中国科学院大学学报  2018, Vol. 35 Issue (6): 724-730   PDF    
不可约单项式理想乘积的Castelnuovo-Mumford正则度
宋娟娟, 高玉彬     
陕西师范大学数学与信息科学学院, 西安 710062
摘要: 对于域k上多元多项式环k[x1, …, xn]中不可约单项式理想IJKL,证明reg(IJKL)≤reg(I)+reg(J)+reg(K)+reg(L).
关键词: Castelnuovo-Mumford正则度     完全交     理想的乘积    
On the Castelnuovo-Mumford regularity of product of irreducible monomial ideals
SONG Juanjuan, GAO Yubin     
College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China
Abstract: Let I, J, K, and L be irreducible monomial ideals in a polynomial ring over a field k. In this paper, we prove reg(IJKL) ≤ reg(I)+reg(J)+reg(K)+reg(L).
Keywords: Castelnuovo-Mumford regularity     complete intersection     product of ideals    

S是域k上的多元多项式环, mS的极大分次理想。对于有限生成分次S-模M, 当Hmi(M)≠0时, 令ai(M)=max{μ|[Hmi(M)]μ≠0};当Hmi(M)=0时, 令ai(M)=-∞.M的Castelnuovo-Mumford正则度定义为

$ {\rm{reg}}\left( M \right) = \mathop {\max }\limits_{i \ge 0} \left\{ {{a_i}\left( M \right) + i} \right\}. $

reg(M)是一类重要的衡量M的复杂程度的不变量[1], 得到它的上界是引人关注的问题。对S的一个齐次理想I, IM的极小齐次生成元的最大次数不超过IM的相应极小齐次生成元的最大次数之和, 所以研究reg(IM)≤reg(I)+reg(M)是否成立是一个自然的问题。当dim(S/I)≤1时, Conca和Herzog[2]证明reg(IM)≤reg(I)+reg(M).Sturmfels[3]给出一个单项式理想I, 满足reg(I2)>2reg(I)。进一步限制理想I的范围, Conca和Herzog[2]提出这样一个问题:当I1, …, Id都是完全交单项式理想时,

$ {\rm{reg}}\left( {{I_1}, \cdots ,{I_d}} \right) \le {\rm{reg}}\left( {{I_1}} \right) + \cdots + {\rm{reg}}\left( {{I_d}} \right) $ (1)

是否对任意的d≥1都成立?当d=2时, Chardin等[4]证明了这一问题的正确性; 当d≥3时, 这一问题至今没有得到解决。当d=3且I1, I2I3都是由单个不定元的方幂生成的完全交理想时, Gao[5]证明了结论的正确性。当I是一个完全交且n≥1时, Tang和Gong[6]最近证明reg(In)≤nreg(I)。在本文中,对4个不可约单项式理想(由不定元的方幂生成的完全交理想)I, J, KL, 证明

$ \begin{array}{*{20}{c}} {{\rm{reg}}\left( {IJKL} \right) \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + }\\ {{\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right).} \end{array} $
1 本研究的主要工具

本研究工作所用的主要工具[5]如下。

引理1.1  设0→NMP→0是一个有限生成的分次S-模的一个短正合列, 则

$ \left( {\rm{i}} \right){\rm{reg}}\left( M \right) \le \max \left\{ {{\rm{reg}}\left( N \right),{\rm{reg}}\left( P \right)} \right\}. $
$ \left( {{\rm{ii}}} \right){\rm{reg}}\left( P \right) \le \max \left\{ {{\rm{reg}}\left( M \right),{\rm{reg}}\left( N \right) - 1} \right\}. $
$ \left( {{\rm{iii}}} \right){\rm{reg}}\left( N \right) \le \max \left\{ {{\rm{reg}}\left( M \right),{\rm{reg}}\left( P \right) + 1} \right\}. $
$ \begin{array}{l} \;\;\;\;\;\;\left( {{\rm{iv}}} \right){\rm{reg}}\left( P \right) = {\rm{reg}}\left( M \right),{\rm{如果}}{\rm{reg}}\left( N \right) < \\ {\rm{reg}}\left( M \right). \end{array} $
$ \begin{array}{l} \;\;\;\;\;\;\left( {\rm{v}} \right){\rm{reg}}\left( P \right) = {\rm{reg}}\left( N \right) - 1,{\rm{如果reg}}\left( M \right) < \\ {\rm{reg}}\left( N \right). \end{array} $

