对极小曲面的研究一直是微分几何研究领域中的一个重要课题, 特别是关于极小曲面的几何性质以及分类问题的研究。当外围空间是空间形式的时候, 一些重要的分类结果已经先后被提出。更为一般的情况是外围空间是对称空间的时候, 对称空间中的极小曲面研究也有不错的进展, 但依旧有许多值得关注的问题。所以, 本文主要关注外围空间是四元素射影空间的情形, 这对于四元素射影空间中极小曲面的几何及分类的研究是具有重要意义的。
在近几十年中, 国内外对极小曲面的研究都取得了许多重要成果。
1982年, Bryant[1]通过扭映射π:
近几十年中, 关于复射影空间中极小曲面的几何研究, 许多学者已经给出很多重要的结论。而由扭映射π:
首先介绍四元数、扭映射以及相关的一些知识。
四元数
$ \begin{array}{c}{\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=-1, \mathrm{ij}=\mathrm{k}=-\mathrm{ji}} \\ {\mathrm{jk}=\mathrm{i}=-\mathrm{kj}, \mathrm{ki}=\mathrm{j}=-\mathrm{ik}}.\end{array} $ |
由此可见
因而, 对于
$ \begin{array}{c}{h_{1} h_{2}=\left(a_{1} a_{2}-b_{1} b_{2}-c_{1} c_{2}-d_{1} d_{2}\right)+} \\ {\quad\left(a_{1} b_{2}+a_{2} b_{1}+c_{1} d_{2}-c_{2} d_{1}\right) \mathrm{i}+} \\ {\left(a_{1} c_{2}+a_{2} c_{1}+d_{1} b_{2}-d_{2} b_{1}\right) \mathrm{j}+} \\ {\quad\left(a_{1} d_{2}+a_{2} d_{1}+b_{1} c_{2}-b_{2} c_{1}\right) \mathrm{k}}.\end{array} $ |
与复数
更为经常的, 我们是把
一般来说, 用
若令
$ \mathbb{H} P^{n}=S p(n+1) /(S p(1) \times S p(n)). $ |
根据文献[7]可知有如下的一个交换图:
$ \begin{matrix} {} & Sp(n+1) & {} \\ {{\tau }_{2}}\swarrow & {} & \searrow {{\tau }_{1}} \\ {\mathbb{H}}{{P}^{n}} & \xleftarrow{\pi } & {\mathbb{C}}{{P}^{2n+1}} \\ \end{matrix} $ |
其中τ1:
定义1.1 在上述交换图中我们称π:
定义1.2 扭映射π:
任意的
$ \begin{array}{*{20}{c}} {{{\text{T}}_{[u]}} \leftrightarrow \left\{ {\mathit{\boldsymbol{v}} \in {\mathit{\boldsymbol{u}}^ \bot }|} \right.{\sigma _u}(\mathit{\boldsymbol{v}}) = 0,} \\ {{\sigma _u} = - \mathit{\boldsymbol{v}}_2^{\text{T}}{\text{d}}{\mathit{\boldsymbol{u}}_1} + \mathit{\boldsymbol{u}}_1^{\text{T}}{\text{d}}{\mathit{\boldsymbol{u}}_2},{\mathit{\boldsymbol{u}}_1},{\mathit{\boldsymbol{u}}_2} \in {\mathbb{C}^{n + 1}}\} .} \end{array} $ | (1) |
命题2.1 设
证明 由式(1)知Ω水平
根据Bolton等[3]给出的结论, 有如下定义:
定义2.1 称
$ {\phi _{s,t}}(u) = \frac{{s!}}{{{{(1 + u\bar u)}^s}}}\sqrt {C_n^t} {u^{t - s}}\sum\limits_k {{{( - 1)}^k}} C_t^{s - k}C_{n - t}^k{(u\bar u)^k}. $ |
例1 通过上述可算得
$ \left\{ \begin{array}{l} \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_0^{(7)} = \left[ {{{\left( {1,\sqrt 7 z,\sqrt {21z} {z^2},\sqrt {35} {z^3},\sqrt {35} {z^4},\sqrt {21{z^5}} ,\sqrt 7 {z^6},{z^7}} \right)}^{\rm{T}}}} \right]\\ \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_1^{(7)} = \left[ {\left( { - 7\bar z,\sqrt 7 (1 - 6zz),\sqrt {21} \left( {2z - 5{z^2}z} \right),\sqrt {35} \left( {3{z^2} - 4{z^3}z} \right),\sqrt {35} \left( {4{z^3} - 3{z^4}\bar z} \right)} \right.} \right.,\\ \;\;\;\;\;\;\;\;\;\sqrt {21} \left( {5{z^4} - 2{z^5}z} \right),\sqrt 7 {\left( {6{z^5} - {z^6}z} \right)^{\rm{T}}}]\\ \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_2^{(7)} = \left[ {\left( {21{{\bar z}^2},\sqrt 7 \left( { - 6\bar z + 15z{{\bar z}^2}} \right),\sqrt {21} \left( {1 - 10z\bar z + 10{z^2}{{\bar z}^2}} \right),\sqrt {35} \left( {3z - 12{z^2}\bar z + 6{z^3}{{\bar z}^2}} \right),} \right.} \right.\\ \;\;\;\;\;\;\;\;\;{\left. {\sqrt {35} \left( {6{z^2} - 12{z^3}\bar z + 3{z^4}{{\bar z}^2}} \right),\sqrt {21} \left( {10{z^3} - 10{z^4}\bar z + {z^5}{{\bar z}^2}} \right),\sqrt 7 \left( {15{z^4} - 6{z^5}z} \right),21{z^5}} \right)^{\rm{T}}}]\\ \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_3^{(7)} = \left[ {\left( { - 35{{\bar z}^3},\sqrt 7 \left( {15{{\bar z}^2} - 20z{{\bar z}^3}} \right),\sqrt {21} \left( { - 5\bar z + 20{z^2}{{\bar z}^2} - 10{z^2}{{\bar z}^3}} \right),\sqrt {35} \left( {1 - 12z\bar z - 18{z^2}{{\bar z}^2} - 4{z^3}{{\bar z}^3}} \right),} \right.} \right.\\ \;\;\;\;\;\;\;\;\;\left. {{{\left. {\sqrt {35} \left( {4z - 18{z^2}\bar z + 12{z^3}{{\bar z}^2} - {z^4}{{\bar z}^3}} \right),\sqrt {21} \left( {10{z^2} - 20{z^3}\bar z + 5{z^4}{{\bar z}^2}} \right),\sqrt 7 \left( {20{z^3} - 15{z^4}\bar z} \right),35{z^4}} \right)}^{\rm{T}}}} \right]\\ \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_4^{(7)} = \left[ {\left( {35{{\bar z}^4},\sqrt 7 \left( { - 20{{\bar z}^4} + 15z{{\bar z}^4}} \right),\sqrt {21} \left( { - 10{{\bar z}^2} - 20z{{\bar z}^3} + 5{z^2}{{\bar z}^4}} \right),\sqrt {35} \left( { - 4\bar z + 18z{{\bar z}^2} - 12{z^2}{{\bar z}^3} + {z^3}{{\bar z}^4}} \right),} \right.