\left| {\nabla {u_i}} \right|}^2}} {\rm{d}}x, \end{array} $ |
从而
$ \begin{array}{l} \mathop {\lim \inf }\limits_{i \to \infty } \int_\Omega f (x)u_i^{1 - p}{\rm{d}}x \le \mathop {\lim \inf }\limits_{i \to \infty } \frac{\beta }{{{\alpha ^{n - 1}}}}\int_\Omega {{{\left| {\nabla {u_i}} \right|}^2}} {\rm{d}}x\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{\beta }{{{\alpha ^{n - 1}}}}\int_\Omega {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} < + \infty . \end{array} $ |
根据Fatou引理知
$ \begin{array}{l} \int_\Omega f (x){u^{1 - p}}{\rm{d}}x \le \mathop {\lim \inf }\limits_{i \to \infty } \int_\Omega f (x)u_i^{1 - p}{\rm{d}}x\\ \le \mathop {\lim \inf }\limits_{i \to \infty } \left[ {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i}{\rm{d}}x - \frac{\lambda }{{1 + q}}\int_\Omega {u_i^{1 + q}} {\rm{d}}x} \right]. \end{array} $ | (9) |
因为
$ \begin{array}{l} \int_\Omega f (x){u^{1 - p}}{\rm{d}}x \le \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla u{\rm{d}}x - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{\lambda }{{1 + q}}\int_\Omega {{u^{1 + q}}} {\rm{d}}x, \end{array} $ |
所以u∈N1。因此N1是闭集。
引理2.4 设u0∈
$ \int_\Omega f (x){\left| {{u_0}} \right|^{1 - p}}{\rm{d}}x < + \infty , $ |
则存在唯一的
1)
2) t(u0)u0∈N2。
证明 因为
$ \begin{array}{l} \frac{{{\rm{d}}I\left( {t{u_0}} \right)}}{{{\rm{d}}t}} = t\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_0} \cdot \nabla {u_0} - {t^{ - p}}\int_\Omega f (x){\left| {{u_0}} \right|^{1 - p}} - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\lambda {t^q}\int_\Omega {{{\left| {{u_0}} \right|}^{1 + q}}} , \end{array} $ | (10) |
容易看出dI(tu0)/dt在(0, +∞)内有唯一零点, 记为t(u0)=t0, 而且在区间(0, t0)内dI(tu0)/dt < 0, 在区间(t0, +∞)内dI(tu0)/dt>0, 说明I(tu0),
$ \begin{array}{l} t_0^2\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_0} \cdot \nabla {u_0}{\rm{d}}x - t_0^{1 - p}\int_\Omega f (x){\left| {{u_0}} \right|^{1 - p}}{\rm{d}}x - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\lambda t_0^{1 + q}\int_\Omega {{{\left| {{u_0}} \right|}^{1 + q}}} {\rm{d}}x = 0, \end{array} $ | (11) |
所以t(u0)u0∈N2。
引理2.5 泛函I在N1中下半连续。
证明 设ui→u (
$ I(u) \le \mathop {\lim }\limits_{i \to \infty } \inf I\left( {{u_i}} \right). $ | (12) |
同引理2.3中的证明,由Fatou引理可知对ui的一个子列成立(仍记为ui)
$ \frac{1}{{p - 1}}\int_\Omega f (x){u^{1 - p}}{\rm{d}}x \le \mathop {\lim \inf }\limits_{i \to \infty } \frac{1}{{p - 1}}\int_\Omega f (x)u_i^{1 - p}{\rm{d}}x. $ |
通过
引理2.6 存在常数C0>0,使得
证明 设u∈N1, 则
$ \frac{\beta }{{{\alpha ^{n - 1}}}}{\left\| u \right\|^2} \ge \int_\Omega {\left| {\mathit{\boldsymbol{M}}(x)\nabla u \cdot \nabla u} \right|} \ge \int_\Omega f (x){u^{1 - p}}. $ |
由反向Hölder不等式和Poincaré不等式可以得到
$ \begin{array}{*{20}{c}} {\int_\Omega f (x){u^{1 - p}}{\rm{d}}x \ge {{\left( {\int_\Omega f {{(x)}^{\frac{1}{p}}}} \right)}^p}{{\left( {\int_\Omega u } \right)}^{1 - p}},}\\ {\int_\Omega u {\rm{d}}x \le {{\left( {\int_\Omega {{u^2}} {\rm{d}}x} \right)}^{\frac{1}{2}}}|\Omega {|^{\frac{1}{2}}},}\\ {{{\left( {\int_\Omega u {\rm{d}}x} \right)}^{1 - p}} \ge C{{\left\| u \right\|}^{1 - p}}.} \end{array} $ |
从而可以得到
$ \|u\| \geqslant C_{0}. $ |
(这里C0与Ω, β, α, p, f(x)有关。)
引理2.7 定义
证明 根据引理2.1和Hölder不等式, 可得
由于M(x)是正定矩阵, 所以存在可逆矩阵M1(x), 使得
