On the Castelnuovo-Mumford regularity of product of irreducible monomial ideals
设S是域k上的多元多项式环, m是S的极大分次理想。对于有限生成分次S-模M, 当Hmi(M)≠0时, 令ai(M)=max{μ|[Hmi(M)]μ≠0};当Hmi(M)=0时, 令ai(M)=-∞.M的Castelnuovo-Mumford正则度定义为
$
{\rm{reg}}\left( M \right) = \mathop {\max }\limits_{i \ge 0} \left\{ {{a_i}\left( M \right) + i} \right\}.
$
|
reg(M)是一类重要的衡量M的复杂程度的不变量[1], 得到它的上界是引人关注的问题。对S的一个齐次理想I, IM的极小齐次生成元的最大次数不超过I和M的相应极小齐次生成元的最大次数之和, 所以研究reg(IM)≤reg(I)+reg(M)是否成立是一个自然的问题。当dim(S/I)≤1时, Conca和Herzog[2]证明reg(IM)≤reg(I)+reg(M).Sturmfels[3]给出一个单项式理想I, 满足reg(I2)>2reg(I)。进一步限制理想I的范围, Conca和Herzog[2]提出这样一个问题:当I1, …, Id都是完全交单项式理想时,
$
{\rm{reg}}\left( {{I_1}, \cdots ,{I_d}} \right) \le {\rm{reg}}\left( {{I_1}} \right) + \cdots + {\rm{reg}}\left( {{I_d}} \right)
$
|
(1) |
是否对任意的d≥1都成立?当d=2时, Chardin等[4]证明了这一问题的正确性; 当d≥3时, 这一问题至今没有得到解决。当d=3且I1, I2和I3都是由单个不定元的方幂生成的完全交理想时, Gao[5]证明了结论的正确性。当I是一个完全交且n≥1时, Tang和Gong[6]最近证明reg(In)≤nreg(I)。在本文中,对4个不可约单项式理想(由不定元的方幂生成的完全交理想)I, J, K和L, 证明
$
\begin{array}{*{20}{c}}
{{\rm{reg}}\left( {IJKL} \right) \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + }\\
{{\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).}
\end{array}
$
|
1 本研究的主要工具 本研究工作所用的主要工具[5]如下。
引理1.1 设0→N→M→P→0是一个有限生成的分次S-模的一个短正合列, 则
$
\left( {\rm{i}} \right){\rm{reg}}\left( M \right) \le \max \left\{ {{\rm{reg}}\left( N \right),{\rm{reg}}\left( P \right)} \right\}.
$
|
$
\left( {{\rm{ii}}} \right){\rm{reg}}\left( P \right) \le \max \left\{ {{\rm{reg}}\left( M \right),{\rm{reg}}\left( N \right) - 1} \right\}.
$
|
$
\left( {{\rm{iii}}} \right){\rm{reg}}\left( N \right) \le \max \left\{ {{\rm{reg}}\left( M \right),{\rm{reg}}\left( P \right) + 1} \right\}.
$
|
$
\begin{array}{l}
\;\;\;\;\;\;\left( {{\rm{iv}}} \right){\rm{reg}}\left( P \right) = {\rm{reg}}\left( M \right),{\rm{如果}}{\rm{reg}}\left( N \right) < \\
{\rm{reg}}\left( M \right).
\end{array}
$
|
$
\begin{array}{l}
\;\;\;\;\;\;\left( {\rm{v}} \right){\rm{reg}}\left( P \right) = {\rm{reg}}\left( N \right) - 1,{\rm{如果reg}}\left( M \right) < \\
{\rm{reg}}\left( N \right).
\end{array}
$
|
引理1.2 设x是一个线性形式,I是S的一个齐次理想, 则对所有的n≥1,
$
{\rm{reg}}\left( I \right) \le \max \left\{ {{\rm{reg}}\left( {I,{x^n}} \right),{\rm{reg}}\left( {I:{x^n}} \right) + n} \right\}.
$
|
引理1.3 设u是一个次数为d的齐次多项式,I是齐次理想且u是S/I-正则的,那么
$
{\rm{reg}}\left( {I,u} \right) = {\rm{reg}}\left( I \right) + d - 1.
