中国科学院大学学报  2018, Vol. 35 Issue (6): 721-723   PDF    
K2 for a kind of special finite group rings
ZHANG Yakun , TANG Guoping     
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Let G be a non-trivial group of order less than 6, p a prime dividing the order of G, we obtain the structure of K2($\mathbb{Z}$G/pk$\mathbb{Z}$G) for k ≥ 2.
Keywords: K2-group     Dennis-Stein symbols     group rings    
一类特殊有限群环的K2-群
张亚坤, 唐国平     
中国科学院大学数学科学学院, 北京 100049
摘要: G为阶数小于6的非平凡群,p为整除群G的阶数的素数,确定k≥2时K2($\mathbb{Z}$G/pk$\mathbb{Z}$G)的结构。
关键词: K2-群     Dennis-Stein符号     群环    

Let G be a finite abelian p-group, and Γ the maximal $\mathbb{Z}$-order of $\mathbb{Z}$G in $\mathbb{Q}$G. By Propo sition 2.2 in Ref.[1], Γ is the integral clo sure of $\mathbb{Z}$G in $\mathbb{Q}$G, and |G$\subseteq $$\mathbb{Z}$G$\subseteq $Γ. When 1 < |G| < 6, we find that calculation of K2($\mathbb{Z}$G/pk$\mathbb{Z}$G)(k≥2) is equivalent to calcula tion of K2 of K2($\mathbb{Z}$G) and K2(Γ), which are listed in Table 1. A brief in troduction to the explicit structures of K2($\mathbb{Z}$G) and K2(Γ) can be found in Ref.[2].

Table 1 Structures of K2($\mathbb{Z}$G) and K2(Γ)

For simplicity, for any positive integer k≥2, we define

$ \mu \left(k \right)=\left\{ \begin{align} & {{\left({{C}_{2}} \right)}^{2}}, \ \ \ \ \ \ \ \ \ \ \ \ k=2, \\ & {{\left({{C}_{2}} \right)}^{2}}\oplus {{C}_{4}}, \ \ \ \ \ k\ge 3. \\ \end{align} \right. $

We summarize our results in Table 2.

Table 2 Main results (k≥2)
1 Preliminaries

Lemma 1.1  Let $\mathscr{O}$ be a totally imaginary Dedekind domain of arithmetic type with field of function $\mathbb{F}$. Let ps=|μp($\mathbb{F}$)|, where μp($\mathbb{F}$) is the p-th power roots unity in the field $\mathbb{F}$. Then for any integer m > 1, SK1($\mathscr{O}$, m$\mathscr{O}$) is a cyclic subgroup of μ($\mathbb{F}$) of order l, where

$ \text{or}{{\text{d}}_{p}}\left( l \right)={{\left[ \text{or}{{\text{d}}_{p}}\left( m \right)-\frac{1}{p-1} \right]}_{\left[ 0, s \right]}}, $

i.e., ordp(l) is in the interval [0, s], and is the greatest integer≤$\left( \text{or}{{\text{d}}_{p}}\left( m \right)-\frac{1}{p-1} \right)$.

Proof  This follows directly form Corollary 4.3 in Ref.[3].

Lemma 1.2  Let 1 < |Cpr| < 6. Then for any integer kr≥1.

$ {{K}_{2}}\left( \mathbb{Z}{{C}_{{{p}^{r}}}}/{{p}^{k}}\Gamma \right)\cong \underset{i=0}{\overset{r}{\mathop{\oplus }}}\, {{K}_{2}}\left( \mathbb{Z}\left[ {{\zeta }_{{{p}^{i}}}} \right]/\left( {{p}^{k}} \right) \right). $

Proof  Let R=$\mathbb{Z}$Cpr, I=pkΓ such that kr. By Proposition 2.2.(b) in Ref.[1], we have I$\subseteq $R. Then the Cartesian square