$ \begin{array}{l} \left| {J(u)} \right| = \left| {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla \varphi } \right|\\ \;\;\;\;\;\;\;\;\; \le \int_\Omega {\left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla u \cdot {\mathit{\boldsymbol{M}}_1}(x)\nabla \varphi } \right|} \\ \;\;\;\;\;\;\;\;\; \le \int_\Omega {\left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla u} \right|} \cdot \left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla \varphi } \right|\\ \;\;\;\;\;\;\;\;\; \le {\left( {\int_\Omega {{{\left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla u} \right|}^2}} } \right)^{\frac{1}{2}}}{\left( {\int_\Omega {{{\left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla \varphi } \right|}^2}} } \right)^{\frac{1}{2}}}\\ \;\;\;\;\;\;\;\;\; = {\left( {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla u} \right)^{\frac{1}{2}}}{\left( {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \varphi \cdot \nabla \varphi } \right)^{\frac{1}{2}}}\\ \;\;\;\;\;\;\;\;\; \le \frac{\beta }{{{\alpha ^{n - 1}}}}\left\| u \right\|\left\| \varphi \right\|. \end{array} $ |
接下来开始定理1.1的证明。
定理1.1的证明 由引理2.3, 2.4和2.5, 可知N1是闭集, N1非空, I在N1上有定义而且下半连续。因为
$ \begin{array}{l} I(u) \ge \frac{1}{2}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla u{\rm{d}}x - \frac{\lambda }{{1 + q}}\int_\Omega {{u^{1 + q}}} {\rm{d}}x\\ \;\;\;\;\;\; \ge \frac{\alpha }{2}{\left\| u \right\|^2} - C{\left\| u \right\|^{1 + q}}, \end{array} $ | (13) |
所以I在N1上有下界。从而根据Ekeland变分原理, 可取最优化极小值序列, 即存在序列
$ \begin{array}{l} \left. 1 \right)I\left( {{u_i}} \right) < \mathop {\inf }\limits_{{N_1}} I + \frac{1}{i};\\ \left. 2 \right)I\left( w \right) \ge I\left( {{u_i}} \right) - \frac{1}{i}\left\| {w - {u_i}} \right\|,\forall w \in {N_1}. \end{array} $ | (14) |
由于I在N1上强制, 可知{ui}有界, 即存在M>0, 使得‖ui‖≤M, 从而存在ui的一个子列(仍记为ui), 存在u*∈
$ u_{i} \rightarrow u^{*} \quad \text { in } \quad H_{0}^{1}(\Omega), $ | (15) |
$ u_{i} \rightarrow u^{*} \quad \text { in } \quad L^{r}(\Omega), \forall r \in\left[1, \frac{2 n}{n-2}\right), $ | (16) |
$ u_{i}(x) \rightarrow u^{*}(x) \quad \text { a.e.in } \Omega. $ | (17) |
下面证明
$ \begin{array}{l} \int_\Omega f (x)|u{|^{1 - p}} \le \int_\Omega {\left| {\mathit{\boldsymbol{M}}(x)\nabla u \cdot \nabla u} \right|} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le \frac{\beta }{{{\alpha ^{n - 1}}}}{\left\| u \right\|^2} < + \infty . \end{array} $ |
从而由引理2.4可知, 存在唯一的正实数t(u), 使得t(u)u∈N2而且I(t(u)u)≤I(u), 进而
$ \mathop {\inf }\limits_{{N_1}} I = \mathop {\inf }\limits_{{N_2}} I. $ |
下面需要分两种情况讨论。
情况1 {ui}中有一个子列位于N2内(下面仍把这个子列记为ui)。
固定
$ \int_\Omega f (x){\left( {{u_i} + t\varphi } \right)^{1 - p}}\int_\Omega f (x)u_i^{1 - p} < + \infty $ |
根据引理2.4,可知存在唯一的正实数, 记为
$ \left\{ {\begin{array}{*{20}{l}} {I\left[ {{f_{i,\varphi }}(t)\left( {{u_i} + t\varphi } \right)} \right] \le I\left[ {\theta \left( {{u_i} + t\varphi } \right)} \right],\forall \theta > 0,}\\ {{f_{i,\varphi }}(t)\left( {{u_i} + t\varphi } \right) \in {N_2}.} \end{array}} \right. $ |
下面证明
$ g(t): = \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \left( {{u_i} + t\varphi } \right) \cdot \nabla \left( {{u_i} + t\varphi } \right){\rm{d}}x,\forall t \ge 0, $ |
$ h(t): = \int_\Omega f (x){\left| {{u_i} + t\varphi } \right|^{1 - p}}{\rm{d}}x,\forall t \ge 0, $ |
