Define the centered Hardy-Littlewood maximal function by
$ {M_c}f\left( x \right) = \mathop {\sup }\limits_{r > 0} \frac{1}{{\left| {B\left( {x,r} \right)} \right|}}\int_{B\left( {x,r} \right)} {\left| {f\left( y \right)} \right|{\rm{d}}y} , $ | (1) |
and the non-centered Hardy-Littlewood maximal function by
$ Mf\left( x \right) = \mathop {\sup }\limits_{B \ni x} \frac{1}{{\left| B \right|}}\int_B {\left| {f\left( y \right)} \right|{\rm{d}}y} , $ | (2) |
where B is a ball and B(x, r) is a ball with the center at the point x and the radius r. The basic real-variable construct was introduced for n=1 by Hardy and Littlewood[1] and for n≥2 by Wiener[2]. It is well-known that the Hardy-Littlewood maximal function plays an important role in many parts of analysis. It is a classical mean operator frequently used to majorize other important operators in harmonic analysis.
It is clear that
$ {M_c}f\left( x \right) \le Mf\left( x \right) \le {2^n}{M_c}f\left( x \right) $ | (3) |
holds for all x∈
Let M be the non-centered Hardy-Littlewood maximal function defined by (2). Define the iterated non-centered Hardy-Littlewood maximal function denoted by Mk+1 as follows:
$ {M^{k + 1}}f\left( x \right): = M\left( {{M^k}f} \right)\left( x \right), $ | (4) |
for k=1, 2, …, and x∈
In the same way, we can set
$ M_c^{k + 1}f\left( x \right): = {M_c}\left( {M_c^kf} \right)\left( x \right). $ | (5) |
We all know that both operators Mc and M have the Lp-boundedness and the two maximal functions Mc f and Mf have a little difference in the pointwise sense from inequalities (3). We want to investigate the limit of the iterated Hardy-Littlewood maximal function.
Wei et al[5] studied the limit of Mkf and obtained Theorem A as follows.
Theorem A For any f∈L∞(
$ \mathop {\lim }\limits_{k \to \infty } {M^k}f\left( x \right) = {\left\| f \right\|_\infty } $ | (6) |
holds for any x∈
For Mc, we want to know whether it has the same properties as M. Unexpectedly, the limit of Mckf is essentially different from the limit of Mkf.
Now we formulate our main results as follows.
Theorem B If f∈Lloc1(
$ \mathop {\lim }\limits_{k \to \infty } M_c^kf\left( x \right) = {\left\| f \right\|_\infty } $ | (7) |
holds for every x∈
Theorem C Let f∈Lloc1(
$ \mathop {\lim }\limits_{k \to \infty } {M^k}f\left( x \right) = {\left\| f \right\|_\infty }, $ |
for every x∈
We remark that the range of function f in Theorem C is wider than that in Theorem A. Furthermore in this paper we will use some novel ideas to prove Theorem C.
1 Fixed point of Hardy-Littlewood maximal operatorTo prove our main theorems, we first provide some definitions and lemmas which will be used in the follows. Some lemmas can be found in classic literatures and here we omit their proofs.
Definition 1.1 A function F is called a fixed point of a operator T, if
$ TF\left( x \right) = F\left( x \right) $ | (8) |
holds for all x∈
Obviously if F is a fixed point of the operator T, then we have
$ \mathop {\lim }\limits_{k \to \infty } {T^k}F\left( x \right) = F\left( x \right). $ |
By the Lesbegue differentiation theorem, for almost all x∈
$ {M_c}f\left( x \right) \ge \left| {f\left( x \right)} \right| $ |
and
$ Mf\left( x \right) \ge \left| {f\left( x \right)} \right|. $ |
For the iterated Hardy-Littlewood maximal operator, we have the following lemma.