引理1.2  设x是一个线性形式,IS的一个齐次理想, 则对所有的n≥1,

$ {\rm{reg}}\left( I \right) \le \max \left\{ {{\rm{reg}}\left( {I,{x^n}} \right),{\rm{reg}}\left( {I:{x^n}} \right) + n} \right\}. $

引理1.3  设u是一个次数为d的齐次多项式,I是齐次理想且uS/I-正则的,那么

$ {\rm{reg}}\left( {I,u} \right) = {\rm{reg}}\left( I \right) + d - 1. $

下面的引理1.4和引理1.5分别对应Gao[5]中的引理3.1和定理3.2,为便于引用,将其列出。

引理1.4  设I, J, K是域k上多元多项式环S中的3个不可约单项式理想, 则

$ \begin{array}{*{20}{c}} {{\rm{reg}}\left( {\left( {IJ,IK,JK} \right)} \right) \le {\rm{reg}}\left( I \right) + }\\ {{\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) - 1.} \end{array} $

引理1.5  设I, J, K是域k上多元多项式环S中的3个不可约单项式理想, 则

$ {\rm{reg}}\left( {IJK} \right) \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right). $
2 主要结果

S的一个理想I称为一个完全交(complete intersection)单项式理想, 如果I可以由一些单项式生成,并且这些单项式之间没有公共的不定元。我们研究一类特殊的完全交单项式理想(不可约单项式理想), 即这些理想可以由单个不定元的方幂生成,例如I=(x12, x22, x56)。

引理2.1  设I, J, K, L是域k上多元多项式环S中的4个不可约单项式理想, 则

$ {\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right) $
$ \begin{array}{l} \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2. \end{array} $

证明  对l1+l2+l3+l4用归纳法, 这里l1, l2, l3, l4分别是I, J, KL的最小的单项式生成元的基数。

如果l1=l2=l3=l4=1, 设I=(xl), J=(ym), K=(zn), L=(ws), lmnsx, y, z, w两两不相等, 则(IJ, IK, IL, JK, JL, KL)=(xlym, xlzn, xlws, ymzn, ymws, znws).

根据引理1.2, 引理1.3及Gao[5]的引理3.1和Herzog[7]的推论3.2, 有

$ {\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right) $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{x^l}{y^m},{x^l}{z^n},{y^m}{z^n},{w^s}} \right)} \right){\rm{reg}}\left( {\left( {{x^l},{y^m},} \right.} \right.} \right.\\ \left. {\;\;\;\left. {\left. {{z^n}} \right)} \right) + s} \right\}. \end{array} $
$ {\rm{reg}}\left( {\left( {{x^l}{y^m},{x^l}{z^n},{y^m}{z^n},{w^s}} \right)} \right) $
$ \le {\rm{reg}}\left( {{x^l}} \right) + {\rm{reg}}\left( {{y^m}} \right) + {\rm{reg}}\left( {{z^n}} \right) + s - 2 $
$ \begin{array}{l} = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2.\\ \end{array} $
$ \;\;\;\;{\rm{reg}}\left( {\left( {{x^l},{y^m},{z^n}} \right)} \right) + s\\ \le {\rm{reg}}\left( {{x^l}} \right) + {\rm{reg}}\left( {{y^m}} \right) + {\rm{reg}}\left( {{z^n}} \right) + s - 2 $
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2. $

x=y, x=y=z, x=y=z=w时可以用相同的方法证明有相同的结论, 因此在这种情况下结论成立。

如果I=(I1, xm)并且xS/I1, S/J, S/K, S/L的非零因子, 也就是x的任何方幂都不在I1, J, K, L的最小单项式生成元中。则

$ \left( {IJ,IK,IL,JK,JL,KL} \right) $
$ = \left( {{I_1},{x^m}} \right)J + \left( {{I_1},{x^m}} \right)K + \left( {{I_1},{x^m}} \right)L + JK + JL + KL $
$ = {I_1}J + {I_1}K + {I_1}L + JK + JL + KL + {x^m}J + {x^m}K + {x^m}L. $