$ k(t): = \int_\Omega {{{\left| {{u_i} + t\varphi } \right|}^{1 + q}}} {\rm{d}}x,\forall t \ge 0. $ |
根据引理2.2, 控制收敛定理以及
$ f_{i, \varphi}^{1-q}(t) g(t)=f_{i, \varphi}^{-p-q}(t) h(t)+\lambda k(t), $ | (18) |
任取t0∈[0, +∞), 考虑函数
$ f(x): = {x^{1 - q}}g\left( {{t_0}} \right) - \frac{1}{{{x^{p + q}}}}h\left( {{t_0}} \right) + \lambda k\left( {{t_0}} \right). $ |
能够得到f(x)在(0, +∞)内严格递增且在(0, +∞)内有唯一零点, 即
因为从引理2.4的证明中可以看出
定义
$ f_{i,\varphi }^\prime (0): = \mathop {\lim }\limits_{t \to {0^ + }} \frac{{{f_{i,\varphi }}(t) - 1}}{t} \in [ - \infty , + \infty ] $ |
如果极限不存在, 可取tk→0+, 记
下面证明
$ \begin{array}{l} 0 = f_{i,\varphi }^2\left( t \right)\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla \left( {{u_i} + t\varphi } \right) \cdot \nabla \left( {{u_i} + t\varphi } \right)} - \\ \;\;\;\;\;f_{i,\varphi }^{1 - p}\left( t \right)\int_\Omega {f\left( x \right){{\left( {{u_i} + t\varphi } \right)}^{1 - p}}} - \\ \;\;\;\;\;\lambda f_{i,\varphi }^{1 + q}\left( t \right)\int_\Omega {{{\left( {{u_i} + t\varphi } \right)}^{1 + q}}} - \\ \;\;\;\;\;\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + \int_\Omega f (x)u_i^{1 - p} + \lambda \int_\Omega {u_i^{1 + q}} \\ \;\;\;\;\; = \left( {f_{i,\varphi }^2(t) - 1} \right)\int_0 \mathit{\boldsymbol{M}} (x)\nabla \left( {{u_i} + t\varphi } \right) \cdot \nabla \left( {{u_i} + t\varphi } \right) + \\ \;\;\;\;\;2t\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi + {t^2}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \varphi \cdot \nabla \varphi - \\ \;\;\;\;\;\left( {f_{i,\varphi }^{1 - p}(t) - 1} \right)\int_\Omega f (x){\left( {{u_i} + t\varphi } \right)^{1 - p}} - \\ \;\;\;\;\;\int_\Omega f (x)\left( {{{\left( {{u_i} + t\varphi } \right)}^{1 - p}} - u_i^{1 - p}} \right) - \\ \;\;\;\;\;\lambda \left( {f_{i,\varphi }^{1 + q}(t) - 1} \right)\int_\Omega {{{\left( {{u_i} + t\varphi } \right)}^{1 + q}}} - \\ \;\;\;\;\;\lambda \int_\Omega {{{\left( {{u_i} + t\varphi } \right)}^{1 + q}}} - u_i^{1 + q}{\rm{d}}x. \end{array} $ |
从而利用
$ \begin{array}{l} 0 \ge \frac{{{f_{i,\varphi }}\left( t \right) - 1}}{t}\\ \left\{ {\left( {{f_{i,\varphi }}\left( t \right) + 1} \right)\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \left( {{u_i} + t\varphi } \right) \cdot \nabla \left( {{u_i} + t\varphi } \right) - } \right.\\ (1 - p){(1 + o(1))^{ - p}}\int_\Omega f (x){\left( {{u_i} + t\varphi } \right)^{1 - p}} - \\ \left. {\lambda (1 + q){{(1 + o(1))}^q}\int_\Omega {{{\left( {{u_i} + t\varphi } \right)}^{1 + q}}} } \right\} + \\ 2\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi + t\int_\Omega {\bf{M}} (x){\nabla _\varphi } \cdot {\nabla _\varphi } - \\ \lambda \int_\Omega {\frac{{{{\left( {{u_i} + t\varphi } \right)}^{1 + q}} - u_i^{1 + q}}}{t}} {\rm{d}}x, \end{array} $ | (19) |
其中o(1)表示当t→0+时的无穷小。利用控制收敛定理可以证明当t→0+时,
$ \int_{\Omega} \frac{\left(u_{i}+t \varphi\right)^{1+q}-u_{i}^{1+q}}{t} \mathrm{d} x \rightarrow(1+q) \int_{\Omega} u_{i}^{q} \varphi \mathrm{d} x. $ |
利用前面4个函数的连续性以及ui∈N2, 在式(19)两边令t→0+可得到
$ \begin{array}{*{20}{l}} {\lambda (1 + q)\int_\Omega {u_i^q} \varphi - 2\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi \ge f_{i,\varphi }^\prime (0)}\\ {\left[ {(1 - q)\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + (p + q)\int_\Omega f (x)u_i^{1 - p}} \right].} \end{array} $ | (20) |
