Let G be a finite abelian p-group, and Γ the maximal
For simplicity, for any positive integer k≥2, we define
$ \mu \left(k \right)=\left\{ \begin{align} & {{\left({{C}_{2}} \right)}^{2}}, \ \ \ \ \ \ \ \ \ \ \ \ k=2, \\ & {{\left({{C}_{2}} \right)}^{2}}\oplus {{C}_{4}}, \ \ \ \ \ k\ge 3. \\ \end{align} \right. $ |
We summarize our results in Table 2.
Lemma 1.1 Let
$ \text{or}{{\text{d}}_{p}}\left( l \right)={{\left[ \text{or}{{\text{d}}_{p}}\left( m \right)-\frac{1}{p-1} \right]}_{\left[ 0, s \right]}}, $ |
i.e., ordp(l) is in the interval [0, s], and is the greatest integer≤
Proof This follows directly form Corollary 4.3 in Ref.[3].
Lemma 1.2 Let 1 < |Cpr| < 6. Then for any integer k≥r≥1.
$ {{K}_{2}}\left( \mathbb{Z}{{C}_{{{p}^{r}}}}/{{p}^{k}}\Gamma \right)\cong \underset{i=0}{\overset{r}{\mathop{\oplus }}}\, {{K}_{2}}\left( \mathbb{Z}\left[ {{\zeta }_{{{p}^{i}}}} \right]/\left( {{p}^{k}} \right) \right). $ |
Proof Let R=
$ \begin{matrix} R & \to & R\text{/}I \\ \downarrow & {} & \downarrow \\ \Gamma & \to & \Gamma /I \\ \end{matrix} $ |
gives rise to a nature commuative diagram with exact rows
By Corrollary 1.6 in Ref.[4], K2(R) maps onto K2(Γ). Hence, it is indicated in Table 1 that φ2 is an isomorphism induced by inclusion. According to Theorem 1.3 in Ref.[1], φ1 is a surjection and φ4 is an isomorphism. Since both of SK1(R) and SK1(Γ) are trivial, φ5 is an isomorphism. A diagram chasing shows that φ3 is an isomorphism. Hence,
$ {{K}_{2}}\left( \mathbb{Z}{{C}_{{{p}^{r}}}}\text{/}{{p}^{k}}\Gamma \right)\cong {{K}_{2}}\left( \Gamma \text{/}{{p}^{k}}\Gamma \right). $ |
According to Corollary 2.10 in Ref.[5],
$ \mathbb{Q}{{C}_{p^r}}\cong \underset{i=0}{\overset{r}{\mathop{\oplus }}}\, \mathbb{Q}\left( {{\zeta }_{{{p}^{i}}}} \right). $ |
By Proposition 2.2 in Ref.[1],
It is well known that K2(
$ {{K}_{2}}\left( \mathbb{Z}\left[ {{\zeta }_{{{p}^{i}}}} \right]/\left( {{p}^{k}} \right) \right)\cong S{{K}_{1}}\left( \mathbb{Z}\left[ {{\zeta }_{{{p}^{i}}}} \right], \left( {{p}^{k}} \right) \right). $ |
Note that, for any integer s≥r, pr+sΓ
Theorem 2.1 K2(
Theorem 2.2
$ {{K}_{2}}\left( \mathbb{Z}{{C}_{4}}/\left( {{2}^{k}} \right) \right)=\left\{ \begin{align} & {{\left( {{C}_{2}} \right)}^{3}}, \ \ \ \ \ \ \ \ \ \ \ k=2, \\ & {{\left( {{C}_{2}} \right)}^{2}}\oplus {{C}_{4}}, \ \ \ \ k\ge 3. \\ \end{align} \right. $ |
Theorem 2.3
The method mentioned above is not suitable for the case when G=(C2)2. However, we have the result as follows.
Theorem 2.4 Let (C2)2=〈σ〉×〈τ〉 be an elementary abelian 2-group of rank 2. Then K2(
$ \begin{align} & \left\{ -1, -1 \right\}, \left\{ \sigma , -1 \right\}, \left\{ \tau , -1 \right\}, \left\{ \sigma , \tau \right\}, \\ & \left\langle \sigma -1, \tau \left( \sigma +1 \right) \right\rangle \ \text{and}\ \left\langle \tau \text{-}1, \sigma \left( \tau +1 \right) \right\rangle . \\ \end{align} $ |
Proof According to Theorem 1.10 in Ref.[7], SK1(
Besides, from Proposition 1.1 in Ref.[1], K2(
Hence, K2(
[1] |
Alperin R C, Dennis R K, Stein M R. SK1 of finite abelian groups.[J]. Invent Math, 1985, 82(1): 1-18. |
[2] |
Yang Z G, Tang G P, Liu H. On the structure of K2( |
[3] |
Bass H, Milnor J, Serre J P. Solution of the congruence subgroup problem for SLn(n≥3) and Sp2n(n≥2)[J]. Publications Mathématiques de I'IHÉS, 1967, 33: 59-137. DOI:10.1007/BF02684586 |
[4] |
Stein M R. Excision and K2 of group rings[J]. J Pure Appl Algebra, 1980, 18(2): 213-224. DOI:10.1016/0022-4049(80)90130-9 |
[5] |
Karpilovsky G. Commutative group algebras[M]. New York: Marcel Dekker Inc, 1983.
|
[6] |
Dennis R K, Stein M R. K2 of discrete valuation rings[J]. Adv Math, 1975, 18(2): 182-238. DOI:10.1016/0001-8708(75)90157-7 |
[7] |
Alperin R C, Dennis R K, Oliver R, et al. SK1 of finite abelian groups.Ⅱ[J]. Invent Math, 1987, 87(2): 253-302. DOI:10.1007/BF01389416 |
[8] |
Magurn B A. Explicit K2 of some finite group rings[J]. J Pure Appl Algebra, 2007, 209(3): 801-811. DOI:10.1016/j.jpaa.2006.08.001 |