$
|
下面的引理1.4和引理1.5分别对应Gao[5]中的引理3.1和定理3.2,为便于引用,将其列出。
引理1.4 设I, J, K是域k上多元多项式环S中的3个不可约单项式理想, 则
$
\begin{array}{*{20}{c}}
{{\rm{reg}}\left( {\left( {IJ,IK,JK} \right)} \right) \le {\rm{reg}}\left( I \right) + }\\
{{\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) - 1.}
\end{array}
$
|
引理1.5 设I, J, K是域k上多元多项式环S中的3个不可约单项式理想, 则
$
{\rm{reg}}\left( {IJK} \right) \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right).
$
|
2 主要结果 S的一个理想I称为一个完全交(complete intersection)单项式理想, 如果I可以由一些单项式生成,并且这些单项式之间没有公共的不定元。我们研究一类特殊的完全交单项式理想(不可约单项式理想), 即这些理想可以由单个不定元的方幂生成,例如I=(x12, x22, x56)。
引理2.1 设I, J, K, L是域k上多元多项式环S中的4个不可约单项式理想, 则
$
{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)
$
|
$
\begin{array}{l}
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.
\end{array}
$
|
证明 对l1+l2+l3+l4用归纳法, 这里l1, l2, l3, l4分别是I, J, K和L的最小的单项式生成元的基数。
如果l1=l2=l3=l4=1, 设I=(xl), J=(ym), K=(zn), L=(ws), l≥m≥n≥s且x, y, z, w两两不相等, 则(IJ, IK, IL, JK, JL, KL)=(xlym, xlzn, xlws, ymzn, ymws, znws).
根据引理1.2, 引理1.3及Gao[5]的引理3.1和Herzog[7]的推论3.2, 有
$
{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{x^l}{y^m},{x^l}{z^n},{y^m}{z^n},{w^s}} \right)} \right){\rm{reg}}\left( {\left( {{x^l},{y^m},} \right.} \right.} \right.\\
\left. {\;\;\;\left. {\left. {{z^n}} \right)} \right) + s} \right\}.
\end{array}
$
|
$
{\rm{reg}}\left( {\left( {{x^l}{y^m},{x^l}{z^n},{y^m}{z^n},{w^s}} \right)} \right)
$
|
$
\le {\rm{reg}}\left( {{x^l}} \right) + {\rm{reg}}\left( {{y^m}} \right) + {\rm{reg}}\left( {{z^n}} \right) + s - 2
$
|
$
\begin{array}{l}
= {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.\\
\end{array}
$
|
$
\;\;\;\;{\rm{reg}}\left( {\left( {{x^l},{y^m},{z^n}} \right)} \right) + s\\
\le {\rm{reg}}\left( {{x^l}} \right) + {\rm{reg}}\left( {{y^m}} \right) + {\rm{reg}}\left( {{z^n}} \right) + s - 2
$
|
$
= {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.
$
|
当x=y, x=y=z, x=y=z=w时可以用相同的方法证明有相同的结论, 因此在这种情况下结论成立。
如果I=(I1, xm)并且x是S/I1, S/J, S/K, S/L的非零因子, 也就是x的任何方幂都不在I1, J, K, L的最小单项式生成元中。则
$
\left( {IJ,IK,IL,JK,JL,KL} \right)
$
|
$
= \left( {{I_1},{x^m}} \right)J + \left( {{I_1},{x^m}} \right)K + \left( {{I_1},{x^m}} \right)L + JK + JL + KL
$
|
$
= {I_1}J + {I_1}K + {I_1}L + JK + JL + KL + {x^m}J + {x^m}K + {x^m}L.
$
|
根据引理1.2, 有
$
{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL,{x^m}} \right)} \right)} \right.,\\
\;\;\;\left. {{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right):{x^m}} \right) + m} \right\}
\end{array}
$
|
$
\begin{array}{l}
= \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}J,{I_1}K,{I_1}L,JK,JL,KL,{x^m}} \right)} \right)} \right.,\\
\;\;\;\left. {{\rm{reg}}\left( {\left( {J,K,L} \right)} \right) + m} \right\}
\end{array}
$
|
注意到x是S/(I1J, I1K, I1L, JK, JL, KL)-正则的, 根据引理1.3和归纳假设, 有
$
{\rm{reg}}\left( {\left( {{I_1}J,{I_1}K,{I_1}L,JK,JL,KL,{x^m}} \right)} \right)
$
|
$
= {\rm{reg}}\left( {\left( {{I_1}J,{I_1}K,{I_1}L,JK,JL,KL} \right)} \right) + m - 1
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m - 3
$
|
$
= {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.