} \right.\\ \;\;\;\;\;\;\;\;\;\sqrt {35} \left( {1 - 12z\bar z + 18{z^2}{{\bar z}^2} - 4{z^3}{{\bar z}^3}} \right),\sqrt {21} \left( {5z - 20{z^2}\bar z + 10{z^3}{{\bar z}^2}} \right),\sqrt 7 \left( {15{z^2} - 20{z^3}\bar z} \right),35{z^3}{)^{\rm{T}}}]\\ \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_5^{(7)} = \left[ {\left( { - 21{{\bar z}^5},\sqrt 7 \left( {15{{\bar z}^4} - 6z{{\bar z}^5}} \right),\sqrt {21} \left( { - 10{{\bar z}^3} + 10z{{\bar z}^4} - {z^2}{{\bar z}^5}} \right),\sqrt {35} \left( {6{{\bar z}^2} - 12z{{\bar z}^3} + 3{z^2}{{\bar z}^4}} \right)} \right.,} \right.\\ \;\;\;\;\;\;\;\;\;\sqrt {35} \left( { - 3\bar z + 12z{{\bar z}^2} - 6{z^2}{{\bar z}^3}} \right),\sqrt {21} \left( {1 - 10z\bar z + 10{z^2}{{\bar z}^2}} \right),\sqrt 7 \left( {6z - 15{z^2}z} \right),21{z^2}{)^{\rm{T}}}]\\ \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_6^{(7)} = \left[ {\left( {7{{\bar z}^6},\sqrt 7 \left( { - 6{{\bar z}^5} + z{{\bar z}^6}} \right),\sqrt {21} \left( {5{{\bar z}^4} - 2z{{\bar z}^5}} \right),\sqrt {35} \left( { - 4{{\bar z}^3} + 3z{{\bar z}^4}} \right),\sqrt {35} \left( {3{{\bar z}^2} - 4z{{\bar z}^3}} \right)} \right.,} \right.\\ \;\;\;\;\;\;\;\;\;\;\sqrt {21} \left( { - 2\bar z + 5z{{\bar z}^2}} \right),\sqrt 7 (1 - 6z\bar z),7z{)^{\rm{T}}}]\\ \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_7^{(7)} = \left[ {{{\left( { - {{\bar z}^7},\sqrt 7 {{\bar z}^6}, - \sqrt {21} {{\bar z}^5},\sqrt {35} {{\bar z}^4}, - \sqrt {35} {{\bar z}^3},\sqrt {21} {{\bar z}^2}, - \sqrt 7 \bar z,1} \right)}^{\rm{T}}}} \right] \end{array} \right. $ |
对应的Gaussian曲率分别为4/7, 4/19, 4/27, 4/31, 4/31, 4/27, 4/19, 4/7。
接下来给出两个引理:
引理2.1[7] 对于水平极小曲面
$ \pi : \mathbb{C} P^{2 n+1} \rightarrow \mathbb{H} P^{n} 为扭映射。$ |
引理2.2[3] 设
这样根据上述两个引理,可以得到以下命题。
命题2.2 设
接下来利用Veronese序列介绍文献[7]给出的构造
定理2.1 设
$ \sum\limits_{p, q=1}^{2 n+2} A_{p q} \omega_{p} \partial \omega_{q}=0, \sum\limits_{p, q=1}^{2 n+2} A_{p q} \omega_{p} \overline{\partial} \omega_{q}=0, $ | (2) |
其中
证明 由命题2.1知,
$ \begin{array}{*{20}{c}} {\left( {\partial {\omega _1}, \cdots ,\partial {\omega _{2n + 2}}} \right)\left( {\begin{array}{*{20}{c}} {{A_{1\;1}}}& \cdots &{{A_{1\;2n + 2}}}\\ \vdots &{}& \vdots \\ {{A_{2N + 2\;1}}}& \cdots &{{A_{2n + 2\;2n + 2}}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{\omega _1}}\\ \vdots \\ {{\omega _{2n + 2}}} \end{array}} \right) = }\\ {\left( {\sum\limits_{p = 1}^{2n + 1} {{A_{p1}}} \partial {\omega _p}, \cdots ,\sum\limits_{p = 1}^{2n + 1} {{A_{p2n + 2}}} \partial {\omega _p}} \right)\left( {\begin{array}{*{20}{c}} {{\omega _1}}\\ \vdots \\ {{\omega _{2n + 2}}} \end{array}} \right) = 0.} \end{array} $ |
同理,将第2个等式展开, (2)式得证。
2.2接下来利用上述定理, 以
情形1:
由例1知,
$ \begin{array}{l} \sum\limits_{p,q = 1}^8 {{A_{pq}}} {\omega _p}\partial {\omega _q} = \sqrt 7 {A_{12}} + 2\sqrt {21} {A_{13}}z + \left( {3\sqrt {35} {A_{14}} + 7\sqrt 3 {A_{23}}} \right){z^2} + \left( {4\sqrt {35} {A_{15}} + 14\sqrt 5 {A_{24}}} \right){z^3} + \left( {5\sqrt {21} {A_{16}} + } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;21\sqrt 5 {A_{25}} + 7\sqrt {15} {A_{34}}){z^4} + \left( {6\sqrt 7 {A_{17}} + 28\sqrt 3 {A_{26}} + 14\sqrt {15} {A_{35}}} \right){z^5} + \left( {7{A_{18}} + 35{A_{27}} + 63{A_{36}} + } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left. {35{A_{45}}} \right){z^6} + \left( {6\sqrt 7 {A_{28}} + 28\sqrt 3 {A_{37}} + 14\sqrt {15} {A_{46}}} \right){z^7} + \left( {5\sqrt {21} {A_{38}} + 21\sqrt 5 {A_{47}} + 7\sqrt {15} {A_{56}}} \right){z^8} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {4\sqrt {35} {A_{48}} + 14\sqrt 5 {A_{57}}} \right){z^9} + \left( {3\sqrt {35} {A_{58}} + 7\sqrt 3 {A_{67}}} \right){z^{10}} = 0, \end{array} $ |
$ \sum\limits_{p,q = 1}^8 {{A_{pq}}} {\omega _p}\overline \partial {\omega _q} = 0. $ |
由于