$ \begin{matrix} R & \to & R\text{/}I \\ \downarrow & {} & \downarrow \\ \Gamma & \to & \Gamma /I \\ \end{matrix} $

gives rise to a nature commuative diagram with exact rows

By Corrollary 1.6 in Ref.[4], K2(R) maps onto K2(Γ). Hence, it is indicated in Table 1 that φ2 is an isomorphism induced by inclusion. According to Theorem 1.3 in Ref.[1], φ1 is a surjection and φ4 is an isomorphism. Since both of SK1(R) and SK1(Γ) are trivial, φ5 is an isomorphism. A diagram chasing shows that φ3 is an isomorphism. Hence,

$ {{K}_{2}}\left( \mathbb{Z}{{C}_{{{p}^{r}}}}\text{/}{{p}^{k}}\Gamma \right)\cong {{K}_{2}}\left( \Gamma \text{/}{{p}^{k}}\Gamma \right). $

According to Corollary 2.10 in Ref.[5], $\mathbb{Q}$Cpr is isomorphic to a direct sum of cyclotomic field

$ \mathbb{Q}{{C}_{p^r}}\cong \underset{i=0}{\overset{r}{\mathop{\oplus }}}\, \mathbb{Q}\left( {{\zeta }_{{{p}^{i}}}} \right). $

By Proposition 2.2 in Ref.[1], $\Gamma \cong \underset{i=0}{\overset{r}{\mathop{\oplus }}}\, \mathbb{Z}\left( {{\zeta }_{{{p}^{i}}}} \right)$. Thus the result follows.

2 Main results

It is well known that K2($\mathbb{Z}$/(2k))=C2(k≥2). If $\mathbb{Z}$[ζpi] is totally imaginary, by Lemma 3.4, Theorem 3.8 and 5.1 in Ref.[6], and Corollary 4.3 in Ref.[3],

$ {{K}_{2}}\left( \mathbb{Z}\left[ {{\zeta }_{{{p}^{i}}}} \right]/\left( {{p}^{k}} \right) \right)\cong S{{K}_{1}}\left( \mathbb{Z}\left[ {{\zeta }_{{{p}^{i}}}} \right], \left( {{p}^{k}} \right) \right). $

$\mathbb{F}$or k≥2, using Lemma 1.1 and Lemma 1.2, we deduce that K2($\mathbb{Z}$C2/2kΓ)=(C2)2, K2($\mathbb{Z}$C3/3kΓ)=C3, K2($\mathbb{Z}$C5/5kΓ)=C5, K2($\mathbb{Z}$C4/2kΓ)=(C2)2C4(k≥3), and K2($\mathbb{Z}$C4/4Γ)=(C2)3.

Note that, for any integer sr, pr+sΓ$\subseteq $ps$\mathbb{Z}$Cpr$\subseteq $psΓ. Hence, according to Proposition 1.1 in Ref.[7], K2($\mathbb{Z}$Cpr/pr+sΓ) maps onto K2($\mathbb{Z}$Cpr/ps$\mathbb{Z}$Cpr) and K2($\mathbb{Z}$Cpr/ps$\mathbb{Z}$Cpr) maps onto K2($\mathbb{Z}$Cpr/psΓ). Therefore, we deduce that for k≥2, K2($\mathbb{Z}$C2/(2k))=(C2)2, K2($\mathbb{Z}$C3/(3k))=C3, K2($\mathbb{Z}$C5/(5k))=C5, K2($\mathbb{Z}$C4/(2k))=(C2)2C4(k≥3), and K2($\mathbb{Z}$C4/(4))=(C2)3 since, by Lemma 4.1.(a) in Ref.[7], K2($\mathbb{Z}$C4/(4)) has an exponent of 2.Summarizing, we have proven the theorems as follows.

Theorem 2.1  K2($\mathbb{Z}$C2/(2k))(k≥2) is an elementary abelian 2-group of rank 2.

Theorem 2.2  $\mathbb{F}$or any integer k≥2,

$ {{K}_{2}}\left( \mathbb{Z}{{C}_{4}}/\left( {{2}^{k}} \right) \right)=\left\{ \begin{align} & {{\left( {{C}_{2}} \right)}^{3}}, \ \ \ \ \ \ \ \ \ \ \ k=2, \\ & {{\left( {{C}_{2}} \right)}^{2}}\oplus {{C}_{4}}, \ \ \ \ k\ge 3. \\ \end{align} \right. $

Theorem 2.3  $\mathbb{F}$or any integer k≥2 and p=3, 5, K2($\mathbb{Z}$Cp/(pk)) is a cyclic group of order p.