根据引理1.2, 有

$ {\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right) $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL,{x^m}} \right)} \right)} \right.,\\ \;\;\;\left. {{\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right):{x^m}} \right) + m} \right\} \end{array} $
$ \begin{array}{l} = \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}J,{I_1}K,{I_1}L,JK,JL,KL,{x^m}} \right)} \right)} \right.,\\ \;\;\;\left. {{\rm{reg}}\left( {\left( {J,K,L} \right)} \right) + m} \right\} \end{array} $

注意到xS/(I1J, I1K, I1L, JK, JL, KL)-正则的, 根据引理1.3和归纳假设, 有

$ {\rm{reg}}\left( {\left( {{I_1}J,{I_1}K,{I_1}L,JK,JL,KL,{x^m}} \right)} \right) $
$ = {\rm{reg}}\left( {\left( {{I_1}J,{I_1}K,{I_1}L,JK,JL,KL} \right)} \right) + m - 1 $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m - 3 $
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2. $

上式成立是因为reg(I)=reg(I1)+m-1.根据Herzog[7]的推论3.2, 有

$ \begin{array}{*{20}{c}} {{\rm{reg}}\left( {\left( {J,K,L} \right)} \right) + m \le {\rm{reg}}\left( J \right) + }\\ {{\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m - 2.} \end{array} $

因此在这种情况下结论成立。

如果I=(I1, xm), J=(J1, xn), mn≥1且xS/K, S/L-正则的。则

$ \begin{array}{l} \left( {IJ,IK,IL,JK,JL,KL} \right) = \left( {{I_1},{x^m}} \right)\left( {{J_1},{x^n}} \right) + \\ \left( {{I_1},{x^m}} \right)K + \left( {{I_1},{x^m}} \right)L + \left( {{J_1},{x^n}} \right)K + \left( {{J_1},{x^n}} \right)L + KL\\ = {I_1}{J_1} + {I_1}K + {I_1}L + {J_1}K + {J_1}L + KL + {x^n}{I_1} + \\ \;\;\;{x^m}{J_1} + {x^n}K + {x^n}L + {x^{m + n}}. \end{array} $

根据引理1.2, 有

$ \begin{array}{l} {\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right)\\ \le \max \{ {\rm{reg((}}{I_1}{J_1},{I_1}K,{I_1}L,{I_1}{K_1},{I_1}L,KL,{x^n}{I_1},\\ \;\;{x^n}K,{x^n}L,{x^m})),{\rm{reg}}(({I_1},{J_1},K,L,{x^n})) + m\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}K,{I_1}L,{J_1}K,{J_1}L,KL,{x^n}} \right)} \right)} \right.,\\ \;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},K,L,{x^{m - n}}} \right)} \right) + n,{\rm{reg}}\left( {\left( {{I_1},{J_1},K,L,{x^n}} \right)} \right) + m} \right\}. \end{array} $

根据归纳假设和Herzog[7]的推论3.2, 有

$ {\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}K,{I_1}L,{J_1}K,{J_1}L,KL,{x^n}} \right)} \right) $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2. $
$ {\rm{reg}}\left( {\left( {{I_1},K,L,{x^{m - n}}} \right)} \right) + n $
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2. $
$ {\rm{reg}}\left( {\left( {{I_1},{J_1},K,L,{x^n}} \right)} \right) + m $
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2. $

上面式子的成立是因为reg(I)=reg(I1)+m-1和reg(J)=reg(J1)+n-1.

因此在这种情况下结论是成立的。

如果I=(I1, xm), J=(J1, xn), K=(K1, xs), 并且mns≥1.则有

$ \left( {IJ,IK,IL,JK,JL,KL} \right) $
$ \begin{array}{l} = \left( {{I_1}{J_1},{I_1}{K_1},{I_1}L,{J_1}{K_1},{J_1}L,{K_1}L,{x^s}{I_1},{x^s}{J_1},{x^n}{K_1},} \right.\\ \;\;\;\left. {{x^s}L,{x^{n + s}}} \right). \end{array} $

根据引理1.2, 有

$ {\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right) $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}L,{J_1}{K_1},{J_1}L,{K_1}L,{x^s}{I_1},} \right.} \right.} \right.\\ \;\;\;\left. {\left. {\left. {{x^s}{J_1},{x^s}L,{x^n}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},L,{x^s}} \right)} \right) + n} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}L,{J_1}{K_1},{J_1}L,{K_1}L,{x^s}} \right)} \right),} \right.\\ \;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},{J_1},L,{x^{n - s}}} \right)} \right) + s,{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},L,{x^s}} \right)} \right) + n} \right\}. \end{array} $