$ \left\{ \begin{array}{l} {A_{12}} = {A_{13}} = {A_{68}} = {A_{78}} = 0,\\ 3\sqrt {35} {A_{14}} + 7\sqrt 3 {A_{23}} = 0,\\ 4\sqrt {35} {A_{15}} + 14\sqrt 5 {A_{24}} = 0,\\ 5\sqrt {21} {A_{16}} + 21\sqrt 5 {A_{25}} + 7\sqrt {15} {A_{34}} = 0,\\ 6\sqrt 7 {A_{17}} + 28\sqrt 3 {A_{26}} + 14\sqrt {15} {A_{35}} = 0,\\ {\rm{7}}{A_{18}} + 35{A_{27}} + 63{A_{36}} + 35{A_{45}} = 0,\\ 6\sqrt 7 {A_{28}} + 28\sqrt 3 {A_{37}} + 14\sqrt {15} {A_{46}} = 0,\\ 5\sqrt {21} {A_{38}} + 21\sqrt 5 {A_{47}} + 7\sqrt {15} {A_{56}} = 0,\\ 4\sqrt {35} {A_{48}} + 14\sqrt 5 {A_{57}} = 0,\\ 3\sqrt {35} {A_{58}} + 7\sqrt 3 {A_{67}} = 0. \end{array} \right. $ |
所以, 由定理2.1,
$ {\mathit{\boldsymbol{A}}_1} = \left( {\begin{array}{*{20}{c}} 0&0&0&{{A_{14}}}\\ 0&0&{ - \frac{{\sqrt {105} }}{7}{A_{14}}}&{ - \frac{{2\sqrt 7 }}{7}{A_{15}}}\\ 0&{\frac{{\sqrt {105} }}{7}{A_{14}}}&0&{ - \frac{{\sqrt {35} }}{7}{A_{16}} - \frac{{\sqrt 3 }}{9}{A_{25}}}\\ { - {A_{14}}}&{\frac{{2\sqrt 7 }}{7}{A_{15}}}&{\frac{{\sqrt {35} }}{7}{A_{16}} + \frac{{\sqrt 3 }}{9}{A_{25}}}&0\\ { - {A_{15}}}&{ - {A_{25}}}&{\frac{{\sqrt {105} }}{{35}}{A_{17}} + \frac{{2\sqrt 5 }}{5}{A_{26}}}&{\frac{1}{5}{A_{18}} + {A_{27}} + \frac{9}{5}{A_{36}}}\\ { - {A_{16}}}&{ - {A_{26}}}&{ - {A_{36}}}&{\frac{{\sqrt {105} }}{{34}}{A_{28}} + \frac{{2\sqrt 5 }}{5}{A_{37}}}\\ { - {A_{17}}}&{ - {A_{27}}}&{ - {A_{37}}}&{ - {A_{47}}}\\ { - {A_{18}}}&{ - {A_{28}}}&{ - {A_{38}}}&{ - {A_{48}}} \end{array}} \right) $ |
$ {\mathit{\boldsymbol{A}}_2} = \left( {\begin{array}{*{20}{c}} {{A_{15}}}&{{A_{16}}}&{{A_{17}}}&{{A_{18}}}\\ {{A_{25}}}&{{A_{26}}}&{{A_{27}}}&{{A_{28}}}\\ { - \frac{{\sqrt {105} }}{{35}}{A_{17}} - \frac{{2\sqrt 5 }}{5}{A_{26}}}&{{A_{36}}}&{{A_{37}}}&{{A_{38}}}\\ { - \frac{1}{5}{A_{18}} - {A_{27}} - \frac{9}{5}{A_{36}}}&{ - \frac{{\sqrt {105} }}{{35}}{A_{28}} - \frac{{2\sqrt 5 }}{5}{A_{37}}}&{{A_{47}}}&{{A_{48}}}\\ 0&{ - \frac{{\sqrt {35} }}{7}{A_{38}} - \sqrt 3 {A_{47}}}&{ - \frac{{2\sqrt 7 }}{7}{A_{48}}}&{{A_{58}}}\\ {\frac{{\sqrt {35} }}{7}{A_{38}} + \sqrt 3 {A_{47}}}&0&{ - \frac{{\sqrt {105} }}{7}{A_{58}}}&0\\ {\frac{{2\sqrt 7 }}{7}{A_{48}}}&{\frac{{\sqrt {105} }}{7}{A_{58}}}&0&0\\ { - {A_{58}}}&0&0&0 \end{array}} \right) $ |
情形2:
由例1知,
$ \begin{array}{l} \sum\limits_{p,q = 1}^8 {{A_{pq}}} {\omega _p}\partial {\omega _q} = 14\sqrt 3 {A_{23}} + 70\sqrt {21} {A_{13}}z{{\bar z}^2} + 42\sqrt 5 {A_{24}}z + 42\sqrt 7 {A_{12}}{{\bar z}^2} - \left( {42\sqrt {35} {A_{14}} + 70\sqrt 3 {A_{23}}} \right)z\bar z + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {84\sqrt 5 {A_{25}} + 42\sqrt {15} {A_{34}}} \right){z^2} - 14\sqrt {21} {A_{13}}\bar z + \left( {140\sqrt 3 {A_{26}} + 112\sqrt {15} {A_{35}}} \right){z^3} + \left( {210{A_{27}} + } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;630{A_{36}} + 420{A_{45}}){z^4} - \left( {84\sqrt {35} {A_{15}} + 210\sqrt 5 {A_{24}}} \right){z^2}\bar z - \left( {140\sqrt {21} {A_{16}} + 420\sqrt 5 {A_{25}} + } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;112\sqrt {15} {A_{34}}){z^3}\bar z + \left( {84\sqrt {35} {A_{14}} + 210\sqrt 3 {A_{23}}} \right){z^2}{{\bar z}^2} + \left( {84\sqrt {35} {A_{15}} + 336\sqrt 5 {A_{24}}} \right){z^3}{{\bar z}^2} - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {210\sqrt 7 {A_{17}} + 700\sqrt 3 {A_{26}} + 266\sqrt {15} {A_{35}}} \right){z^4}\bar z + \left( {42\sqrt 7 {A_{28}} + 336\sqrt 3 {A_{37}} + 210\sqrt {15} {A_{46}}} \right){z^5} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {70\sqrt {21} {A_{16}} + 378\sqrt 5 {A_{25}} + 140\sqrt {15} {A_{34}}} \right){z^4}{{\bar z}^2} - \left( {294{A_{18}} + 1050{A_{27}} + 1386{A_{36}} + } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;630{A_{45}}){z^5}z + \left( {70\sqrt {21} {A_{38}} + 378\sqrt 5 {A_{47}} + 140\sqrt {15} {A_{56}}} \right){z^6} + \left( {42\sqrt 7 {A_{17}} + 336\sqrt 3 {A_{26}} + } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;210\sqrt {15} {A_{35}}){z^5}{{\bar z}^2} - \left( {140\sqrt {21} {A_{38}} + 420\sqrt 5 {A_{47}} + 112\sqrt {15} {A_{56}}} \right){z^7}\bar z + \left( {84\sqrt {35} {A_{48}} + } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;336\sqrt 5 {A_{57}}){z^7} + \left( {210{A_{27}} + 630{A_{36}} + 420{A_{45}}} \right){z^6}{{\bar z}^2} - \left( {210\sqrt 7 {A_{28}} + 700\sqrt 3 {A_{37}} + } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;266\sqrt {15} {A_{46}}){z^6}\bar z + \left( {84\sqrt {35} {A_{58}} + 210\sqrt 3 {A_{67}}} \right){z^8} + \left( {140\sqrt 3 {A_{37}} + 112\sqrt {15} {A_{46}}} \right){z^7}{{\bar z}^2} - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {84\sqrt {35} {A_{48}} + 210\sqrt 5 {A_{57}}} \right){z^8}\bar z + 70\sqrt {21} {A_{68}}{z^9} + \left( {84\sqrt 5 {A_{47}} + 42\sqrt {15} {A_{56}}} \right){z^8}{{\bar z}^2} - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {42\sqrt {35} {A_{58}} + 70\sqrt 3 {A_{67}}} \right){z^9}\bar z + 42\sqrt 7 {A_{78}}{z^{10}} + 42\sqrt 5 {A_{57}}{z^9}{{\bar z}^2} - 14\sqrt {21} {A_{68}}{z^{10}}\bar z + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;14\sqrt 3 {A_{67}}{z^{10}}{z^{ - 2}} = 0, \end{array} $ |
$ \begin{array}{l} \sum\limits_{p,q = 1}^8 {{A_{pq}}} {\omega _p}\overline \partial {\omega _q} = - 7\sqrt 7 {A_{21}} - 14\sqrt {21} {A_{31}}z - \left( {49\sqrt 3 {A_{32}} + 21\sqrt {35} {A_{41}}} \right){z^2} - \left( {98\sqrt 5 {A_{42}} + 28\sqrt {35} {A_{51}}} \right){z^3} - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {49\sqrt {15} {A_{43}} + 147\sqrt 5 {A_{52}} + 35\sqrt {21} {A_{61}}} \right){z^4} - \left( {98\sqrt {15} {A_{53}} + 196\sqrt 3 {A_{62}} + 42\sqrt 7 {A_{71}}} \right){z^5} - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {245{A_{54}} + 441{A_{63}} + 245{A_{72}} + 49{A_{81}}} \right){z^6} - \left( {98\sqrt {15} {A_{64}} + 196\sqrt 3 {A_{73}} + 42\sqrt 7 {A_{82}}} \right){z^7} - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {49\sqrt {15} {A_{65}} + 147\sqrt 5 {A_{74}} + 35\sqrt {21} {A_{83}}} \right){z^8} - \left( {98\sqrt 5 {A_{75}} + 28\sqrt {35} {A_{84}}} \right){z^9} - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {49\sqrt 3 {A_{76}} + 21\sqrt {35} {A_{85}}} \right){z^{10}} - 14\sqrt {21} {A_{86}}{z^{11}} - 7\sqrt 7 {A_{87}}{z^{12}} = 0. \end{array} $ |
由于
$ \left\{ \begin{array}{l} \begin{array}{*{20}{l}} {{A_{23}} = {A_{13}} = {A_{24}} = {A_{12}} = {A_{78}} = 0}\\ {{A_{86}} = {A_{48}} = {A_{58}} = {A_{75}} = {A_{76}} = 0} \end{array}\\ \begin{array}{*{20}{l}} {2\sqrt 5 {A_{25}} + \sqrt {15} {A_{34}} = 0}\\ {5\sqrt {21} {A_{16}} + 15\sqrt 5 {A_{25}} + 4\sqrt {15} {A_{34}} = 0}\\ {5\sqrt {21} {A_{16}} + 27\sqrt 5 {A_{25}} + 10\sqrt {15} {A_{34}} = 0} \end{array}\\ \begin{array}{*{20}{l}} {5\sqrt 3 {A_{26}} + 4\sqrt {15} {A_{35}} = 0}\\ {15\sqrt 7 {A_{17}} + 50\sqrt 3 {A_{26}} + 19\sqrt {15} {A_{35}} = 0}\\ {\sqrt 7 {A_{17}} + 8\sqrt 3 {A_{26}} + 15\sqrt {15} {A_{35}} = 0} \end{array}\\ \begin{array}{*{20}{l}} {{A_{27}} + 3{A_{36}} + 2{A_{45}} = 0}\\ {294{A_{18}} + 1050{A_{27}} + 1386{A_{36}} + 630{A_{45}} = 0}\\ {{A_{18}} + 5{A_{27}} + 9{A_{36}} + 5{A_{45}} = 0} \end{array}\\ \begin{array}{*{20}{l}} {5\sqrt {21} {A_{38}} + 21\sqrt 5 {A_{47}} + 7\sqrt {15} {A_{56}} = 0}\\ {5\sqrt {21} {A_{38}} + 21\sqrt 5 {A_{47}} + 10\sqrt {15} {A_{56}} = 0}\\ {5\sqrt {21} {A_{38}} + 15\sqrt 5 {A_{47}} + 4\sqrt {15} {A_{56}} = 0} \end{array}\\ \begin{array}{*{20}{l}} {3\sqrt 7 {A_{28}} + 14\sqrt 3 {A_{37}} + 7\sqrt {15} {A_{46}} = 0}\\ {\sqrt 7 {A_{28}} + 8\sqrt 3 {A_{37}} + 5\sqrt {15} {A_{46}} = 0}\\ {105\sqrt 7 {A_{28}} + 350\sqrt 3 {A_{37}} + 133\sqrt {15} {A_{46}} = 0} \end{array} \end{array} \right. $ |
所以, 由定理2.1,
$ {\mathit{\boldsymbol{A}}_1} = \left( {\begin{array}{*{20}{c}} 0&0&0&0\\ 0&0&0&0\\ 0&0&0&{\frac{{2\sqrt {35} }}{7}{A_{16}}}\\ 0&0&{ - \frac{{2\sqrt {35} }}{7}{A_{16}}}&0\\ 0&{\frac{{\sqrt {105} }}{7}{A_{16}}}&{ - \frac{{\sqrt {105} }}{{21}}{A_{17}}}&{ - {A_{18}} - 2{A_{27}}}\\ { - {A_{16}}}&{\frac{{4\sqrt {21} }}{{21}}{A_{17}}}&{\frac{5}{3}{A_{27}} + \frac{2}{3}{A_{18}}}&{ - \frac{{\sqrt {105} }}{{21}}{A_{28}}}\\ { - {A_{17}}}&{ - {A_{27}}}&{\frac{{4\sqrt {21} }}{{21}}{A_{28}}}&{\frac{{\sqrt {105} }}{7}{A_{38}}}\\ { - {A_{18}}}&{ - {A_{28}}}&{ - {A_{38}}}&0 \end{array}} \right), $ |