$
|
上式成立是因为reg(I)=reg(I1)+m-1.根据Herzog[7]的推论3.2, 有
$
\begin{array}{*{20}{c}}
{{\rm{reg}}\left( {\left( {J,K,L} \right)} \right) + m \le {\rm{reg}}\left( J \right) + }\\
{{\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m - 2.}
\end{array}
$
|
因此在这种情况下结论成立。
如果I=(I1, xm), J=(J1, xn), m≥n≥1且x是S/K, S/L-正则的。则
$
\begin{array}{l}
\left( {IJ,IK,IL,JK,JL,KL} \right) = \left( {{I_1},{x^m}} \right)\left( {{J_1},{x^n}} \right) + \\
\left( {{I_1},{x^m}} \right)K + \left( {{I_1},{x^m}} \right)L + \left( {{J_1},{x^n}} \right)K + \left( {{J_1},{x^n}} \right)L + KL\\
= {I_1}{J_1} + {I_1}K + {I_1}L + {J_1}K + {J_1}L + KL + {x^n}{I_1} + \\
\;\;\;{x^m}{J_1} + {x^n}K + {x^n}L + {x^{m + n}}.
\end{array}
$
|
根据引理1.2, 有
$
\begin{array}{l}
{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)\\
\le \max \{ {\rm{reg((}}{I_1}{J_1},{I_1}K,{I_1}L,{I_1}{K_1},{I_1}L,KL,{x^n}{I_1},\\
\;\;{x^n}K,{x^n}L,{x^m})),{\rm{reg}}(({I_1},{J_1},K,L,{x^n})) + m\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}K,{I_1}L,{J_1}K,{J_1}L,KL,{x^n}} \right)} \right)} \right.,\\
\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},K,L,{x^{m - n}}} \right)} \right) + n,{\rm{reg}}\left( {\left( {{I_1},{J_1},K,L,{x^n}} \right)} \right) + m} \right\}.
\end{array}
$
|
根据归纳假设和Herzog[7]的推论3.2, 有
$
{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}K,{I_1}L,{J_1}K,{J_1}L,KL,{x^n}} \right)} \right)
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.
$
|
$
{\rm{reg}}\left( {\left( {{I_1},K,L,{x^{m - n}}} \right)} \right) + n
$
|
$
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.
$
|
$
{\rm{reg}}\left( {\left( {{I_1},{J_1},K,L,{x^n}} \right)} \right) + m
$
|
$
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.
$
|
上面式子的成立是因为reg(I)=reg(I1)+m-1和reg(J)=reg(J1)+n-1.
因此在这种情况下结论是成立的。
如果I=(I1, xm), J=(J1, xn), K=(K1, xs), 并且m≥n≥s≥1.则有
$
\left( {IJ,IK,IL,JK,JL,KL} \right)
$
|
$
\begin{array}{l}
= \left( {{I_1}{J_1},{I_1}{K_1},{I_1}L,{J_1}{K_1},{J_1}L,{K_1}L,{x^s}{I_1},{x^s}{J_1},{x^n}{K_1},} \right.\\
\;\;\;\left. {{x^s}L,{x^{n + s}}} \right).
\end{array}
$
|
根据引理1.2, 有
$
{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}L,{J_1}{K_1},{J_1}L,{K_1}L,{x^s}{I_1},} \right.} \right.} \right.\\
\;\;\;\left. {\left. {\left. {{x^s}{J_1},{x^s}L,{x^n}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},L,{x^s}} \right)} \right) + n} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}L,{J_1}{K_1},{J_1}L,{K_1}L,{x^s}} \right)} \right),} \right.\\
\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},{J_1},L,{x^{n - s}}} \right)} \right) + s,{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},L,{x^s}} \right)} \right) + n} \right\}.
\end{array}
$
|
根据归纳假设和引理1.3以及Herzog[7]的推论3.2, 有
$
{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}L,{J_1}{K_1},{J_1}L,{K_1}L,{x^s}} \right)} \right)
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) + s - 3
$
|
$
= {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.
$
|
$
{\rm{reg}}\left( {\left( {{I_1},{J_1},L,{x^{n - s}}} \right)} \right) + s
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( L \right) - 2.
$
|
$
{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},L,{x^s}} \right)} \right) + n
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.