Lemma 1.1 For x∈
$ {M^{k + 1}}f\left( x \right) \ge {M^k}f\left( x \right) $ | (9) |
and
$ M_c^{k + 1}f\left( x \right) \ge M_c^kf\left( x \right) $ | (10) |
hold for all f∈Lloc1(
Proof Set E={x:x is not the Lesbegue point of |f|}. It follows from the Lesbegue differentiation theorem that m(E)=0. Actually we merely need to prove
$ {M^2}f\left( x \right) \ge Mf\left( x \right) $ |
for all x∈
We conclude that
$ \begin{array}{l} Mf\left( x \right) = \mathop {\sup }\limits_{B \ni x} \frac{1}{{\left| B \right|}}\int_B {\left| {f\left( y \right)} \right|{\rm{d}}y} \\ = \mathop {\sup }\limits_{B \ni x} \frac{1}{{\left| B \right|}}\int_{B\backslash E} {\left| {f\left( y \right)} \right|{\rm{d}}y} \\ = \mathop {\sup }\limits_{B \ni x} \frac{1}{{\left| B \right|}}\int_{B\backslash E} {\left\{ {\mathop {\lim }\limits_{k \to 0} \frac{1}{{\left| {B\left( {y,r} \right)} \right|}}\int_{B\left( {y,r} \right)} {\left| {f\left( u \right)} \right|{\rm{d}}u} } \right\}{\rm{d}}y} \\ \le \mathop {\sup }\limits_{B \ni x} \frac{1}{{\left| B \right|}}\int_{B\backslash E} {Mf\left( y \right){\rm{d}}y} = \mathop {\sup }\limits_{B \ni x} \frac{1}{{\left| B \right|}}\int_B {Mf\left( y \right){\rm{d}}y} \\ = {M^2}f\left( x \right). \end{array} $ | (11) |
Using the completely same method, we can obtain that Mc2 f(x)≥Mc f(x).
By Lemma 1.1, since Mkf monotonously increases, the limit of Mkf(x) exists for all x∈
Lemma 1.2 If f∈Lloc1(
Proof Set ϕ∈Cc∞(
$ \int_{{\mathbb{R}^n}} {\phi \left( x \right){\text{d}}x} = 1. $ |
For t > 0, set
$ {f_t} = f * {\phi _t}, $ |
where ϕt(x)=t-nϕ(x/t), for all x∈
$ {f_t} \in {C^\infty }\left( {{\mathbb{R}^n}} \right) \cap L_{{\text{loc}}}^1\left( {{\mathbb{R}^n}} \right). $ |
Put
$ {{\chi }_{r}}=\frac{1}{\left| {{B}_{r}} \right|}{{\chi }_{{{B}_{r}}}}. $ |
The centered Hardy-Littlewood maximal function is written by
$ {M_c}\left( f \right)\left( x \right) = \mathop {\sup }\limits_{r > 0} {\chi _r} * \left| f \right|\left( x \right). $ | (12) |
Note f is a fixed point of Mc. This implies f≥0. We have that
$ \begin{array}{*{20}{c}} {{\chi _r} * \left| {{\phi _t} * f} \right|\left( x \right) = \int_{{\mathbb{R}^n}} {{\phi _t}\left( y \right)\left( {{\chi _r} * {\tau _y}f} \right)\left( x \right){\text{d}}y} } \\ { \leqslant \int_{{\mathbb{R}^n}} {{\phi _t}\left( y \right){M_c}\left( {{\tau _y}f} \right)\left( x \right){\text{d}}y} = {\phi _t} * {M_c}\left( f \right)\left( x \right)} \\ { = {f_t}\left( x \right).} \end{array} $ | (13) |
On the other hand, it follows from (12) and (13) that Mc(ft)(x)=Mc(ϕt*f)(x)=
$ {M_c}\left( {{f_t}} \right)\left( x \right) \ge {f_t}\left( x \right). $ |
Thus we obtain that ft is a fixed point of Mc.
Using the similar method, we can easily prove that ft is a fixed point of M if f is a fixed point of M.
Lemma 1.3 There is a non-constant fixed point of Mc in Lloc1(
There is a non-constant fixed point of M in Lloc1(
Lemma 1.3 is due to that for a smooth function, every point in
Lemma 1.4 If f is a non-constant and smooth function, and f is a fixed point of M, then, in any closed ball, the minimum value of f is gotten only in the sphere.
Lemma 1.4 has the same proof as the proof of extremism principle of harmonic function. For the details please see Ref.[6].
Lemma 1.5 Suppose that f is a fixed point of M. If f∈Lloc1(
Proof. Since f is a fixed point of M, it follows from Lemma 1.2 that there exists ft∈
Suppose that B is a ball in
If ft is not a constant, then, by Lemma 1.4, there is at least one point x∈∂B such that ft(y) > ft(x) holds for all y∈B°.