利用Hölder不等式, 引理2.1, M(x)的性质以及
$ \left\{ \begin{array}{l} \int_\Omega {u_i^q} \varphi {\rm{d}}x \le \left\| {{u_i}} \right\|_{{L^{1 + q(\Omega )}}}^q{\left\| \varphi \right\|_{{L^{1 + q}}(\Omega )}}\\ \;\;\;\; \le C{\left\| {{u_i}} \right\|^q}\left\| \varphi \right\| \le C\left\| \varphi \right\|,\\ \left| {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi } \right| \le \frac{\beta }{{{\alpha ^{n - 1}}}}\left\| {{u_i}} \right\|\left\| \varphi \right\|\\ \;\;\; \le C\left\| \varphi \right\|,\\ \left( {1 - q} \right)\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + \left( {p + q} \right)\int_\Omega {f\left( x \right)u_i^{1 - p}} \\ \;\;\;\; \le \left( {1 - q} \right)\alpha C_0^2, \end{array} \right. $ |
其中还用到引理2.6和{ui}是有界的。结合式(20)得到
根据式(14)中的第2个结论以及
$ \begin{array}{l} I\left( {{u_i}} \right) \le I\left( {{f_{i,\varphi }}(t)\left( {{u_i} + t\varphi } \right)} \right) + \\ \;\;\;\;\;\;\;\;\;\;\;\;\frac{1}{i}\left\| {{u_i} - {f_{i,\varphi }}(t)\left( {{u_i} + t\varphi } \right)} \right\|. \end{array} $ |
代入计算, 因为ui∈N2, 得到
$ \begin{array}{l} \left( {\frac{1}{2} - \frac{1}{{1 - p}}} \right)\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + \\ \lambda \left( {\frac{1}{{1 - p}} - \frac{1}{{1 + q}}} \right)\int_\Omega {u_i^{1 + q}} \le \\ \left( {\frac{1}{2} - \frac{1}{{1 - p}}} \right)f_{i,\varphi }^2(t)\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \left( {{u_i} + t\varphi } \right) \cdot \\ \nabla \left( {{u_i} + t\varphi } \right) + \lambda \left( {\frac{1}{{1 - p}} - \frac{1}{{1 + q}}} \right)f_{i,\varphi }^{1 + q}(t) \cdot \\ \int_\Omega {{{\left( {{u_i} + t\varphi } \right)}^{1 + q}}} + \frac{1}{i}\left\| {\left( {1 - {f_{i,\varphi }}(t)} \right){u_i} - t{f_{i,\varphi }}(t)\varphi } \right\|. \end{array} $ |
从而有
$ \begin{array}{l} \frac{{{f_{i,\varphi }}(t) - 1}}{t}\left\{ {\left( {\frac{{ - 1}}{2} + \frac{1}{{1 - p}}} \right)\left( {{f_{i,\varphi }}(t) + 1} \right)} \right.\\ \;\;\;\;\;\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \left( {{u_i} + t\varphi } \right) \cdot \nabla \left( {{u_i} + t\varphi } \right) + \\ \;\;\;\;\;\left. {\lambda \left( {1 + \frac{{1 + q}}{{p - 1}}} \right){{(1 + o(1))}^q}\int_\Omega {{{\left( {{u_i} + t\varphi } \right)}^{1 + q}}} } \right\} - \\ \;\;\;\;\;\frac{1}{i}\left| {\frac{{{f_{i,\varphi }}(t) - 1}}{t}} \right|\left\| {{u_i}} \right\| \le \left( {\frac{1}{2} + \frac{1}{{p - 1}}} \right)\\ \;\;\;\;\;\left\{ {2\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi + t\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \varphi \cdot \nabla \varphi } \right\} + \\ \;\;\;\;\;\frac{1}{i}{f_{i,\varphi }}(t)\left\| \varphi \right\|. \end{array} $ |
在上式中令t→0+,
$ \begin{array}{l} f_{i,\varphi }^\prime (0)\left\{ { - 2\left( {\frac{1}{2} + \frac{1}{{p - 1}}} \right)\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + } \right.\\ \;\;\;\;\left. {\lambda \left( {1 + \frac{{1 + q}}{{p - 1}}} \right)\int_\Omega {u_i^{1 + q}} - \frac{1}{i}{\mathop{\rm sgn}} \left[ {f_{i,\varphi }^\prime (0)} \right]\left\| {{u_i}} \right\|} \right\}\\ \;\;\;\; \le 2\left( {\frac{1}{2} + \frac{1}{{p - 1}}} \right)\int_\Omega M (x)\nabla {u_i} \cdot \nabla \varphi + \frac{{\left\| \varphi \right\|}}{i}. \end{array} $ | (21) |