$
|
因此在这种情况下结论是成立的。
如果I=(I1, xm), J=(J1, xn), K=(K1, xs), L=(L1, xz)且m≥n≥s≥z≥1.则有(IJ,IK,IL,JK,JL,KL)=(I1J1,I1K1,I1L,J1K1,J1L,K1L,xsI1,xsJ1,xnK1,xsL,xn+s).
根据引理1.2, 有
$
{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^z}{I_1},} \right.} \right.} \right.\\
\;\;\;\left. {\left. {\left. {{x^z}{J_1},{x^z}{K_1},{x^s}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + s} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^z}} \right)} \right),} \right.\\
\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + z,{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + s} \right\}.
\end{array}
$
|
根据归纳假设和引理1.3以及Herzog[7]的推论3.2, 有
$
{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^z}} \right)} \right)
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) + z - 3
$
|
$
= {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) - 2.
$
|
$
{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + z
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) - 2.
$
|
$
{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + s
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.
$
|
因此在这种情况下结论是成立的。
综上,证明了当I, J, K, L是S中的4个不可约单项式理想时, 结论是成立的。
推论2.1 设I, J, K, L是域k上多元多项式环S中的4个不可约单项式理想, 利用证明引理2.1的方法, 可以证明
$
{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL} \right)} \right)
$
|
$
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.
$
|
$
{\rm{reg}}\left( {\left( {IJ,IK,IL,JK} \right)} \right)
$
|
$
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.
$
|
$
{\rm{reg}}\left( {\left( {IJK,IJL,IKL,JKL} \right)} \right)
$
|
$
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.
$
|
$
{\rm{reg}}\left( {\left( {IJ,IKL,JKL} \right)} \right)
$
|
$
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.
$
|
$
{\rm{reg}}\left( {\left( {IJ,IK,JKL} \right)} \right)
$
|
$
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.
$
|
$
{\rm{reg}}\left( {\left( {IJ,IK,IL,JKL} \right)} \right)
$
|
$
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.
$
|
$
{\rm{reg}}\left( {\left( {IJL,IKL,JKL} \right)} \right)
$
|
$
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.
$
|
$
{\rm{reg}}\left( {\left( {IL,JKL} \right)} \right)
$
|
$
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.
$
|
$
{\rm{reg}}\left( {\left( {IJK,IJL,IKL} \right)} \right)
$
|
$
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1.
$
|
注意:类似(IJ, IK, IL, JK, JL)的其他几种情况, 即形如(IK, IL, JK, JL, KL), 也满足上面的不等式。
定理2.1 设I, J, K, L是域k上多元多项式环S中的4个不可约单项式理想, 则
$
{\rm{reg}}\left( {IJKL} \right) \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).
$
|
证明 关于l1+l2+l3+l4用归纳法, 这里l1, l2, l3, l4分别是I, J, K, L的最小的单项式生成元的基数。如果l1=l2=l3=l4=1, 则定理的证明是显然的。因为
$
{\rm{reg}}\left( {IJKL} \right){\rm{ = reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).
$
|
如果S的一个变量x只出现在I的最小的单项式生成元中, 而没有出现在J, K和L的最小的单项式生成元中。设I=(I1, xm), m≥1并且x是S/I1-正则的。则IJKL=I1JKL+xmJKL并且xm是S/I1JKL-正则的。根据引理1.2和引理1.3。
$
{\rm{reg}}\left( {IJKL} \right) \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}JKL,{x^m}} \right)} \right),} \right.
$
|
$
\left. {{\rm{reg}}\left( {\left( {{I_1}JKL,{x^m}JKL} \right):{x^m}} \right) + m } \right\}
$
|
$
= \max \left\{ {{\rm{reg}}\left( {{I_1}JKL} \right) + m - 1,{\rm{reg}}\left( {JKL} \right) + m} \right\}.
$
|
根据归纳假设,有
$
{\rm{reg}}\left( {{I_1}JKL} \right) + m - 1
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m - 1
$
|
$
= {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).
$
|
根据Gao[5]的定理3.2, 有
$
\begin{array}{l}
{\rm{reg}}\left( {JKL} \right) + m \le {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m\\
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).