根据归纳假设和引理1.3以及Herzog[7]的推论3.2, 有

$ {\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}L,{J_1}{K_1},{J_1}L,{K_1}L,{x^s}} \right)} \right) $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) + s - 3 $
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2. $
$ {\rm{reg}}\left( {\left( {{I_1},{J_1},L,{x^{n - s}}} \right)} \right) + s $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( L \right) - 2. $
$ {\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},L,{x^s}} \right)} \right) + n $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2. $

因此在这种情况下结论是成立的。

如果I=(I1, xm), J=(J1, xn), K=(K1, xs), L=(L1, xz)且mnsz≥1.则有(IJ,IK,IL,JK,JL,KL)=(I1J1,I1K1,I1L,J1K1,J1L,K1L,xsI1,xsJ1,xnK1,xsL,xn+s).

根据引理1.2, 有

$ {\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL,KL} \right)} \right) $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^z}{I_1},} \right.} \right.} \right.\\ \;\;\;\left. {\left. {\left. {{x^z}{J_1},{x^z}{K_1},{x^s}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + s} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^z}} \right)} \right),} \right.\\ \;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + z,{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + s} \right\}. \end{array} $

根据归纳假设和引理1.3以及Herzog[7]的推论3.2, 有

$ {\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^z}} \right)} \right) $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) + z - 3 $
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) - 2. $
$ {\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + z $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) - 2. $
$ {\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + s $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2. $

因此在这种情况下结论是成立的。

综上,证明了当I, J, K, LS中的4个不可约单项式理想时, 结论是成立的。

推论2.1  设I, J, K, L是域k上多元多项式环S中的4个不可约单项式理想, 利用证明引理2.1的方法, 可以证明

$ {\rm{reg}}\left( {\left( {IJ,IK,IL,JK,JL} \right)} \right) $
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 2. $
$ {\rm{reg}}\left( {\left( {IJ,IK,IL,JK} \right)} \right) $
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1. $
$ {\rm{reg}}\left( {\left( {IJK,IJL,IKL,JKL} \right)} \right) $
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1. $
$ {\rm{reg}}\left( {\left( {IJ,IKL,JKL} \right)} \right) $
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1. $
$ {\rm{reg}}\left( {\left( {IJ,IK,JKL} \right)} \right) $
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1. $
$ {\rm{reg}}\left( {\left( {IJ,IK,IL,JKL} \right)} \right) $
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1. $
$ {\rm{reg}}\left( {\left( {IJL,IKL,JKL} \right)} \right) $
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1. $
$ {\rm{reg}}\left( {\left( {IL,JKL} \right)} \right) $
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1. $
$ {\rm{reg}}\left( {\left( {IJK,IJL,IKL} \right)} \right) $
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) - 1. $

注意:类似(IJ, IK, IL, JK, JL)的其他几种情况, 即形如(IK, IL, JK, JL, KL), 也满足上面的不等式。

定理2.1  设I, J, K, L是域k上多元多项式环S中的4个不可约单项式理想, 则

$ {\rm{reg}}\left( {IJKL} \right) \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right). $

证明  关于l1+l2+l3+l4用归纳法, 这里l1, l2, l3, l4分别是I, J, K, L的最小的单项式生成元的基数。如果l1=l2=l3=l4=1, 则定理的证明是显然的。因为

$ {\rm{reg}}\left( {IJKL} \right){\rm{ = reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right). $

如果S的一个变量x只出现在I的最小的单项式生成元中, 而没有出现在J, KL的最小的单项式生成元中。设I=(I1, xm), m≥1并且xS/I1-正则的。则IJKL=I1JKL+xmJKL并且xmS/I1JKL-正则的。根据引理1.2和引理1.3。

$ {\rm{reg}}\left( {IJKL} \right) \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}JKL,{x^m}} \right)} \right),} \right. $
$ \left. {{\rm{reg}}\left( {\left( {{I_1}JKL,{x^m}JKL} \right):{x^m}} \right) + m } \right\} $
$ = \max \left\{ {{\rm{reg}}\left( {{I_1}JKL} \right) + m - 1,{\rm{reg}}\left( {JKL} \right) + m} \right\}. $