The method mentioned above is not suitable for the case when G=(C2)2. However, we have the result as follows.

Theorem 2.4  Let (C2)2=〈σ〉×〈τ〉 be an elementary abelian 2-group of rank 2. Then K2($\mathbb{Z}$(C2)2/(2k))(k≥2) is an elementary abelian 2-group of rank 6 with generators

$ \begin{align} & \left\{ -1, -1 \right\}, \left\{ \sigma , -1 \right\}, \left\{ \tau , -1 \right\}, \left\{ \sigma , \tau \right\}, \\ & \left\langle \sigma -1, \tau \left( \sigma +1 \right) \right\rangle \ \text{and}\ \left\langle \tau \text{-}1, \sigma \left( \tau +1 \right) \right\rangle . \\ \end{align} $

Proof  According to Theorem 1.10 in Ref.[7], SK1($\mathbb{Z}$(C2)2, (2k)) is trivial. $\mathbb{F}$rom the relative K-theory exact sequence associated to the pair ($\mathbb{Z}$(C2)2, (2k)), K2($\mathbb{Z}$(C2)2) maps onto K2($\mathbb{Z}$(C2)2/(2k)). We deduce from the result of Ref.[2] that K2($\mathbb{Z}$(C2)2/(2k)) is an elementary abelian 2-group of rank at most 6.

Besides, from Proposition 1.1 in Ref.[1], K2($\mathbb{Z}$(C2)2/(2k)) maps onto K2($\mathbb{F}$2(C2)2). Obviously, the kernel contains {-1, -1}, {σ, -1}, and {τ, -1}, while by the result on page 272 in Ref.[7], they are nontrivial and linearly independent. Based on Theorem 4 and Example 3 in Ref.[8], K2($\mathbb{F}$2(C2)2) is an elementary abelian 2-group of rank 3 with generators {1+σ+τ, σ}, {1+σ+τ, τ}, and {σ, τ}. Therefore, the 2-rank of K2($\mathbb{F}$2(C2)2) is at least 6.

Hence, K2($\mathbb{Z}$(C2)2/(2k)) is isomorphic to K2($\mathbb{Z}$(C2)2). In Ref.[2], the explicit structure of K2($\mathbb{Z}$(C2)2) is given. The result follows.

References
[1]
Alperin R C, Dennis R K, Stein M R. SK1 of finite abelian groups.[J]. Invent Math, 1985, 82(1): 1-18.
[2]
Yang Z G, Tang G P, Liu H. On the structure of K2($\mathbb{Z}$[C2×C2])[J]. J Pure Appl Algebra, 2017, 221(4): 773-779. DOI:10.1016/j.jpaa.2016.08.001
[3]
Bass H, Milnor J, Serre J P. Solution of the congruence subgroup problem for SLn(n≥3) and Sp2n(n≥2)[J]. Publications Mathématiques de I'IHÉS, 1967, 33: 59-137. DOI:10.1007/BF02684586
[4]
Stein M R. Excision and K2 of group rings[J]. J Pure Appl Algebra, 1980, 18(2): 213-224. DOI:10.1016/0022-4049(80)90130-9
[5]
Karpilovsky G. Commutative group algebras[M]. New York: Marcel Dekker Inc, 1983.
[6]
Dennis R K, Stein M R. K2 of discrete valuation rings[J]. Adv Math, 1975, 18(2): 182-238. DOI:10.1016/0001-8708(75)90157-7
[7]
Alperin R C, Dennis R K, Oliver R, et al. SK1 of finite abelian groups.Ⅱ[J]. Invent Math, 1987, 87(2): 253-302. DOI:10.1007/BF01389416
[8]
Magurn B A. Explicit K2 of some finite group rings[J]. J Pure Appl Algebra, 2007, 209(3): 801-811. DOI:10.1016/j.jpaa.2006.08.001