$ {\mathit{\boldsymbol{A}}_2} = \left( {\begin{array}{*{20}{c}} 0&{{A_{16}}}&{{A_{17}}}&{{A_{18}}}\\ { - \frac{{\sqrt {105} }}{7}{A_{16}}}&{ - \frac{{4\sqrt {21} }}{{21}}{A_{17}}}&{{A_{27}}}&{{A_{28}}}\\ {\frac{{\sqrt {105} }}{{21}}{A_{17}}}&{ - \frac{5}{3}{A_{27}} - \frac{2}{3}{A_{18}}}&{ - \frac{{4\sqrt {21} }}{{21}}{A_{28}}}&{{A_{37}}}\\ {{A_{18}} + 2{A_{27}}}&{\frac{{\sqrt {105} }}{{21}}{A_{28}}}&{ - \frac{{\sqrt {105} }}{7}{A_{38}}}&0\\ 0&{\frac{{2\sqrt {35} }}{7}{A_{38}}}&0&0\\ { - \frac{{2\sqrt {35} }}{7}{A_{38}}}&0&0&0\\ 0&0&0&0\\ 0&0&0&0 \end{array}} \right). $ |
情形3:
由例1知,
$ \sum\limits_{p,q = 1}^8 {{A_{pq}}} {\omega _p}\partial {\omega _q} = 0,\sum\limits_{p,q = 1}^8 {{A_{pq}}} {\omega _p}\bar \partial {\omega _q} = 0. $ |
由于
$ \left\{ \begin{array}{l} \begin{array}{*{20}{l}} {{A_{12}} = {A_{13}} = {A_{14}} = {A_{15}} = {A_{16}} = {A_{17}} = 0}\\ {{A_{23}} = {A_{24}} = {A_{25}} = {A_{26}} = {A_{28}} = 0} \end{array}\\ \begin{array}{*{20}{l}} {{A_{34}} = {A_{35}} = {A_{37}} = {A_{38}} = 0}\\ {{A_{46}} = {A_{47}} = {A_{48}} = {A_{56}} = {A_{57}} = {A_{58}} = 0}\\ {{A_{67}} = {A_{68}} = {A_{78}} = 0} \end{array}\\ \begin{array}{*{20}{l}} {7{A_{18}} + 19{A_{27}} + 27{A_{36}} + 15{A_{45}} = 0}\\ {{A_{27}} + 2{A_{36}} + {A_{45}} = 0} \end{array}\\ \begin{array}{*{20}{l}} {7{A_{18}} + 25{A_{27}} + 33{A_{36}} + 15{A_{45}} = 0}\\ {{A_{36}} + {A_{45}} = 0} \end{array} \end{array} \right. $ |
所以, 由定理2.1,
$ \mathit{\boldsymbol{A}} = \left( {\begin{array}{*{20}{c}} 0&0&0&0&0&0&0&{{A_{18}}}\\ 0&0&0&0&0&0&{ - {A_{18}}}&0\\ 0&0&0&0&0&{{A_{18}}}&0&0\\ 0&0&0&0&{ - {A_{18}}}&0&0&0\\ 0&0&0&{{A_{18}}}&0&0&0&0\\ 0&0&{ - {A_{18}}}&0&0&0&0&0\\ 0&{{A_{18}}}&0&0&0&0&0&0\\ { - {A_{18}}}&0&0&0&0&0&0&0 \end{array}} \right). $ |
情形4:
由例1知,
$ \sum\limits_{p,q = 1}^8 {{A_{pq}}} {\omega _p}\partial {\omega _q} = 0,\sum\limits_{p,q = 1}^8 {{A_{pq}}} {\omega _p}\bar \partial {\omega _q} = 0. $ |
由于
$ \left\{ \begin{array}{l} \begin{array}{*{20}{l}} {{A_{12}} = {A_{13}} = {A_{15}} = {A_{16}} = {A_{17}} = {A_{18}} = 0}\\ {{A_{24}} = {A_{25}} = {A_{26}} = {A_{27}} = {A_{28}} = 0}\\ {{A_{34}} = {A_{35}} = {A_{36}} = {A_{37}} = {A_{38}} = 0} \end{array}\\ \begin{array}{*{20}{l}} {{A_{45}} = {A_{46}} = {A_{47}} = {A_{48}} = {A_{56}} = {A_{57}} = 0}\\ {{A_{68}} = {A_{78}} = 0} \end{array}\\ \begin{array}{*{20}{l}} {42\sqrt {35} {A_{14}} + 140\sqrt 3 {A_{23}} = 0}\\ {126\sqrt {35} {A_{14}} + 210\sqrt 3 {A_{23}} = 0} \end{array}\\ \begin{array}{*{20}{l}} {42\sqrt {35} {A_{58}} + 140\sqrt 3 {A_{67}} = 0}\\ {126\sqrt {35} {A_{58}} + 210\sqrt 3 {A_{67}} = 0} \end{array} \end{array} \right. $ |
所以, 由定理2.1,
情形5:
由例1知,
$ \sum\limits_{p,q = 1}^8 {{A_{pq}}} {\omega _p}\partial {\omega _q} = 0,\sum\limits_{p,q = 1}^8 {{A_{pq}}} {\omega _p}\bar \partial {\omega _q} = 0. $ |
由于
$ \left\{ \begin{array}{l} \begin{array}{*{20}{l}} {{A_{12}} = {A_{13}} = {A_{15}} = {A_{16}} = {A_{17}} = {A_{18}} = 0}\\ {{A_{24}} = {A_{25}} = {A_{26}} = {A_{27}} = {A_{28}} = 0}\\ {{A_{34}} = {A_{35}} = {A_{36}} = {A_{37}} = {A_{38}} = 0}\\ {{A_{45}} = {A_{46}} = {A_{47}} = {A_{48}} = {A_{56}} = {A_{57}} = 0}\\ {{A_{68}} = {A_{78}} = 0} \end{array}\\ \begin{array}{*{20}{l}} {42\sqrt {35} {A_{14}} + 140\sqrt 3 {A_{23}} = 0}\\ {126\sqrt {35} {A_{14}} + 210\sqrt 3 {A_{23}} = 0}\\ {42\sqrt {35} {A_{58}} + 140\sqrt 3 {A_{67}} = 0}\\ {126\sqrt {35} {A_{58}} + 210\sqrt 3 {A_{67}} = 0} \end{array} \end{array} \right. $ |
所以, 由定理2.1,
情形6:
由例1知,
$ \sum\limits_{p,q = 1}^8 {{A_{pq}}} {\omega _p}\partial {\omega _q} = 0,\sum\limits_{p,q = 1}^8 {{A_{pq}}} {\omega _p}\bar \partial {\omega _q} = 0. $ |
由于
$ \mathit{\boldsymbol{A}} = \left( {\begin{array}{*{20}{c}} 0&0&0&0&0&0&0&{{A_{18}}}\\ 0&0&0&0&0&0&{ - {A_{18}}}&0\\ 0&0&0&0&0&{{A_{18}}}&0&0\\ 0&0&0&0&{ - {A_{18}}}&0&0&0\\ 0&0&0&{{A_{18}}}&0&0&0&0\\ 0&0&{ - {A_{18}}}&0&0&0&0&0\\ 0&{{A_{18}}}&0&0&0&0&0&0\\ { - {A_{18}}}&0&0&0&0&0&0&0 \end{array}} \right). $ |