根据归纳假设,有

$ {\rm{reg}}\left( {{I_1}JKL} \right) + m - 1 $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m - 1 $
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right). $

根据Gao[5]的定理3.2, 有

$ \begin{array}{l} {\rm{reg}}\left( {JKL} \right) + m \le {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m\\ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right). \end{array} $

因此定理的结论在这种情况下是成立的。

如果S的一个变量x出现在IJ的最小的单项式生成元中, 而没有出现在KL的最小的单项式生成元中。设I=(I1, xm), J=(J1, xn)且m≥n。则IJKL=I1J1KL+xnI1KL+xmJ1KL+xm+nKL

根据引理1.2

$ {\rm{reg}}\left( {IJKL} \right) $
$ \le \max \left\{ {{\rm{reg}}\left( {\left( {IJKL,{x^m}} \right)} \right),{\rm{reg}}\left( {\left( {IJKL:{x^m}} \right)} \right) + m} \right\} $
$ \begin{array}{l} = \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}KL,{x^n}{I_1}KL,{x^m}} \right)} \right)} \right.,\\ \;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}KL,{J_1}KL,{x^n}KL} \right)} \right) + m} \right\}. \end{array} $

则上面最后一行的两个式子可以分写成

$ {\rm{reg}}\left( {\left( {{I_1}{J_1}KL,{x^n}{I_1}KL,{x^m}} \right)} \right) $
$ \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}KL,{x^n}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1}KL,{x^{m - n}}} \right)} \right) + n} \right\}. $
$ {\rm{reg}}\left( {\left( {{I_1}KL,{J_1}KL,{x^n}KL} \right)} \right) + m $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}KL,{J_1}KL,{x^n}} \right)} \right) + m,{\rm{reg}}\left( {KL} \right) + } \right.\\ \;\;\;\left. {m + n} \right\}. \end{array} $

根据归纳假设, Gao[5]的定理3.2和x的确没有出现在I1, J1, K, L的最小的单项式生成元中。有

$ {\rm{reg}}\left( {\left( {{I_1}{J_1}KL,{x^n}} \right)} \right) $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + n - 1 $
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right). $
$ {\rm{reg}}\left( {\left( {{I_1}KL,{x^{m - n}}} \right)} \right) + n $
$ = {\rm{reg}}\left( {{I_1}KL} \right) + m - 1 $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m - 1 $
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right). $
$ {\rm{reg}}\left( {KL} \right) + m + n \le {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m + n. $

注意到I1+J1也是一个不可约单项式理想, 根据Herzog[7]的推论3.2和Gao[5]的定理3.2, 有

$ {\rm{reg}}\left( {\left( {{I_1}KL,{J_1}KL,{x^n}} \right)} \right) + m $
$ = {\rm{reg}}\left( {\left( {{I_1},{J_1}} \right)KL} \right) + m + n - 1 $
$ \le {\rm{reg}}\left( {{I_1},{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m + n - 1 $
$ \begin{array}{l} \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) + m + \\ \;\;\;n - 2 \end{array} $
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right). $

因此定理的结论在这种情况下是成立的。

如果S的一个变量x出现在I, J, K的最小的单项式生成元中, 而没有出现在L的最小的单项式生成元中。设I=(I1, xm), J=(J1, xn), K=(K1, xs)且mns≥1。则IJKL=(I1J1K1L, xsI1J1L, xnI1K1L, xmJ1K1L, xn+sI1L, xm+sJ1L, xm+nK1L, xm+n+sL)。

首先假设mn+s, 根据引理1.2

$ {\rm{reg}}\left( {IJKL} \right) $
$ \le \max \left\{ {{\rm{reg}}\left( {\left( {IJKL,{x^{n + s}}} \right)} \right),{\rm{reg}}\left( {\left( {IJKL:{x^{n + s}}} \right)} \right) + n + s} \right\} $
$ = \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}{I_1}{J_1}L,{x^n}{I_1}{K_1}L,{x^m}{J_1}{K_1}L,{x^{n + s}}} \right)} \right)} \right., $ (2)
$ \left. {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}{J_1}L,{x^{m - s}}{K_1}L,{x^m}L} \right)} \right) + n + s} \right\}. $ (3)