\end{array}
$
|
因此定理的结论在这种情况下是成立的。
如果S的一个变量x出现在I和J的最小的单项式生成元中, 而没有出现在K和L的最小的单项式生成元中。设I=(I1, xm), J=(J1, xn)且m≥n。则IJKL=I1J1KL+xnI1KL+xmJ1KL+xm+nKL。
根据引理1.2
$
{\rm{reg}}\left( {IJKL} \right)
$
|
$
\le \max \left\{ {{\rm{reg}}\left( {\left( {IJKL,{x^m}} \right)} \right),{\rm{reg}}\left( {\left( {IJKL:{x^m}} \right)} \right) + m} \right\}
$
|
$
\begin{array}{l}
= \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}KL,{x^n}{I_1}KL,{x^m}} \right)} \right)} \right.,\\
\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}KL,{J_1}KL,{x^n}KL} \right)} \right) + m} \right\}.
\end{array}
$
|
则上面最后一行的两个式子可以分写成
$
{\rm{reg}}\left( {\left( {{I_1}{J_1}KL,{x^n}{I_1}KL,{x^m}} \right)} \right)
$
|
$
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}KL,{x^n}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1}KL,{x^{m - n}}} \right)} \right) + n} \right\}.
$
|
$
{\rm{reg}}\left( {\left( {{I_1}KL,{J_1}KL,{x^n}KL} \right)} \right) + m
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}KL,{J_1}KL,{x^n}} \right)} \right) + m,{\rm{reg}}\left( {KL} \right) + } \right.\\
\;\;\;\left. {m + n} \right\}.
\end{array}
$
|
根据归纳假设, Gao[5]的定理3.2和x的确没有出现在I1, J1, K, L的最小的单项式生成元中。有
$
{\rm{reg}}\left( {\left( {{I_1}{J_1}KL,{x^n}} \right)} \right)
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + n - 1
$
|
$
= {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).
$
|
$
{\rm{reg}}\left( {\left( {{I_1}KL,{x^{m - n}}} \right)} \right) + n
$
|
$
= {\rm{reg}}\left( {{I_1}KL} \right) + m - 1
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m - 1
$
|
$
= {\rm{reg}}\left( I \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).
$
|
$
{\rm{reg}}\left( {KL} \right) + m + n \le {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m + n.
$
|
注意到I1+J1也是一个不可约单项式理想, 根据Herzog[7]的推论3.2和Gao[5]的定理3.2, 有
$
{\rm{reg}}\left( {\left( {{I_1}KL,{J_1}KL,{x^n}} \right)} \right) + m
$
|
$
= {\rm{reg}}\left( {\left( {{I_1},{J_1}} \right)KL} \right) + m + n - 1
$
|
$
\le {\rm{reg}}\left( {{I_1},{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m + n - 1
$
|
$
\begin{array}{l}
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m + \\
\;\;\;n - 2
\end{array}
$
|
$
= {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).
$
|
因此定理的结论在这种情况下是成立的。
如果S的一个变量x出现在I, J, K的最小的单项式生成元中, 而没有出现在L的最小的单项式生成元中。设I=(I1, xm), J=(J1, xn), K=(K1, xs)且m≥n≥s≥1。则IJKL=(I1J1K1L, xsI1J1L, xnI1K1L, xmJ1K1L, xn+sI1L, xm+sJ1L, xm+nK1L, xm+n+sL)。
首先假设m≤n+s, 根据引理1.2
$
{\rm{reg}}\left( {IJKL} \right)
$
|
$
\le \max \left\{ {{\rm{reg}}\left( {\left( {IJKL,{x^{n + s}}} \right)} \right),{\rm{reg}}\left( {\left( {IJKL:{x^{n + s}}} \right)} \right) + n + s} \right\}
$
|
$
= \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}{I_1}{J_1}L,{x^n}{I_1}{K_1}L,{x^m}{J_1}{K_1}L,{x^{n + s}}} \right)} \right)} \right.,
$
|
(2) |
$
\left. {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}{J_1}L,{x^{m - s}}{K_1}L,{x^m}L} \right)} \right) + n + s} \right\}.
$
|
(3) |
对式(2), 有
$
{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}{I_1}{J_1}L,{x^n}{I_1}{K_1}L,{x^m}{J_1}{K_1}L,{x^{n + s}}} \right)} \right)
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}{I_1}{J_1}L,{x^n}{I_1}{K_1}L,{x^m}} \right)} \right)} \right.,\\
\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L,{x^{m + s - n}}} \right)} \right) + m} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}{I_1}{J_1}L,{x^n}} \right)} \right)} \right.,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{x^{m - n}}} \right)} \right) + n,\\
\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L,{x^{m + s - n}}} \right)} \right) + m} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{x^{n - s}}} \right)} \right)} \right. + s,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{x^{m - n}}} \right)} \right) + n,\\
\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L,{x^{n + s - m}}} \right)} \right) + m} \right\}.
