2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
2. 中国科学院大学数学科学学院, 北京 100049
For f∈Lp(
$ Hf\left( x \right): = \frac{1}{{\rm{ \mathsf{ π} }}}{\rm{p}}.{\rm{v}}.\int_\mathbb{R} {\frac{{f\left( t \right)}}{{x - t}}{\rm{d}}t} , $ | (1) |
where "p.v."is the Cauchy principal value (see Ref.[1]), that is
$ {\rm{p}}.{\rm{v}}.\int_\mathbb{R} {\frac{{f\left( t \right)}}{{x - t}}{\rm{d}}t} = \mathop {\lim }\limits_{\varepsilon \to 0} \int_{\left| {x - t} \right| > \varepsilon } {\frac{{f\left( t \right)}}{{x - t}}{\rm{d}}t} . $ |
Yang[2] proved that
$ \begin{array}{*{20}{c}} {\mathscr{D}\left( {{\mathbb{R}^n}} \right) = \left\{ {\phi :\phi \in C_c^\infty \left( {{\mathbb{R}^n}} \right),} \right.} \\ {\left. {\forall \alpha \in N_0^n,{\rho _\alpha }\left( \phi \right) = \mathop {\sup }\limits_{x \in {\mathbb{R}^n}} \left| {{D^\alpha }\phi \left( x \right)} \right| < \infty } \right\}} \end{array} $ |
for n∈N.
That is to say the function Hf does not have compact support for all non-zero function f∈
Consider n-dimensional Euclidean space
$ {H_n}f\left( x \right): = \frac{1}{{{{\rm{ \mathsf{ π} }}^n}}}{\rm{p}}.{\rm{v}}.\int_\mathbb{R} {\frac{{f\left( t \right)}}{{\left( {{x_1} - {t_1}} \right)\left( {{x_2} - {t_2}} \right) \cdots \left( {{x_n} - {t_n}} \right)}}{\rm{d}}t} . $ | (2) |
For n=2 Cui et al.[3] obtained the result:
$ \mathscr{D}\left( {{\mathbb{R}^2}} \right) \cap {H_2}\left( {\mathscr{D}\left( {{\mathbb{R}^2}} \right)} \right) = \left\{ 0 \right\}. $ |
When n>2, Shen[4] proved
$ \mathscr{D}\left( {{\mathbb{R}^n}} \right) \cap {H_n}\left( {\mathscr{D}\left( {{\mathbb{R}^n}} \right)} \right) = \left\{ 0 \right\}. $ | (3) |
We have known that Hilbert transform has a relation with Fourier transform which can be presented as
$ \widehat {Hf}\left( \xi \right) = - i \cdot {\mathop{\rm sgn}} \left( \xi \right)\hat f\left( \xi \right), $ | (4) |
where
$ \rm{sgn}\left( x \right) = \left\{ \begin{array}{l} 1\;\;\;\;\;\;\;{\rm{if}}\;\;x > 1,\\ 0\;\;\;\;\;\;\;{\rm{if}}\;\;n = 0,\\ - 1\;\;\;\;\;{\rm{if}}\;\;x < 0. \end{array} \right. $ |
For f∈Lp(
$ {R_j}f\left( x \right): = \frac{{\Gamma \left( {\frac{{n + 1}}{2}} \right)}}{{{{\rm{ \mathsf{ π} }}^{\frac{{n + 1}}{2}}}}}{\rm{p}}.{\rm{v}}.\int_\mathbb{R} {\frac{{{x_j} - {y_j}}}{{{{\left| {x - y} \right|}^{n + 1}}}}f\left( y \right){\rm{d}}y} , $ |
and we have (see Ref.[1])
$ \widehat {{R_j}f}\left( \xi \right) = - i \cdot \frac{{{\xi _j}}}{{\left| \xi \right|}}\hat f\left( \xi \right). $ | (5) |
If n=1, the identity (5) will reduce to (4). In this sense, Riesz transform is the higher-dimensional form of Hilbert transform. Motivated by Refs.[2-4], we shall consider whether the equation
$ \mathscr{D}\left( {{\mathbb{R}^n}} \right) \cap {R_j}\left( {\mathscr{D}\left( {{\mathbb{R}^n}} \right)} \right) = \left\{ 0 \right\} $ | (6) |
holds for n>1.
In section 1, we will give an affirmative answer for (6).
1 Main resultsBefore we prove our main theorem, we need the following lemmas.
Lemma 1.1 Suppose that f∈L1(
This lemma is a basic result which appears in many books on real analysis and we refer readers to Ref.[5].
Lemma 1.2 Suppose that f, g∈C∞(
Proof Considering the continuity of the function g, we have
$ g\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x_j}}}{{\left| x \right|}}f\left( 0 \right). $ | (7) |
The equality (7) implies that f(0)=0.