对式(2), 有

$ {\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}{I_1}{J_1}L,{x^n}{I_1}{K_1}L,{x^m}{J_1}{K_1}L,{x^{n + s}}} \right)} \right) $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}{I_1}{J_1}L,{x^n}{I_1}{K_1}L,{x^m}} \right)} \right)} \right.,\\ \;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L,{x^{m + s - n}}} \right)} \right) + m} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}{I_1}{J_1}L,{x^n}} \right)} \right)} \right.,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{x^{m - n}}} \right)} \right) + n,\\ \;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L,{x^{m + s - n}}} \right)} \right) + m} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}L,{x^s}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{x^{n - s}}} \right)} \right)} \right. + s,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{x^{m - n}}} \right)} \right) + n,\\ \;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L,{x^{n + s - m}}} \right)} \right) + m} \right\}. \end{array} $

类似于前面几种情况, 可以证明

reg((I1J1K1L, xs)), reg((I1J1L, xn-s))+s, reg((I1J1L, I1K1L, xm-n))+n的值不会超过reg(I)+reg(J)+reg(K)+reg(L).

根据推论2.1,有

$ {\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L,{x^{n + s - m}}} \right)} \right) + m $
$ = {\rm{reg}}\left( {\left( {{I_1}{J_1}L,{I_1}{K_1}L,{J_1}{K_1}L} \right)} \right) + n + s - 1 $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) + n + s - 2 $
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right) $
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right). $

对式(3), 有

$ {\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}{J_1}L,{x^{m - s}}{K_1}L,{x^m}L} \right)} \right) + n + s $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}} \right)} \right) + n + s,} \right.\\ \;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{x^{n - s}}{K_1}L,{x^n}L} \right)} \right) + m + s} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}} \right)} \right) + n + s} \right.,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{x^{n - s}}} \right)} \right) + m + s,\\ \;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{K_1}L,{x^s}L} \right)} \right) + m + n} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}J,{x^{m - n}}} \right)} \right) + n + s,} \right.\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{x^{n - s}}} \right)} \right) + m + s,{\rm{reg}}\left( L \right) + m + n + s,\\ \;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{K_1}L,{x^s}} \right)} \right) + m + n} \right\}. \end{array} $

类似于前面几种情况, 易证

reg(L)+m+n+s, reg((I1L, J1L, xn-s))+m+s的值不会超过reg(I)+reg(J)+reg(K)+reg(L).

根据Herzog[7]的推论3.2, 有

$ {\rm{reg}}\left( {\left( {{I_1}L,{J_1}L,{K_1}L,{x^s}} \right)} \right) + m + n $
$ = {\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1}} \right)L} \right) + m + n + s - 1 $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) + m + n + s - 3 $
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right). $

根据推论2.1, 有

$ {\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L,{x^{m - n}}} \right)} \right) + n + s $
$ = {\rm{reg}}\left( {\left( {{I_1}L,{J_1}{K_1}L} \right)} \right) + m + s - 1 $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right) + m + s - 2 $
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right). $

所以当mn+s时, 有reg(IJKL)≤reg(I)+reg(J)+reg(K)+reg(L)。当m > n+s时, 同理可证reg(IJKL)≤reg(I)+reg(J)+reg(K)+reg(L)成立。因此定理的结论在这种情况下是成立的。

如果S的一个变量x出现在I, J, K, L的最小的单项式生成元中, 设I=(I1, xm), J=(J1, xn), K=(K1, xs), L=(L1, xz)且mnsz≥1则

$ \begin{array}{l} IJKL = \left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},} \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;{x^m}{J_1}{K_1}{L_1},{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},\\ \;\;\;\;\;\;\;\;\;\;\;\;{x^{m + z}}{J_1}{K_1},{x^{m + s}}{J_1}{L_1},{x^{m + n}}{K_1}{L_1},{x^{n + s + z}}{I_1},\\ \;\;\;\;\;\;\;\;\;\;\;\;\left. {{x^{m + s + z}}{J_1},{x^{m + n + z}}{K_1},{x^{m + n + s}}{L_1},{x^{m + n + s + z}}} \right). \end{array} $