由引理2.6和ui∈N2可以得到,
$ \begin{array}{l} - 2\left( {\frac{1}{2} + \frac{1}{{p - 1}}} \right)\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + \\ \;\;\;\;\;\lambda \left( {1 + \frac{{1 + q}}{{p - 1}}} \right)\int_\Omega {u_i^{1 + q}} = \\ \;\;\;\;\; - \left( {\frac{{1 - q}}{{p - 1}}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + \frac{{p + q}}{{p - 1}}\int_\Omega f (x)u_i^{1 - p}} \right)\\ \;\;\;\;\; \le - \frac{{1 - q}}{{p - 1}}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i}\\ \;\;\;\;\; \le - \frac{{1 - q}}{{p - 1}}\alpha {\left\| {{u_i}} \right\|^2} \le - \frac{{1 - q}}{{p - 1}}\alpha C_0^2. \end{array} $ |
由于{ui}有界, 所以
$ \frac{1}{i}{\mathop{\rm sgn}} \left[ {f_{i,\varphi }^\prime (0)} \right]\left\| {{u_i}} \right\| \to 0(i \to \infty ). $ |
从而可知存在
$ \begin{array}{l} - 2\left( {\frac{1}{2} + \frac{1}{{p - 1}}} \right)\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + \\ \;\;\;\;\lambda \left( {1 + \frac{{1 + q}}{{p - 1}}} \right)\int_\Omega {u_i^{1 + q}} - \frac{1}{i}{\mathop{\rm sgn}} \left[ {f_{i,\varphi }^\prime (0)} \right]\left\| {{u_i}} \right\|\\ \;\;\;\; \le - \frac{{(1 - q)\alpha C_0^2}}{{2(p - 1)}} < 0 \end{array} $ | (22) |
结合式(21)和式(22)以及
$ C_{2} \leqslant f_{i, \varphi}^{\prime}(0) \leqslant C_{1}, \forall i>N $ |
根据式(14)中的第2个结论以及
$ \begin{array}{l} \frac{1}{{p - 1}}\int_\Omega {\frac{{f(x)u_i^{1 - p} - f(x){{\left( {{u_i} + t\varphi } \right)}^{1 - p}}}}{t}} {\rm{d}}x + \\ \frac{1}{{p - 1}}\frac{{\left( {{f_{i,\varphi }}(t) - 1} \right)(p - 1){{(1 + o(1))}^{ - p}}}}{t}\\ \int_\Omega f (x){\left( {{u_i} + t\varphi } \right)^{1 - p}} \le \frac{1}{2}\frac{{{f_{i,\varphi }}(t) - 1}}{t}\left( {{f_{i,\varphi }}(t) + 1} \right)\\ \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \left( {{u_i} + t\varphi } \right) \cdot \nabla \left( {{u_i} + t\varphi } \right) + \\ \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi + \frac{1}{2}t\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \varphi \cdot \nabla \varphi - \\ \frac{\lambda }{{1 + q}}\frac{{{f_{i,\varphi }}\left( t \right) - 1}}{t}\left( {1 + q} \right){\left( {1 + o\left( 1 \right)} \right)^q} \cdot \\ \int_\Omega {{{\left( {{u_i} + t\varphi } \right)}^{1 + q}}} - \frac{\lambda }{{1 + q}}\int_\Omega {\frac{{{{\left( {{u_i} + t\varphi } \right)}^{1 + q}} - u_i^{1 + q}}}{t}} + \\ \frac{1}{i}\frac{{\left| {{f_{i,\varphi }}\left( t \right) - 1} \right|}}{t}\left\| {{u_i}} \right\| + \frac{1}{i}{f_{i,\varphi }}\left( t \right)\left\| \varphi \right\|, \end{array} $ |
其中o(1)表示当t→0+时的无穷小。在上式中令t→0+取下极限, 因为ui∈N2, 可知
$ \begin{array}{l} \frac{1}{{p - 1}}\mathop {\lim \inf }\limits_{t \to {0^ + }} \int_\Omega {\frac{{f\left( x \right)u_i^{1 - p} - f\left( x \right){{\left( {{u_i} + t\varphi } \right)}^{1 - p}}}}{t}{\rm{d}}x} \le \\ \;\;\;\;\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi - \lambda \int_\Omega {u_i^q\varphi } + \\ \;\;\;\;\frac{{\left| {{{f'}_{i,\varphi }}\left( 0 \right)} \right|\left\| {{u_i}} \right\| + \left\| \varphi \right\|}}{i}. \end{array} $ | (23) |
另一方面,由Fatou引理可以得到
$ \begin{array}{l} (p - 1)\int_\Omega f (x)u_i^{ - p}\varphi \\ \;\;\;\;\;\;\; \le \mathop {\lim \inf }\limits_{t \to {0^ + }} \int_\Omega {\frac{{f(x)u_i^{1 - p} - f(x){{\left( {{u_i} + t\varphi } \right)}^{1 - p}}}}{t}} {\rm{d}}x. \end{array} $ | (24) |