Note that ft is a fixed point of M. Thus we have that
$ \begin{array}{*{20}{c}} {{f_t}\left( x \right) < \frac{1}{{m\left( {{B^ \circ }} \right)}}\int_{{B^ \circ }} {\left| {{f_t}\left( y \right)} \right|{\rm{d}}y} }\\ ={\frac{1}{{m\left( B \right)}}\int_B {\left| {{f_t}\left( y \right)} \right|{\rm{d}}y} \le M{f_t}\left( x \right) = {f_t}\left( x \right).} \end{array} $ | (14) |
This is impossible. Consequently it implies that ft(x)=C for all x∈
Next we will prove that f(x)=C for all x∈
Choose a radial nonnegative function ϕ∈Cc∞(
∫
For each t > 0, we have ft(x)=C.
Set BR={x∈
$ \begin{gathered} C={{f}_{t}}\left( x \right)=\int_{{{\mathbb{R}}^{n}}}{\left( f{{\chi }_{{{B}_{R}}}}+f{{\chi }_{{{\mathbb{R}}^{n}}\backslash {{B}_{R}}}} \right)\left( x-y \right){{\phi }_{t}}\left( y \right)\text{d}y} \hfill \\ = f{\chi _{{B_R}}} * {\phi _t}\left( x \right) + f{\chi _{{\mathbb{R}^n}\backslash {B_R}}} * {\phi _t}\left( x \right). \hfill \\ \end{gathered} $ | (15) |
It follows from (15) that
$ \mathop {\lim }\limits_{t \to 0} f{\chi _{{B_R}}} * {\phi _t}\left( x \right) + \mathop {\lim }\limits_{t \to 0} f{\chi _{{\mathbb{R}^n}\backslash {B_R}}} * {\phi _t}\left( x \right) = C. $ | (16) |
Note that f∈Lloc1(
$ \mathop {\lim }\limits_{t \to 0} f{\chi _{{B_R}}} * {\phi _t}\left( x \right) = f{\chi _{{B_R}}}\left( x \right) $ | (17) |
for almost every x∈
$ {\text{supp}}f{\chi _{{\mathbb{R}^n}\backslash {B_R}}} * {\phi _t} \subset \left\{ {x \in {\mathbb{R}^n}:\left| x \right| \geqslant R - t} \right\}. $ | (18) |
Combing (16), (17) with (18) yields that
$ f{\chi _{{B_R}}}\left( x \right) + \mathop {\lim }\limits_{t \to 0} f{\chi _{{\mathbb{R}^n}\backslash {B_R}}} * {\phi _t}\left( y \right) = C $ |
holds for almost every x∈
$ f{\chi _{{B_R}}}\left( x \right) = C $ |
holds for almost every x∈
$ f\left( x \right) = C $ |
for almost every x∈
$ Mf\left( x \right) = f\left( x \right). $ |
Thus we must obtain that
$ f\left( x \right) = C $ |
for every x∈
If f∉Lloc1(
$ \int_B {\left| {f\left( x \right)} \right|{\rm{d}}x} = \infty . $ |
We have Mf(x)=∞. So we have f(x)=∞ for every x∈
We remark that Mc has essential difference with M with respect to the fixed point. We all know that when n≥3, the function f(x)=|x|2-n is a harmonic function in
Korry[7] obtained the following lemma 1.6.
Lemma 1.6 For the Mc, if f∈Lloc1(
In the section, for any local integral function, the limit of the iterated Hardy-Littlewood maximal function is a fixed point of Hardy-Littlewood maximal operator.
Theorem 2.1 Write
$ \mathop {\lim }\limits_{k \to \infty } {M^k}f\left( x \right) = F\left( x \right). $ |
We have
$ MF\left( x \right) = F\left( x \right). $ |
That is, F a fixed point of M.
In the same way, write
$ \mathop {\lim }\limits_{k \to \infty } M_c^kf\left( x \right) = {F_c}\left( x \right), $ |
then McFc(x)=Fc(x). That is, Fc a fixed point of Mc.