\end{array}
$
|
类似于前面几种情况, 可以证明
reg((I1J1K1L, xs)), reg((I1J1L, xn-s))+s, reg((I1J1L, I1K1L, xm-n))+n的值不会超过reg(I)+reg(J)+reg(K)+reg(L).
根据推论2.1,有
$
{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L,{x^{n + s - m}}} \right)} \right) + m
$
|
$
= {\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L} \right)} \right) + n + s - 1
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) + n + s - 2
$
|
$
= {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right)
$
|
$
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).
$
|
对式(3), 有
$
{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}{J_1}L,{x^{m - s}}{K_1}L,{x^m}L} \right)} \right) + n + s
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}} \right)} \right) + n + s,} \right.\\
\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{x^{n - s}}{K_1}L,{x^n}L} \right)} \right) + m + s} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}} \right)} \right) + n + s} \right.,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{x^{n - s}}} \right)} \right) + m + s,\\
\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{K_1}L,{x^s}L} \right)} \right) + m + n} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}J,{x^{m - n}}} \right)} \right) + n + s,} \right.\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{x^{n - s}}} \right)} \right) + m + s,{\rm{reg}}\left( L \right) + m + n + s,\\
\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{K_1}L,{x^s}} \right)} \right) + m + n} \right\}.
\end{array}
$
|
类似于前面几种情况, 易证
reg(L)+m+n+s, reg((I1L, J1L, xn-s))+m+s的值不会超过reg(I)+reg(J)+reg(K)+reg(L).
根据Herzog[7]的推论3.2, 有
$
{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{K_1}L,{x^s}} \right)} \right) + m + n
$
|
$
= {\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1}} \right)L} \right) + m + n + s - 1
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) + m + n + s - 3
$
|
$
= {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).
$
|
根据推论2.1, 有
$
{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}} \right)} \right) + n + s
$
|
$
= {\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L} \right)} \right) + m + s - 1
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) + m + s - 2
$
|
$
= {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).
$
|
所以当m≤n+s时, 有reg(IJKL)≤reg(I)+reg(J)+reg(K)+reg(L)。当m > n+s时, 同理可证reg(IJKL)≤reg(I)+reg(J)+reg(K)+reg(L)成立。因此定理的结论在这种情况下是成立的。
如果S的一个变量x出现在I, J, K, L的最小的单项式生成元中, 设I=(I1, xm), J=(J1, xn), K=(K1, xs), L=(L1, xz)且m≥n≥s≥z≥1则
$
\begin{array}{l}
IJKL = \left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},} \right.\\
\;\;\;\;\;\;\;\;\;\;\;\;{x^m}{J_1}{K_1}{L_1},{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},\\
\;\;\;\;\;\;\;\;\;\;\;\;{x^{m + z}}{J_1}{K_1},{x^{m + s}}{J_1}{L_1},{x^{m + n}}{K_1}{L_1},{x^{n + s + z}}{I_1},\\
\;\;\;\;\;\;\;\;\;\;\;\;\left. {{x^{m + s + z}}{J_1},{x^{m + n + z}}{K_1},{x^{m + n + s}}{L_1},{x^{m + n + s + z}}} \right).
\end{array}
$
|
首先假设m≤s+z, 根据引理1.2
$
\begin{array}{l}
{\rm{reg}}\left( {IJKL} \right) \le \max \left\{ {{\rm{reg}}\left( {\left( {IJKL,{x^{n + s + z}}} \right)} \right)} \right.,\\
\;\;\;\;\;\;\left. {{\rm{reg}}\left( {\left( {IJKL:{x^{n + s + z}}} \right)} \right) + n + s + z} \right\}
\end{array}
$
|
$
\begin{array}{l}
= \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},} \right.} \right.} \right.\\
\;\;\;{x^m}{J_1}{K_1}{L_1},{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}{J_1}{K_1},\\
\;\;\;\left. {\left. {{x^{m + s}}{J_1}{L_1},{x^{m + n}}{K_1}{L_1},{x^{n + s + z}}} \right)} \right),
\end{array}
$
|
(4) |
$
\begin{array}{l}
{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}{J_1},{x^{m - s}}{K_1},{x^{m - z}}{L_1}} \right.,} \right.\\
\;\;\;\;\;\left. {\left. {\left. {{x^m}} \right)} \right) + n + s + z} \right\}.