由式(17)用Fatou引理, 并结合式(23)和式(24), 可得
$ \begin{array}{*{20}{c}} {\int_\Omega f (x){{\left( {{u^*}} \right)}^{ - p}}\varphi \le \mathop {\lim \inf }\limits_{i \to \infty } \left\{ {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi - } \right.}\\ {\left. {\lambda \int_\Omega {u_i^q} \varphi + \frac{{\left| {f_{i,\varphi }^\prime (0)} \right|\left\| {{u_i}} \right\| + \left\| \varphi \right\|}}{i}} \right\}.} \end{array} $ | (25) |
根据已知的一些结论,
$ \begin{array}{l} \int_\Omega f (x){\left( {{u^*}} \right)^{ - p}}\varphi \le \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^*} \cdot {\nabla _\varphi } - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\lambda \int_\Omega {{{\left( {{u^*}} \right)}^q}} \varphi . \end{array} $ | (26) |
注意式(26)是对任意的
$ \begin{array}{*{20}{c}} {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^*} \cdot \nabla {u^*} - \int_\Omega f (x){{\left( {{u^*}} \right)}^{1 - p}} - }\\ {\lambda \int_\Omega {{{\left( {{u^*}} \right)}^{1 + q}}} \ge 0,} \end{array} $ | (27) |
从而
由式(14)中第1个结论和式(16)可得
$ \begin{array}{l} \mathop {\inf }\limits_{{N_1}} I = \mathop {\lim }\limits_{i \to \infty } I\left( {{u_i}} \right) = \mathop {\lim \;inf}\limits_{i \to \infty } I\left( {{u_i}} \right) \ge \\ \;\;\;\;\;\;\;\;\;\;\mathop {\lim \inf }\limits_{i \to \infty } \frac{1}{2}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + \\ \;\;\;\;\;\;\;\;\;\;\mathop {\lim \inf }\limits_{i \to \infty } \frac{1}{{p - 1}}\int_\Omega f (x)u_i^{1 - p} - \frac{\lambda }{{1 + q}}\int_\Omega {{{\left( {{u^*}} \right)}^{1 + q}}} \\ \;\;\;\;\;\;\;\;\;\; \ge \frac{1}{2}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^ * } \cdot \nabla {u^ * } + \\ \;\;\;\;\;\;\;\;\;\;\frac{1}{{p - 1}}\int_\Omega {f\left( x \right){{\left( {{u^ * }} \right)}^{1 - p}}} - \\ \;\;\;\;\;\;\;\;\;\;\frac{\lambda }{{1 + q}}\int_\Omega {{{\left( {{u^ * }} \right)}^{1 + q}}} = I\left( {{u^ * }} \right)\\ \;\;\;\;\;\;\;\;\;\; \ge I\left( {t\left( {{u^ * }} \right){u^ * }} \right) \ge \mathop {\inf }\limits_{{N_2}} I = \mathop {\inf }\limits_{{N_1}} I. \end{array} $ | (28) |
式(28)中还用到了引理2.4和下面两个结论。
1) 由式(15)和引理2.2可知
$ {u_i}\;⇀\;{u^*}{\rm{ in }}\left( {H_0^1(\Omega ),{{\left\| \cdot \right\|}_1}} \right); $ |
2) 由式(17)和Fatou引理可知
$ \int_\Omega f (x){\left( {{u^*}} \right)^{1 - p}} \le \mathop {\lim \inf }\limits_{i \to \infty } \int_\Omega {f(x)u_i^{1 - p}} . $ |
由式(28)可以得到
情况2 对充分大的i有ui∈N1\N2。
固定φ∈
$ \int_\Omega {\frac{{{{\left( {{u_i} + t\varphi } \right)}^{1 + q}} - u_i^{1 + q}}}{t}} {\rm{d}}x \to (1 + q)\int_\Omega {u_i^q} \varphi {\rm{d}}x. $ |
因为ui∈N1\N2, 所以
$ \begin{array}{l} \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} - \int_\Omega f (x)u_i^{1 - p} - \\ \;\;\;\;\;\;\;\lambda \int_\Omega {u_i^{1 + q}} > 0. \end{array} $ |
由
$ \begin{array}{*{20}{l}} {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \left( {{u_i} + t\varphi } \right) \cdot \nabla \left( {{u_i} + t\varphi } \right) - }\\ {\;\;\;\;\int_\Omega f (x){{\left( {{u_i} + t\varphi } \right)}^{1 - p}} - \lambda \int_\Omega {{{\left( {{u_i} + t\varphi } \right)}^{1 + q}}} > 0,} \end{array} $ |
即得ui+tφ∈N1\N2.