Proof We only prove the first part of Theorem 2.1. It follows that
$ \begin{array}{*{20}{c}} {MF\left( x \right) = M\mathop {\lim }\limits_{k \to \infty } {M^k}f\left( x \right) = }\\ {\mathop {\sup }\limits_{B \ni x} \frac{1}{{m\left( B \right)}}\int_B {\mathop {\lim }\limits_{k \to \infty } {M^k}f\left( y \right){\rm{d}}y} .} \end{array} $ | (19) |
Associate to an arbitrary ε > 0 Bε∋x such that
$ \begin{array}{l} MF\left( x \right) - \varepsilon \le \frac{1}{{m\left( {{B_\varepsilon }} \right)}}\int_{{B_\varepsilon }} {\mathop {\lim }\limits_{k \to \infty } {M^k}f\left( y \right){\rm{d}}y} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le \mathop {\lim }\limits_{k \to \infty } \frac{1}{{m\left( {{B_\varepsilon }} \right)}}\int_{{B_\varepsilon }} {{M^k}f\left( y \right){\rm{d}}y} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le \mathop {\lim }\limits_{k \to \infty } {M^{k + 1}}f\left( x \right) = F\left( x \right)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le MF\left( x \right). \end{array} $ | (20) |
That is
$ MF\left( x \right) = F\left( x \right). $ | (21) |
Lemma 2.1 Write
$ \mathop {\lim }\limits_{k \to \infty } {M^k}f\left( x \right) = F\left( x \right). $ |
If F(x)=C for all x∈
Proof Since F(x)=C, it implies from the definition of Hardy-Littlewood maximal function that C≤‖f‖∞. By the definition of essential supremum of function, associate to an arbitrary ε > 0, a set E⊂
$ \left| {f\left( x \right)} \right| > {\left\| f \right\|_\infty } - \varepsilon , $ |
for x∈E. When x∈E is the lebesgue point of f, we have that
$ C = F\left( x \right) \ge Mf\left( x \right) \ge \left| {f\left( x \right)} \right| > {\left\| f \right\|_\infty } - \varepsilon . $ |
By the arbitrary property of ε, we immediately have
$ C \ge {\left\| f \right\|_\infty }. $ |
Consequently we have C=‖f‖∞
Next we will prove our main theorems.
The proof of Theorem B
Proof It follows from Theorem 2.1 that
$ {F_c}\left( x \right) = \mathop {\lim }\limits_{k \to \infty } M_c^kf\left( x \right) $ | (22) |
is a fixed point of Mc.
By Lemm 1.6, if Fc∈Lloc1(
Since Fc(x)=C, it implies from the definition of center Hardy-Littlewood maximal function that C≤‖f‖∞.
By the definition of essential supremum of function, associate to an arbitrary ε > 0 a set E⊂
$ \left| {f\left( x \right)} \right| > {\left\| f \right\|_\infty } - \varepsilon , $ |
for x∈E. Since f∈Lloc1(
$ C = F\left( x \right) \ge {M_c}f\left( x \right) \ge \left| {f\left( x \right)} \right| > {\left\| f \right\|_\infty } - \varepsilon . $ |
By the arbitrary property of ε, we immediately have
$ C \ge {\left\| f \right\|_\infty }. $ |
Consequently we have Fc=‖f‖∞.
If Fc∉Lloc1(
The proof of Theorem C
Proof It follows from Theorem 2.1 that
$ F\left( x \right) = \mathop {\lim }\limits_{k \to \infty } {M^k}f\left( x \right) $ | (23) |
is a fixed point of M.
By Lemma 1.5, if F∈Lloc1(
It follows from Lemma 2.1 that F=‖f‖∞.
If F∉Lloc1(
$ \int_{B\left( {0,R} \right)} {\left| {F\left( x \right)} \right|{\rm{d}}x} = \infty . $ |
Note that F a fixed point of M. We have
$ F\left( x \right) = MF\left( x \right) = \infty . $ |
Consequently, we have F=‖f‖∞.
[1] |
Hardy G H, Littlewood J E. A maximal theorem with function-theoretic applications[J]. Acta Math, 1930, 54:81–116.
DOI:10.1007/BF02547518 |
[2] |
Wiener N. The ergodic theorem[J]. Duke Math J, 1939, 5:1–18.
DOI:10.1215/S0012-7094-39-00501-6 |
[3] |
Rudin W.
Real and complex analysis[M]. New York: McGraw-Hill Publishing Co, 1987.
|
[4] |
Stein E M.
Harmonic analysis, real variable methods, orthogonality, and osciallatory integrals[M]. New Jersey: Princeton University Press, 1993.
|
[5] |
Wei M, Nei X, Wu D, et al. A note on Hardy-Littlewood maximal operators[J]. J Inequal Appl, 2016, 21:1–13.
|
[6] |
Ding Y.
Foundations of modern analysis[M]. Beijing: Beijing Normal University Publishing Group, 2008.
|
[7] |
Korry S. Fixed points of the Hardy-Littlewood maximal operator[J]. Collect Math, 2001, 52:289–294.
|