\end{array}
$
|
(5) |
对式(4)假设n+s≤m+z, 有
$
{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.,
$
|
$
\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}{J_1}{K_1},{x^{m + s}}{J_1}{L_1},{x^{m + n}}{K_1}{L_1},{x^{n + s + z}}} \right)} \right)
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.} \right.,\\
\;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}{J_1}{K_1},{x^{m + s}}{J_1}{L_1},{x^{m + n}}} \right)} \right),\\
\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.} \right.,\\
\;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}{J_1}{K_1},{x^{m + s}}} \right)} \right),\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\
\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.,} \right.\\
\;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}} \right)} \right),\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\
\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.,} \right.\\
\;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}} \right)} \right),\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\
\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.,} \right.\\
\;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\
\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},} \right.} \right.} \right.\\
\;\;\;\left. {\left. {{x^m}{J_1}{K_1}{L_1},{x^{s + z}}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\
\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}} \right)} \right)} \right.,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\
\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}} \right)} \right)} \right.,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{x^{m - n}}} \right)} \right) + n,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\
\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}} \right)} \right)} \right.,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{x^{n - s}}} \right)} \right) + s,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{x^{m - n}}} \right)} \right) + n,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\
\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}} \right)} \right)} \right.,{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{x^{s - z}}} \right)} \right) + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{x^{n - s}}} \right)} \right) + s,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{x^{m - n}}} \right)} \right) + n,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\
\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\
\left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\}
\end{array}
$
|
根据归纳假设和Gao[5]的引理3.1和定理3.2易证reg((I1J1K1L1, xz)), reg((I1J1K1, xs-z))+z, reg((I1J1K1, I1J1L1, xn-s))+s的值不会超过reg(I)+reg(J)+reg(K)+reg(L).
根据引理2.1, 有
$
{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) + n + s + z - 3
$
|
$
= {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).
$
|
根据推论2.1, 有
$
{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).
$
|
$
{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right).
$
|
$
{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( {{L_1}} \right).
$
|
$
{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s
$
|
$
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right).
$
|
$
{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,
$
|
$
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( {{L_1}} \right).
$
|
$
{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s
$
|
$
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) - 1.
$
|
$
{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{x^{m - n}}} \right)} \right) + n
$
|
$
\le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) - 1.
$
|
对式(5)根据引理1.2, 有
$
\begin{array}{l}
{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}{J_1},{x^{m - s}}{K_1},{x^{m - z}}{L_1},{x^m}} \right)} \right) + \\
\;\;\;\;\;n + s + z
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}{J_1},{x^{m - s}}{K_1},{x^{m - z}}} \right)} \right) + } \right.\\
\;\;\;\;\;\;\left. {n + s + z,{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + m + n + s} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}{J_1},{x^{m - s}}} \right)} \right) + } \right.\\
\;\;\;\;\;\;n + s + z,\\
\;\;\;\;\;\;{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + m + n + z,\\
\;\;\;\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + m + n + s} \right\}
\end{array}
$
|
$
\begin{array}{l}
\le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}} \right)} \right) + n + s + z,} \right.\\
\;\;\;\;\;\;{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1}{L_1},{x^{n - s}}} \right)} \right) + m + s + z,\\
\;\;\;\;\;\;{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + m + n + z,\\
\;\;\;\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + m + n + s} \right\}.
\end{array}
$
|
根据Herzog[7]的推论3.2,易证
$
{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1}{L_1},{x^{n - s}}} \right)} \right) + m + s + z,
$
|
$
{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + m + n + z,
$
|
reg((I1, J1, K1, L1, xz))+m+n+s的值不会超过
reg(I)+reg(J)+reg(K)+reg(L)。根据Gao[5]的引理3.1, 有
$
{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}} \right)} \right) + n + s + z
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {\left( {{J_1}{K_1},{J_1}{L_1},{K_1}{L_1}} \right)} \right) + m + s + z - 2
$
|
$
\le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) + m + s + z - 3
$
|
$
= {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).
$
|
因此当n+s≤m+z时结论得证, 当n+s > m+z时可以用相同的方法证明有相同的结论; 因此当m≤s+z时定理成立, 当m > s+z时用相同的方法和完全类似的推导过程可以证明有相同的结论。
综上所述,定理被证明。