因为
$ I\left(u_{i}\right) \leqslant I\left(u_{i}+t \varphi\right)+\frac{1}{i}\left\|u_{i}-\left(u_{i}+t \varphi\right)\right\|. $ |
代入计算, 两边同除以t得
$ \begin{array}{l} 0 \le \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi + \frac{1}{2}t\int_\Omega M (x)\nabla \varphi \cdot \nabla \varphi + \\ \;\;\;\;\;\frac{1}{{p - 1}}\int_\Omega {\frac{{f\left( x \right){{\left( {{u_i} + t\varphi } \right)}^{1 - p}} - f\left( x \right)u_i^{1 - p}}}{t}} - \\ \;\;\;\;\;\frac{\lambda }{{1 + q}}\int_\Omega {\frac{{{{\left( {{u_i} + t\varphi } \right)}^{1 + q}} - u_i^{1 + q}}}{t}} + \frac{{\left\| \varphi \right\|}}{i}. \end{array} $ |
令t→0+取上极限(通过引理2.7和式(15)), 得到
$ \begin{array}{l} 0 \le \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi - \int_\Omega f (x)u_i^{ - p}\varphi - \\ \;\;\;\;\;\lambda \int_\Omega {u_i^{ - q}\varphi } + \frac{{\left\| \varphi \right\|}}{i}. \end{array} $ | (29) |
另外由ui(x)→u*(x) a.e.in Ω, 利用Fatou引理可得
$ \int_\Omega f (x){\left( {{u^*}} \right)^{ - p}}\varphi \le \mathop {\lim \inf }\limits_{i \to \infty } \int_\Omega {f(x)u_i^{ - p}\varphi } , $ | (30) |
$ \int_\Omega {{{\left( {{u^*}} \right)}^q}} \varphi \le \mathop {\lim \inf }\limits_{i \to \infty } \int_\Omega {u_i^q} \varphi . $ | (31) |
结合式(29), 式(30)和式(31)可知
$ \begin{array}{l} \int_\Omega f (x){\left( {{u^*}} \right)^{ - p}}\varphi \le \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^ * } \cdot \nabla \varphi - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\lambda \int_\Omega {{{\left( {{u^*}} \right)}^q}} \varphi , \end{array} $ |
所以
$ \begin{array}{*{20}{c}} {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^*} \cdot \nabla {u^*} - \int_\Omega f (x){{\left( {{u^*}} \right)}^{1 - p}} - }\\ {\lambda \int_\Omega {{{\left( {{u^*}} \right)}^{1 + q}}} \ge 0.} \end{array} $ |
从而
$ \mathop {\inf }\limits_{{N_1}} I \ge I\left( {{u^*}} \right) \ge I\left( {t\left( {{u^*}} \right){u^*}} \right) \ge \mathop {\inf }\limits_{{N_2}} I = \mathop {\inf }\limits_{{N_1}} I, $ |
所以u*∈N2.
无论是情况1还是情况2都得到这样的结果,
$ \left\{ {\begin{array}{*{20}{l}} {{u^*} \in {N_2},{u^*} > 0,}\\ {I\left( {{u^*}} \right) = \mathop {\inf }\limits_{{N_1}} I,}\\ {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^ * } \cdot \nabla \varphi - \int_\Omega f (x){{\left( {{u^*}} \right)}^{ - p}}\varphi - }\\ {\lambda \int_\Omega {{{\left( {{u^*}} \right)}^q}} \varphi \ge 0,\forall \varphi \ge 0.} \end{array}} \right. $ | (32) |
下面证明u*是方程(1)的解。固定ψ∈
$ \begin{array}{l} 0 \le \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^ * } \cdot \nabla {\left( {{u^*} + t\psi } \right)^ + } - \\ \;\;\;\;\;\int_\Omega f (x){\left( {{u^*}} \right)^{ - p}}{\left( {{u^*} + t\psi } \right)^ + } - \\ \;\;\;\;\;\lambda \int_\Omega {{{\left( {{u^*}} \right)}^q}} {\left( {{u^*} + t\psi } \right)^ + }\\ \;\;\; = \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^ * } \cdot \nabla \left( {{u^*} + t\psi } \right) - \\ \;\;\;\;\;\int_\Omega f (x){\left( {{u^*}} \right)^{ - p}}\left( {{u^*} + t\psi } \right) - \\ \;\;\;\;\;\lambda \int_\Omega {{{\left( {{u^*}} \right)}^q}} \left( {{u^*} + t\psi } \right) - \\ \;\;\;\;\;\int_{\left\{ {{u^*} + t\psi < 0} \right\}} {\mathit{\boldsymbol{M}}(x)} \nabla {u^*} \cdot \nabla \left( {{u^*} + t\psi } \right) + \\ \;\;\;\;\;\int_{\left\{ {{u^*} + t\psi < 0} \right\}} f (x){\left( {{u^*}} \right)^{ - p}}\left( {{u^*} + t\psi } \right) + \\ \;\;\;\;\;\lambda \int_{\left\{ {{u^*} + t\psi < 0} \right\}} {{{\left( {{u^*}} \right)}^q}} \left( {{u^*} + t\psi } \right)\\ \;\;\;\;\; \le t\left\{ {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^ * } \cdot \nabla \psi - \int_\Omega f (x){{\left( {{u^*}} \right)}^{ - p}}\psi - } \right.\\ \;\;\;\;\;\;\;\left. {\lambda \int_\Omega {{{\left( {{u^*}} \right)}^q}} \psi } \right\} - t\int_{\left\{ {{u^*} + t\psi < 0} \right\}} {\mathit{\boldsymbol{M}}(x)\nabla {u^*} \cdot \nabla \psi } . \end{array} $ |
两边除以t, 令t→0+, 其中meas{u*+tψ < 0}→0, 可知