情形7:
由例1知,
$ \sum\limits_{p,q = 1}^8 {{A_{pq}}} {\omega _p}\partial {\omega _q} = 0,\sum\limits_{p,q = 1}^8 {{A_{pq}}} {\omega _p}\bar \partial {\omega _q} = 0. $ |
由于
$ {\mathit{\boldsymbol{A}}_1} = \left( {\begin{array}{*{20}{c}} 0&0&0&0\\ 0&0&0&0\\ 0&0&0&{\frac{{2\sqrt {35} }}{7}{A_{16}}}\\ 0&0&{ - \frac{{2\sqrt {35} }}{7}{A_{16}}}&0\\ 0&{\frac{{\sqrt {105} }}{7}{A_{16}}}&{ - \frac{{\sqrt {105} }}{{21}}{A_{17}}}&{ - {A_{18}} - 2{A_{27}}}\\ { - {A_{16}}}&{\frac{{4\sqrt {21} }}{{21}}{A_{17}}}&{\frac{5}{3}{A_{27}} + \frac{2}{3}{A_{18}}}&{ - \frac{{\sqrt {105} }}{{21}}{A_{28}}}\\ { - {A_{17}}}&{ - {A_{27}}}&{\frac{{4\sqrt {21} }}{{21}}{A_{28}}}&{\frac{{\sqrt {105} }}{7}{A_{38}}}\\ { - {A_{18}}}&{ - {A_{28}}}&{ - {A_{38}}}&0 \end{array}} \right), $ |
$ {\mathit{\boldsymbol{A}}_2} = \left( {\begin{array}{*{20}{c}} {{A_{15}}}&{{A_{16}}}&{{A_{17}}}&{{A_{18}}}\\ {{A_{25}}}&{{A_{26}}}&{{A_{27}}}&{{A_{28}}}\\ { - \frac{{\sqrt {105} }}{{35}}{A_{17}} - \frac{{2\sqrt 5 }}{5}{A_{26}}}&{{A_{36}}}&{{A_{37}}}&{{A_{38}}}\\ { - \frac{1}{5}{A_{18}} - {A_{27}} - \frac{9}{5}{A_{36}}}&{ - \frac{{\sqrt {105} }}{{35}}{A_{28}} - \frac{{2\sqrt 5 }}{5}{A_{37}}}&{{A_{47}}}&{{A_{48}}}\\ 0&{ - \frac{{\sqrt {35} }}{7}{A_{38}} - \sqrt 3 {A_{47}}}&{ - \frac{{2\sqrt 7 }}{7}{A_{48}}}&{{A_{58}}}\\ {\frac{{\sqrt {35} }}{7}{A_{38}} + \sqrt 3 {A_{47}}}&0&{ - \frac{{\sqrt {105} }}{7}{A_{58}}}&0\\ {\frac{{2\sqrt 7 }}{7}{A_{48}}}&{\frac{{\sqrt {105} }}{7}{A_{58}}}&0&0\\ { - {A_{58}}}&0&0&0 \end{array}} \right). $ |
情形8:
由例1知,
$ \sum\limits_{p,q=1}^{8}{{{A}_{pq}}}{{\omega }_{p}}\partial {{\omega }_{q}}=0,\sum\limits_{p,q=1}^{8}{{{A}_{pq}}}{{\omega }_{p}}\overline{\partial }{{\omega }_{q}}=0. $ |
由于
$ {\mathit{\boldsymbol{A}}_1} = \left( {\begin{array}{*{20}{c}} 0&0&0&{{A_{14}}}\\ 0&0&{ - \frac{{\sqrt {105} }}{7}{A_{14}}}&{ - \frac{{2\sqrt 7 }}{7}{A_{15}}}\\ 0&{\frac{{\sqrt {105} }}{4}{A_{14}}}&0&{ - \frac{{\sqrt {35} }}{7}{A_{16}} - \frac{{\sqrt 3 }}{9}{A_{25}}}\\ { - {A_{14}}}&{\frac{{2\sqrt 7 }}{7}{A_{15}}}&{\frac{{\sqrt {35} }}{7}{A_{16}} + \frac{{\sqrt 3 }}{9}{A_{25}}}&0\\ { - {A_{15}}}&{ - {A_{25}}}&{\frac{{\sqrt {105} }}{{35}}{A_{17}} + \frac{{2\sqrt 5 }}{5}{A_{26}}}&{\frac{1}{5}{A_{18}} + {A_{27}} + \frac{9}{5}{A_{36}}}\\ { - {A_{16}}}&{ - {A_{26}}}&{ - {A_{36}}}&{\frac{{\sqrt {105} }}{{35}}{A_{28}} + \frac{{2\sqrt 5 }}{5}{A_{37}}}\\ { - {A_{17}}}&{ - {A_{27}}}&{ - {A_{37}}}&{ - {A_{47}}}\\ { - {A_{18}}}&{ - {A_{28}}}&{ - {A_{38}}}&{ - {A_{48}}} \end{array}} \right). $ |
$ {\mathit{\boldsymbol{A}}_2} = \left( {\begin{array}{*{20}{c}} {{A_{15}}}&{{A_{16}}}&{{A_{17}}}&{{A_{18}}}\\ {{A_{25}}}&{{A_{26}}}&{{A_{27}}}&{{A_{28}}}\\ { - \frac{{\sqrt {105} }}{{35}}{A_{17}} - \frac{{2\sqrt 5 }}{5}{A_{26}}}&{{A_{36}}}&{{A_{37}}}&{{A_{38}}}\\ { - \frac{1}{5}{A_{18}} - {A_{27}} - \frac{9}{5}{A_{36}}}&{ - \frac{{\sqrt {105} }}{{35}}{A_{28}} - \frac{{2\sqrt 5 }}{5}{A_{37}}}&{{A_{47}}}&{{A_{48}}}\\ 0&{ - \frac{{\sqrt {35} }}{7}{A_{38}} - \sqrt 3 {A_{47}}}&{ - \frac{{2\sqrt 7 }}{7}{A_{48}}}&{{A_{58}}}\\ {\frac{{\sqrt {35} }}{7}{A_{38}} + \sqrt 3 {A_{47}}}&0&{ - \frac{{\sqrt {105} }}{7}{A_{58}}}&0\\ {\frac{{2\sqrt 7 }}{7}{A_{48}}}&{\frac{{\sqrt {105} }}{7}{A_{58}}}&0&0\\ { - {A_{58}}}&0&0&0 \end{array}} \right). $ |
定理2.2 设
$ {\mathit{\boldsymbol{A}}}={{{\mathit{\boldsymbol{U}}}}^{\text{T}}}\left( \begin{matrix} 0 & {{{\mathit{\boldsymbol{I}}}}_{4}} \\ -{{{\mathit{\boldsymbol{I}}}}_{4}} & 0 \\ \end{matrix} \right){\mathit{\boldsymbol{U}}}, $ |
1) 当
$ {\mathit{\boldsymbol{A}}_1} = \left( {\begin{array}{*{20}{c}} 0&0&0&0\\ 0&0&0&0\\ 0&0&0&{\frac{{2\sqrt {35} }}{7}{A_{16}}}\\ 0&0&{ - \frac{{2\sqrt {35} }}{7}{A_{16}}}&0\\ 0&{\frac{{\sqrt {105} }}{7}{A_{16}}}&{ - \frac{{\sqrt {105} }}{{21}}{A_{17}}}&{ - {A_{18}} - 2{A_{27}}}\\ { - {A_{16}}}&{\frac{{4\sqrt {21} }}{{21}}{A_{17}}}&{\frac{5}{3}{A_{27}} + \frac{2}{3}{A_{18}}}&{ - \frac{{\sqrt {105} }}{{21}}{A_{28}}}\\ { - {A_{17}}}&{ - {A_{27}}}&{\frac{{4\sqrt {21} }}{{21}}{A_{28}}}&{\frac{{\sqrt {105} }}{7}{A_{38}}}\\ { - {A_{18}}}&{ - {A_{28}}}&{ - {A_{38}}}&0 \end{array}} \right), $ |