首先假设ms+z, 根据引理1.2

$ \begin{array}{l} {\rm{reg}}\left( {IJKL} \right) \le \max \left\{ {{\rm{reg}}\left( {\left( {IJKL,{x^{n + s + z}}} \right)} \right)} \right.,\\ \;\;\;\;\;\;\left. {{\rm{reg}}\left( {\left( {IJKL:{x^{n + s + z}}} \right)} \right) + n + s + z} \right\} \end{array} $
$ \begin{array}{l} = \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},} \right.} \right.} \right.\\ \;\;\;{x^m}{J_1}{K_1}{L_1},{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}{J_1}{K_1},\\ \;\;\;\left. {\left. {{x^{m + s}}{J_1}{L_1},{x^{m + n}}{K_1}{L_1},{x^{n + s + z}}} \right)} \right), \end{array} $ (4)
$ \begin{array}{l} {\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}{J_1},{x^{m - s}}{K_1},{x^{m - z}}{L_1}} \right.,} \right.\\ \;\;\;\;\;\left. {\left. {\left. {{x^m}} \right)} \right) + n + s + z} \right\}. \end{array} $ (5)

对式(4)假设n+sm+z, 有

$ {\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right., $
$ \left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}{J_1}{K_1},{x^{m + s}}{J_1}{L_1},{x^{m + n}}{K_1}{L_1},{x^{n + s + z}}} \right)} \right) $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.} \right.,\\ \;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}{J_1}{K_1},{x^{m + s}}{J_1}{L_1},{x^{m + n}}} \right)} \right),\\ \;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.} \right.,\\ \;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}{J_1}{K_1},{x^{m + s}}} \right)} \right),\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\ \left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.,} \right.\\ \;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}{I_1}{L_1},{x^{m + z}}} \right)} \right),\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\ \left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.,} \right.\\ \;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}{I_1}{K_1},{x^{n + s}}} \right)} \right),\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\ \left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}{J_1}{K_1}{L_1}} \right.} \right.,} \right.\\ \;\;\;\left. {\left. {{x^{s + z}}{I_1}{J_1},{x^{n + z}}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\ \left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},} \right.} \right.} \right.\\ \;\;\;\left. {\left. {{x^m}{J_1}{K_1}{L_1},{x^{s + z}}} \right)} \right),{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\ \left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}{I_1}{K_1}{L_1},{x^m}} \right)} \right)} \right.,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\ \left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}{I_1}{J_1}{L_1},{x^n}} \right)} \right)} \right.,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{x^{m - n}}} \right)} \right) + n,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\ \left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}{I_1}{J_1}{K_1},{x^s}} \right)} \right)} \right.,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{x^{n - s}}} \right)} \right) + s,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{x^{m - n}}} \right)} \right) + n,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\ \left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1}{L_1},{x^z}} \right)} \right)} \right.,{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{x^{s - z}}} \right)} \right) + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{x^{n - s}}} \right)} \right) + s,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{x^{m - n}}} \right)} \right) + n,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z,\\ \;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s,\\ \left. {\;\;\;{\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n} \right\} \end{array} $

根据归纳假设和Gao[5]的引理3.1和定理3.2易证reg((I1J1K1L1, xz)), reg((I1J1K1, xs-z))+z, reg((I1J1K1, I1J1L1, xn-s))+s的值不会超过reg(I)+reg(J)+reg(K)+reg(L).

根据引理2.1, 有

$ {\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m + n $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) + n + s + z - 3 $
$ = {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right). $

根据推论2.1, 有

$ {\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{s + z - m}}} \right)} \right) + m $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right). $
$ {\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1}{L_1},{J_1}{K_1}{L_1},{x^{n - s}}} \right)} \right) + s + z $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right). $
$ {\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{J_1}{K_1}{L_1},{x^{s - z}}} \right)} \right) + n + z $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( {{L_1}} \right). $
$ {\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1}{L_1},{x^{\left( {m + z} \right) - \left( {n + s} \right)}}} \right)} \right) + n + s $
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( L \right). $
$ {\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{x^{s - z}}} \right)} \right) + m + z, $
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( {{L_1}} \right). $
$ {\rm{reg}}\left( {\left( {{I_1}{J_1},{I_1}{K_1},{I_1}{L_1},{J_1}{K_1},{J_1}{L_1},{x^{n - s}}} \right)} \right) + m + s $
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( J \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) - 1. $
$ {\rm{reg}}\left( {\left( {{I_1}{J_1}{K_1},{I_1}{J_1}{L_1},{I_1}{K_1}{L_1},{x^{m - n}}} \right)} \right) + n $
$ \le {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) - 1. $