$ \begin{array}{*{20}{c}} {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^*} \cdot \nabla \psi - \int_\Omega f (x){{\left( {{u^*}} \right)}^{ - p}}\psi - }\\ {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\lambda \int_\Omega {{{\left( {{u^*}} \right)}^q}} \psi \ge 0.} \end{array} $ | (33) |
从而
$ \begin{array}{l} \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^*} \cdot \nabla \psi - \int_\Omega f (x){\left( {{u^*}} \right)^{ - p}}\psi - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\lambda \int_\Omega {{{\left( {{u^*}} \right)}^q}} \psi = 0,\forall \psi \in H_0^1(\Omega ), \end{array} $ | (34) |
即说明u*是方程(1)的弱解。
定理1.2是运用定理1.1的结论的一个例子。
定理1.2的证明 设φ1是-Δ在Dirichlet边界条件下的第一特征向量, 即
$ \left\{ \begin{array}{l} - \Delta {\varphi _1} = {\lambda _1}{\varphi _1}\;\;\;{\rm{in}}\;\;\Omega \\ {\varphi _1} = 0\;\;{\rm{on}}\;\;\partial \Omega \end{array} \right. $ |
而且在Ω内φ1>0, 其中λ1表示-Δ在Dirichlet边界条件下的第一特征值。
根据Lazer和McKenna(文献[1], Lemma, Theorem 1和2)可知,
$ {d_0}\varphi _1^{\frac{2}{{1 + p}}}(x) \le {u_p}(x) \le {d_1}\varphi _1^{\frac{2}{{1 + p}}}(x),\forall x \in \Omega . $ |
令u0=up, 下面验证
$ \begin{array}{*{20}{l}} {{{\int_\Omega {\left| x \right|} }^{ - \mu }}u_0^{1 - p}{\rm{d}}x = {{\int_{{B_r}} {\left| x \right|} }^{ - \mu }}u_0^{1 - p}{\rm{d}}x + }\\ {\;\;{\smallint _{\Omega \backslash {B_r}}}|x{|^{ - \mu }}u_0^{1 - p}{\rm{d}}x \le C_1^{1 - p}{{\int_{{B_r}} {\left| x \right|} }^{ - \mu }}{\rm{d}}x + }\\ {\;\;\;{r^{ - \mu }}{\smallint _{\Omega \backslash {B_r}}}u_0^{1 - p}{\rm{d}}x \le C_1^{1 - p}\int_{{B_r}} | x{|^{ - \mu }}{\rm{d}}x + }\\ {\;\;\;{r^{ - \mu }}d_0^{1 - p}{\smallint _{\Omega \backslash {B_r}}}\varphi _1^{\frac{{2(1 - p)}}{{1 + p}}}(x){\rm{d}}x \le C_1^{1 - p}\int_{{B_r}} | {{\left. x \right|}^{ - \mu }}{\rm{d}}x + }\\ {\;\;\;{r^{ - \mu }}d_0^{1 - p}\int_\Omega {\varphi _1^{\frac{{2(1 - p)}}{{1 + p}}}} (x){\rm{d}}x < + \infty ,} \end{array} $ | (35) |
其中用到, 因为-n < -μ < 0, 所以
$ \int_\Omega {\varphi _1^{\frac{{2(1 - p)}}{{1 + p}}}} (x){\rm{d}}x < + \infty . $ |
根据定理1.1即得要证结论。
[1] |
Lazer A C, McKenna P J. On a singular nonlinear elliptic boundaryvalue problem[J]. Proceeding of the American Mathemarical Socirty, 1991, 111(3): 721-730. |
[2] |
Boccardo L, Orsina L. Semilinear elliptic equations with singular nonlinearities[J]. Calculus of Variations and Partial Differential Equations, 2010, 37(3): 363-380. |
[3] |
Arcoya D, Boccardo L. Multiplicity of solutions for a Dirichlet problem with a singular and a supercritical nonlinearities[J]. Differential and Integral Equations, 2013, 26(26): 7121-7128. |
[4] |
Arcoya D, Boccardo L, Leonori T, et al. Some elliptic problems with singular natural growth lower order terms[J]. Journal of Differential Equations, 2010, 249(11): 2771-2795. DOI:10.1016/j.jde.2010.05.009 |
[5] |
Boccardo L. Dirichlet problems with singular and gradient quadratic lower order terms[J]. Esaim Control Optimisation & Calculus of Variations, 2008, 14(3): 411-426. |
[6] |
Boccardo L. A Dirichlet problem with singular and supercritical nonlinearities[J]. Nonlinear Analysis Theory Methods & Application, 2012, 75(12): 4436-4440. |
[7] |
Boccardo L, Orsina L. A variational semilinear singular system[J]. Nonlinear Analysis Theory Methods & Applications, 2011, 74(12): 3849-3860. |
[8] |
Sun Y J. Compatible phenomena in singular problems[J]. Proceedings of the Royal Society of Edinburgh, 2013, 143(A): 1321-1330. |
[9] |
Sun Y J, Wu S P. An exact estimate result for a class of singular equations with critical exponents[J]. Journal of Functional Analysis, 2011, 260(5): 1257-1284. DOI:10.1016/j.jfa.2010.11.018 |
[10] |
Sun Y J, Wu S P, Long Y M. Combined effects of singular and superlinear nonlinearities in some singular boundary value problems[J]. Journal of Differential Equations, 2001, 176(2): 511-531. DOI:10.1006/jdeq.2000.3973 |
[11] |
Sun Y J, Zhang D Z. The role of the power 3 for elliptic equations with negative exponents[J]. Calculus of Variations & Partial Differential Equations, 2014, 49(3/4): 909-922. |
[12] |
Adams A R. Sobolev spaces[M]. New York: Academic Press, 1975: 95-107.
|