$ {\mathit{\boldsymbol{A}}_2} = \left( {\begin{array}{*{20}{c}} 0&{{A_{16}}}&{{A_{17}}}&{{A_{18}}}\\ { - \frac{{\sqrt {105} }}{7}{A_{16}}}&{ - \frac{{4\sqrt {21} }}{{21}}{A_{17}}}&{{A_{27}}}&{{A_{28}}}\\ {\frac{{\sqrt {105} }}{{21}}{A_{17}}}&{ - \frac{5}{3}{A_{27}} - \frac{2}{3}{A_{18}}}&{ - \frac{{4\sqrt {21} }}{{21}}{A_{28}}}&{{A_{38}}}\\ {{A_{18}} + 2{A_{27}}}&{\frac{{\sqrt {105} }}{{21}}{A_{28}}}&{ - \frac{{\sqrt {105} }}{7}{A_{38}}}&0\\ 0&{\frac{{2\sqrt {35} }}{7}{A_{38}}}&0&0\\ { - \frac{{2\sqrt {35} }}{7}{A_{38}}}&0&0&0\\ 0&0&0&0\\ 0&0&0&0 \end{array}} \right). $ |
2) 当
$ {{\mathit{\boldsymbol{A}}}_{1}}=\left( \begin{matrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{2\sqrt{35}}{7}{{A}_{16}} \\ 0 & 0 & -\frac{2\sqrt{35}}{7}{{A}_{16}} & 0 \\ 0 & \frac{\sqrt{105}}{7}{{A}_{16}} & -\frac{\sqrt{105}}{21}{{A}_{17}} & -{{A}_{18}}-2{{A}_{27}} \\ -{{A}_{16}} & \frac{4\sqrt{21}}{21}{{A}_{17}} & \frac{5}{3}{{A}_{27}}+\frac{2}{3}{{A}_{18}} & -\frac{\sqrt{105}}{21}{{A}_{28}} \\ -{{A}_{17}} & -{{A}_{27}} & \frac{4\sqrt{21}}{21}{{A}_{28}} & \frac{\sqrt{105}}{7}{{A}_{38}} \\ -{{A}_{18}} & -{{A}_{28}} & -{{A}_{38}} & 0 \\ \end{matrix} \right),{{\mathit{\boldsymbol{A}}}_{2}}=\left( \begin{matrix} 0 & {{A}_{16}} & {{A}_{17}} & {{A}_{18}} \\ -\frac{\sqrt{105}}{7}{{A}_{16}} & -\frac{4\sqrt{21}}{21}{{A}_{17}} & {{A}_{27}} & {{A}_{28}} \\ \frac{\sqrt{105}}{21}{{A}_{17}} & -\frac{5}{3}{{A}_{27}}-\frac{2}{3}{{A}_{18}} & -\frac{4\sqrt{21}}{21}{{A}_{28}} & {{A}_{38}} \\ {{A}_{18}}+{{A}_{27}} & \frac{\sqrt{105}}{21}{{A}_{28}} & -\frac{\sqrt{105}}{7}{{A}_{38}} & 0 \\ 0 & \frac{2\sqrt{35}}{7}{{A}_{38}} & 0 & 0 \\ -\frac{2\sqrt{35}}{7}{{A}_{38}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix} \right). $ |
3) 当
$ \mathit{\boldsymbol{A}} = \left( {\begin{array}{*{20}{c}} 0&0&0&0&0&0&0&{{A_{18}}}\\ 0&0&0&0&0&0&{ - {A_{18}}}&0\\ 0&0&0&0&0&{{A_{18}}}&0&0\\ 0&0&0&0&{ - {A_{18}}}&0&0&0\\ 0&0&0&{{A_{18}}}&0&0&0&0\\ 0&0&{ - {A_{18}}}&0&0&0&0&0\\ 0&{{A_{18}}}&0&0&0&0&0&0\\ { - {A_{18}}}&0&0&0&0&0&0&0 \end{array}} \right). $ |
4) 当
$ \mathit{\boldsymbol{A}} = 0. $ |
接下来, 将通过给出上述的解来构造
式(1)对应的解
设
取
$ \mathit{\boldsymbol{U = }}\left( {\begin{array}{*{20}{c}} 0&0&0&{ - 1}&0&0&0&0\\ 0&0&1&0&0&0&0&0\\ 0&{ - 1}&0&0&0&0&0&0\\ 1&0&0&0&0&0&0&0\\ 0&0&0&0&1&0&0&0\\ 0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&1&0\\ 0&0&0&0&0&0&0&1 \end{array}} \right) \in \mathit{\boldsymbol{U}}\left( 8 \right) $ |
为式(1)对应的特解。
此时可算得
$ \pi \circ \left( {\mathit{\boldsymbol{U}} \cdot \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}_0^{\left( 7 \right)}} \right) = {\left[ {\left( {\begin{array}{*{20}{c}} { - \sqrt {35} {z^3}} \\ {\sqrt {21} {z^2}} \\ { - \sqrt 7 z} \\ 1 \end{array}} \right) + {\text{j}}\left( {\begin{array}{*{20}{c}} {\sqrt {35} {z^4}} \\ {\sqrt {21} {z^5}} \\ {\sqrt 7 {z^6}} \\ {{z^7}} \end{array}} \right)} \right]_\mathbb{H}},\pi \circ \left( {\mathit{\boldsymbol{U}} \cdot \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}_7^{\left( 7 \right)}} \right) = {\left[ {\left( {\begin{array}{*{20}{c}} { - \sqrt {35} {{\bar z}^4}} \\ { - \sqrt {21} {{\bar z}^5}} \\ { - \sqrt 7 {{\bar z}^6}} \\ { - {{\bar z}^7}} \end{array}} \right) + {\text{j}}\left( {\begin{array}{*{20}{c}} { - \sqrt {35} {{\bar z}^3}} \\ {\sqrt {21} {{\bar z}^2}} \\ { - \sqrt 7 \bar z} \\ 1 \end{array}} \right)} \right]_\mathbb{H}}. $ |
式(2)对应的解
设
$ \mathit{\boldsymbol{U}} = \left( {\begin{array}{*{20}{c}} 0&0&0&{ - 1}&0&0&0&0\\ 0&0&1&0&0&0&0&0\\ 0&{ - 1}&0&0&0&0&0&0\\ 1&0&0&0&0&0&0&0\\ 0&0&0&0&1&0&0&0\\ 0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&1&0\\ 0&0&0&0&0&0&0&1 \end{array}} \right) \in \mathit{\boldsymbol{U}}\left( 8 \right) $ |
为式(2)对应的特解。
此时可算得