对式(5)根据引理1.2, 有

$ \begin{array}{l} {\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}{J_1},{x^{m - s}}{K_1},{x^{m - z}}{L_1},{x^m}} \right)} \right) + \\ \;\;\;\;\;n + s + z \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}{J_1},{x^{m - s}}{K_1},{x^{m - z}}} \right)} \right) + } \right.\\ \;\;\;\;\;\;\left. {n + s + z,{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + m + n + s} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}{J_1},{x^{m - s}}} \right)} \right) + } \right.\\ \;\;\;\;\;\;n + s + z,\\ \;\;\;\;\;\;{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + m + n + z,\\ \;\;\;\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + m + n + s} \right\} \end{array} $
$ \begin{array}{l} \le \max \left\{ {{\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}} \right)} \right) + n + s + z,} \right.\\ \;\;\;\;\;\;{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1}{L_1},{x^{n - s}}} \right)} \right) + m + s + z,\\ \;\;\;\;\;\;{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + m + n + z,\\ \;\;\;\;\;\;\left. {{\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{L_1},{x^z}} \right)} \right) + m + n + s} \right\}. \end{array} $

根据Herzog[7]的推论3.2,易证

$ {\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1}{L_1},{x^{n - s}}} \right)} \right) + m + s + z, $
$ {\rm{reg}}\left( {\left( {{I_1},{J_1},{K_1},{x^{s - z}}} \right)} \right) + m + n + z, $

reg((I1, J1, K1, L1, xz))+m+n+s的值不会超过

reg(I)+reg(J)+reg(K)+reg(L)。根据Gao[5]的引理3.1, 有

$ {\rm{reg}}\left( {\left( {{I_1},{J_1}{K_1},{J_1}{L_1},{K_1}{L_1},{x^{m - n}}} \right)} \right) + n + s + z $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {\left( {{J_1}{K_1},{J_1}{L_1},{K_1}{L_1}} \right)} \right) + m + s + z - 2 $
$ \le {\rm{reg}}\left( {{I_1}} \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( {{K_1}} \right) + {\rm{reg}}\left( {{L_1}} \right) + m + s + z - 3 $
$ = {\rm{reg}}\left( I \right) + {\rm{reg}}\left( {{J_1}} \right) + {\rm{reg}}\left( K \right) + {\rm{reg}}\left( L \right). $

因此当n+sm+z时结论得证, 当n+s > m+z时可以用相同的方法证明有相同的结论; 因此当ms+z时定理成立, 当m > s+z时用相同的方法和完全类似的推导过程可以证明有相同的结论。

综上所述,定理被证明。

参考文献
[1]
Bayer D, Mumford D.What can be computed in algebraic geoemetry?[C]//Eisenbud D, Robbiano L. Computational algebraic geometry and commutative algebra.Cambridge: Cambridge University Press, 1993: 1-48. http://arxiv.org/abs/alg-geom/9304003
[2]
Conca A, Herzog J. Castelnuovo-Mumford regularity of products of ideals[J]. Collect Math, 2003, 54(2): 137-152.
[3]
Sturmfels B. Four counterexamples in combinatorial algebraic geometry[J]. Journal of Algebra, 2000, 230(1): 282-294. DOI:10.1006/jabr.1999.7950
[4]
Chardin M, Minh N C, Trung N V. On the regularity of products and intersections of complete intersections[J]. Proceedings of the American Mathematical Society, 2007, 135(6): 1597-1606. DOI:10.1090/S0002-9939-06-08842-3
[5]
Gao Y B. On the regularity of product of pure power complete intersections[EB/OL]. 2018, Preprint.http://arxiv.org/pdf/1806.07616v1.pdf.
[6]
Tang Z M, Gong C. On the regularity of operations of ideals[J]. Communications in Algebra, 2016, 44(7): 2938-2944. DOI:10.1080/00927872.2015.1065854
[7]
Herzog J. A generalization of the Taylor complex const-ruction[J]. Communications in Algebra, 2007, 35(5): 1747-1756. DOI:10.1080/00927870601139500