When |α|=1, taking derivatives on g, we have
$ \begin{array}{*{20}{c}} {\frac{{\partial g}}{{\partial {x_i}}}\left( x \right) = \frac{{\partial f}}{{\partial {x_i}}}\left( x \right)\frac{{{x_j}}}{{\left| x \right|}} + f\left( x \right)\frac{\partial }{{\partial {x_i}}}\left( {\frac{{{x_j}}}{{\left| x \right|}}} \right),i \ne j;}\\ {\frac{{\partial g}}{{\partial {x_j}}}\left( x \right) = \frac{{\partial f}}{{\partial {x_j}}}\left( x \right)\frac{{{x_j}}}{{\left| x \right|}} + f\left( x \right)\frac{\partial }{{\partial {x_j}}}\left( {\frac{{{x_j}}}{{\left| x \right|}}} \right).} \end{array} $ | (8) |
By substituting x=0 into (8), there hold
$ \begin{array}{*{20}{c}} {\frac{{\partial g}}{{\partial {x_i}}}\left( 0 \right) = \frac{{\partial f}}{{\partial {x_i}}}\left( 0 \right)\mathop {\lim }\limits_{x \to 0} \frac{{{x_j}}}{{\left| x \right|}},i \ne j;}\\ {\frac{{\partial g}}{{\partial {x_j}}}\left( 0 \right) = \frac{{\partial f}}{{\partial {x_j}}}\left( 0 \right)\mathop {\lim }\limits_{x \to 0} \frac{{{x_j}}}{{\left| x \right|}}.} \end{array} $ | (9) |
Since
$ \frac{{\partial f}}{{\partial {x_i}}}\left( 0 \right) = 0, $ | (10) |
for all 1≤i≤n.
Now we use induction method to solve the case |α|≥2.
Suppose that for any multiple-index β with |β| < |α|, there holds
$ {\left( {\frac{\partial }{{\partial x}}} \right)^\beta }f\left( 0 \right) = 0. $ | (11) |
Furthermore,
$ \begin{array}{*{20}{c}} {{{\left( {\frac{\partial }{{\partial x}}} \right)}^\alpha }g\left( x \right) = \frac{{{x_j}}}{{\left| x \right|}}{{\left( {\frac{\partial }{{\partial x}}} \right)}^\alpha }f\left( x \right) + }\\ {\sum\limits_{\gamma + \delta = \alpha } {{{\left( {\frac{\partial }{{\partial x}}} \right)}^\gamma }f\left( x \right){{\left( {\frac{\partial }{{\partial x}}} \right)}^\delta }\left( {\frac{{{x_j}}}{{\left| x \right|}}} \right)} .} \end{array} $ | (12) |
The assumption g∈C∞(
$ {\left( {\frac{\partial }{{\partial x}}} \right)^\alpha }g\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x_j}}}{{\left| x \right|}}{\left( {\frac{\partial }{{\partial x}}} \right)^\alpha }f\left( 0 \right). $ | (13) |
Thus we immediately get
Now we shall prove our main theorem.
Theorem 1.1 Suppose that f∈
Proof First we obtain f∈L2(
Since the Riesz transform Rj is of strong type (p, p) with 1 < p < ∞, we obtain that Rjf is also in L2(
Since f∈
Noting
$ {\left( {\frac{\partial }{{\partial x}}} \right)^\alpha }\hat f\left( 0 \right) = 0, $ | (14) |
for all
That is to say,
$ \int_{{\mathbb{R}^n}} {{{\left( { - 2{\rm{ \mathsf{ π} }}ix} \right)}^\alpha }f\left( x \right){\rm{d}}x} = 0 $ | (15) |
holds for all
Let supp f∈Q, then the identity
$ \int_Q {P\left( x \right)f\left( x \right){\rm{d}}x} = 0 $ | (16) |
holds for all polynomials P by (15).
The collection of all continuous functions defined on Q is denoted by C(Q). Considering that the polynomials are dense in the functional space C(Q), it immediately follows f≡0 from (16).
Obviously, Theorem 1.1 implies (6), which is our main conclusion.
[1] | Grafakos L. Classical and modern Fourier analysis[M]. New Jersey: Pearson Education Inc, 2004. |
[2] | Yang L. A distribution space for Hilbert transform and its applications[J]. Science in China Series A:Mathematics, 2008, 51(12):2217–2230. DOI:10.1007/s11425-008-0007-1 |
[3] |
Cui X, Wang R, Yan D. Some properties for double Hilbert transform on |
[4] |
Shen F. High-dimensional Hilbert transform on |
[5] | Royden H L, Fitzpatrick P. Real analysis[M]. New York: Macmillan, 1988. |