$ \pi \circ \left( {\mathit{\boldsymbol{U}} \cdot \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}_1^{\left( 7 \right)}} \right) = {\left[ {\left( {\begin{array}{*{20}{c}} { - \sqrt {35} \left( {3{z^2} - 4{z^3}\bar z} \right)} \\ {\sqrt {21} \left( {2z - 5{z^2}\bar z} \right)} \\ { - \sqrt 7 \left( {1 - 6z\bar z} \right)} \\ { - 7\bar z} \end{array}} \right) + {\text{j}}\left( {\begin{array}{*{20}{c}} {\sqrt {35} \left( {4{z^3} - 3{z^4}\bar z} \right)} \\ {\sqrt {21} \left( {5{z^4} - 2{z^5}\bar z} \right)} \\ {\sqrt 7 \left( {6{z^5} - {z^6}\bar z} \right)} \\ {7{z^6}} \end{array}} \right)} \right]_\mathbb{H}}, $ |
$ \pi \circ \left( {\mathit{\boldsymbol{U}} \cdot \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}_6^{\left( 7 \right)}} \right) = {\left[ {\left( {\begin{array}{*{20}{c}} { - \sqrt {35} \left( { - 4{{\bar z}^3} + 3z{{\bar z}^4}} \right)} \\ {\sqrt {21} \left( {5{{\bar z}^4} - 2z{{\bar z}^5}} \right)} \\ { - \sqrt 7 \left( { - 6{{\bar z}^5} + z{{\bar z}^6}} \right)} \\ {7{{\bar z}^6}} \end{array}} \right) + {\text{j}}\left( {\begin{array}{*{20}{c}} {\sqrt {35} \left( {3{{\bar z}^2} - 4z{{\bar z}^3}} \right)} \\ {\sqrt {21} \left( { - 2\bar z + 5z{{\bar z}^2}} \right)} \\ { - \sqrt 7 \left( {1 - 6z\bar z} \right)} \\ {7z} \end{array}} \right)} \right]_\mathbb{H}}. $ |
式(3)对应的解
设
$ \mathit{\boldsymbol{U}} = \left( {\begin{array}{*{20}{c}} 0&0&0&{ - 1}&0&0&0&0\\ 0&0&1&0&0&0&0&0\\ 0&{ - 1}&0&0&0&0&0&0\\ 1&0&0&0&0&0&0&0\\ 0&0&0&0&1&0&0&0\\ 0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&1&0\\ 0&0&0&0&0&0&0&1 \end{array}} \right) \in \mathit{\boldsymbol{U}}\left( 8 \right) $ |
为式(3)对应的特解。
此时可算得
$ \pi \circ \left( {\mathit{\boldsymbol{U}} \cdot \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}_2^{\left( 7 \right)}} \right) = {\left[ {\left( {\begin{array}{*{20}{c}} { - \sqrt {35} \left( {3z - 12{z^2}\bar z + 6{z^3}{{\bar z}^2}} \right)} \\ {\sqrt {21} \left( {1 - 10z\bar z + 10{z^2}{{\bar z}^2}} \right)} \\ { - \sqrt 7 \left( { - 6\bar z + 15z{{\bar z}^2}} \right)} \\ {21{{\bar z}^2}} \end{array}} \right) + {\text{j}}\left( {\begin{array}{*{20}{c}} {\sqrt {35} \left( {6{z^2} - 12{z^3}\bar z + 3{z^4}{{\bar z}^2}} \right)} \\ {\sqrt {21} \left( {10{z^3} - 10{z^4}\bar z + {z^5}{{\bar z}^2}} \right)} \\ {\sqrt 7 \left( {15{z^4} - 6{z^5}\bar z} \right)} \\ {21{z^5}} \end{array}} \right)} \right]_\mathbb{H}}, $ |
$ \pi \circ \left( {\mathit{\boldsymbol{U}} \cdot \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}_5^{\left( 7 \right)}} \right) = \left[ {\left( {\begin{array}{*{20}{c}} { - \sqrt {35} \left( { - 6{{\bar z}^2} - 12z{{\bar z}^3} + 3{z^2}{{\bar z}^4}} \right)} \\ {\sqrt {21} \left( { - 10{{\bar z}^3} + 10z{{\bar z}^4} - {z^2}{{\bar z}^5}} \right)} \\ { - \sqrt 7 \left( {15{{\bar z}^4} - 6z{{\bar z}^5}} \right)} \\ {} \end{array}} \right)} \right] + {\text{j}}{\left[ {\left( {\begin{array}{*{20}{c}} {\sqrt {35} \left( { - 3{{\bar z}^2} + 12z{{\bar z}^2} - 6{z^2}{{\bar z}^4}} \right)} \\ {\sqrt {21} \left( {1 - 10z\bar z + 10{z^2}{{\bar z}^2}} \right)} \\ {\sqrt 7 \left( {6z - 15{z^2}\bar z} \right)} \\ {21{z^2}} \end{array}} \right)} \right]_\mathbb{H}}. $ |
式(4)对应的解
由于
例2 设
1)
2)
3)
[1] |
Bryant R L. Conformal and minimal immersions of compact surfaces into the 4-sphere[J]. Journal of Differential Geometry, 1982, 17(17): 455-473. |
[2] |
Aithal A R. Harmonic maps from S2 to |
[3] |
Bolton J, Jensen G R, Rigoli M, et al. On conformal minimal immersions of S2 into |
[4] |
Bahy-El-Dien A, Wood J C. The explicit construction of all harmonic two-spheres in quaternionic projective spaces[J]. Proceedings of the London Mathematical Society, 1991, S3-62(1): 202-224. DOI:10.1112/plms.1991.s3-62.issue-1 |
[5] |
He L, Jiao X X. Classification of conformal minimal immersions of constant curvature from S2 to |
[6] |
He L, Jiao X X. On conformal minimal immersions of S2 in |
[7] |
Chen X, Jiao X. Conformal minimal surfaces immersed into |
[8] |
Yang K. Complete and compact minimal surfaces[M]. Dordrecht: Kluwer Academic Publishers, 1989.
|