2. School of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, Shandong, China
2. 山东理工大学数学与统计学院, 山东 淄博 255049
The theory of function spaces with variable exponent has been extensively studied by researchers since the work of Kováč and Rákosník[1] appeared in 1991(See Refs.[2-4] and references therein). Inspired by Refs.[5-7], we introduce the Herz space with variable exponent on spaces of homogeneous type and obtain the block decomposition for them. Meanwhile, we obtain some boundedness for a class of sublinear operators on the Herz space with variable exponent on spaces of homogeneous type, using this decomposition.
Firstly we give some notations and basic definitions on variable Lebesgue spaces on spaces of homogeneous type. Let X=(X, d, μ) be a space of homogeneous type in the sense of Coifman and Weiss[8]. This is a topological space X endowed with a Borel measure μ and a quasi-metric (or quasi-distance) d. The latter is a mapping
(ⅰ)d(x, y)=d(y, x),
(ⅱ)d(x, y)>0 if and only if x≠y,
(ⅲ) there exists a constant K such that d(x, y)≤K[d(x, z)+d(z, y)] for all x, y, z in X.
We postulate that μ(B(x, r))>0 whenever r>0, where B(x, r)={y∈X:d(x, y) < r} denotes the open ball centered at x with a radius r. Our basic assumption relating the measure and the quasi-distance is the existence of a constant A such that
$ \mu \left( {B\left( {x, 2r} \right)} \right) \le A\mu \left( {B\left( {x, r} \right)} \right). $ | (1) |
As known (See Lemma 14.6 in Ref.[9]), from (1) there follows the property
$ \frac{{\mu \left( {B\left( {x, R} \right)} \right)}}{{\mu \left( {B\left( {y, r} \right)} \right)}} \le A{\left( {\frac{R}{r}} \right)^N}, N = {\log _2}A, $ | (2) |
for all the balls B(x, R) and B(y, r) with 0 < r≤R and y∈B(x, r). From (2) we have
$ \mu \left( {B\left( {x, r} \right)} \right) \ge C{r^N}, x \in \Omega, 0 < r \le l, $ | (3) |
for any l < +∞ and any open set Ω⊂X on which
In addition, the space of homogeneous type (X, d, μ) is assumed in Ref.[5] to satisfy the conditions
(ⅰ) μ({x})=0, μ(X)=∞,
(ⅱ) there exist constants a≥2 and A0>1 such that
$ \mu \left( {B\left( {x, ar} \right)} \right) \ge {A_0}\mu \left( {B\left( {x, r} \right)} \right) $ | (4) |
holds for all x∈X and 0 < r < ∞.
Given a μ-measurable function p:X→[1, ∞), Lp(·)(X) denotes the set of μ-measurable functions f on X such that for some λ>0,
$ \int_X {{{\left( {\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right)}^{p\left( x \right)}}{\rm{d}}\mu \left( x \right) < \infty .} $ |
This set becomes a Banach function space when equipped with the Luxemburg-Nakano norm
$ \begin{array}{l} {\left\| f \right\|_{{L^{p\left( \cdot \right)}}\left( X \right)}} = \\ \inf \left\{ {\lambda > 0:\int_X {{{\left( {\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right)}^{p\left( x \right)}}{\rm{d}}\mu \left( x \right) \le 1} } \right\}. \end{array} $ |
These spaces are referred to as variable Lebesgue spaces on spaces of homogeneous type.
The space
$ \begin{array}{l} {p^- } = {\rm{ess}}\;{\rm{inf}}\left\{ {p\left( x \right):x \in X} \right\} > 1, \\ {p^ + } = {\rm{ess}}\;{\rm{sup}}\left\{ {p\left( x \right):x \in X} \right\} < \infty . \end{array} $ |
Denote p'(x)=p(x)/(p(x))-1).
Next we recall some basic properties of the spaces Lp(·)(X). The Hölder inequality is valid in the form
$ \int_X {\left| {f\left( x \right)g\left( x \right)} \right|{\rm{d}}\mu \left( x \right)} \le {r_{\rm{p}}}{\left\| f \right\|_{{L^{p\left( \cdot \right)}}}}{\left\| g \right\|_{{L^{p'\left( \cdot \right)}}}}, $ | (5) |
where
$ {r_p} = 1 + 1/{p^- }- 1/{p^ + }. $ |
The standard local logarithmic condition on X is usually introduced in the form
$ \begin{array}{*{20}{c}} {\left| {p\left( x \right) - p\left( y \right)} \right| \le \frac{{{A_p}}}{{ - \ln d\left( {x, y} \right)}}, }\\ {d\left( {x, y} \right) \le 1/2, x, y \in X, } \end{array} $ | (6) |
where Ap > 0 is independent of x and y. Condition (6) is known as Dini-Lipschitz condition or log-Hölder continuity condition.
1 Main results and their proofsIn this section, firstly we give the definition of the Herz space with variable exponent on spaces of homogeneous type (X, d, μ). Let x0 ∈ X, Bk={x∈X:d(x0, x) < ak}, and Rk=Bk\Bk-1 for
Definition 1.1 Let 0 < α < ∞, 0 < p < ∞, and q(·)∈P(X). The homogeneous Herz space with variable exponent
$ \dot K_{q\left( \cdot \right)}^{\alpha, p}\left( X \right) = \left\{ {f \in L_{{\rm{loc}}}^{q\left( \cdot \right)}\left( {X\backslash \left\{ {{x_0}} \right\}} \right):{{\left\| f \right\|}_{\dot K_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}} < \infty } \right\}, $ |
where
$ {{\left\| f \right\|}_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}}={{\left\{ \sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}\left\| f{{\chi }_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p}} \right\}}^{1/p}}. $ |
The non-homogeneous Herz space with variable exponent
$ K_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)=\left\{ f\in L_{\text{loc}}^{q\left( \cdot \right)}\left( X \right):{{\left\| f \right\|}_{K_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}}<\infty \right\}, $ |
where
$ {{\left\| f \right\|}_{K_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}}={{\left\{ \sum\limits_{k=0}^{\infty }{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}\left\| f{{{\tilde{\chi }}}_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p}} \right\}}^{1/p}}. $ |
Remark 1.1 When
$ \dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)=\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( {{\mathbb{R}}^{n}} \right) $ |
and
$ K_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)=K_{q\left( \cdot \right)}^{\alpha, p}\left( {{\mathbb{R}}^{n}} \right) $ |
where
Next, we consider the decomposition of
Definition 1.2 Let 0 < α < ∞ and q(·)∈P(X).
(ⅰ) A function a(x) on X is said to be a central (α, q(·))-block if
(a) supp a⊂Bk.
(b) ‖a‖Lq(·)(X)≤μ(Bk)-α
(ⅱ) A fuction a(x) on X is said to be a central α, q(·)-block of restricted type if
(a) supp a⊂Bk for some 1≤d(x0, x) < ak.
(b)‖a‖Lq(·)(X)≤μ(Bk)-α.
The decomposition theorem (See below) shows that the central blocks are the "building block" of the Herz space with variable exponent on spaces of homogeneous type.
Theorem 1.1 Let 0 < α < ∞, 0 < p < ∞, and q(·)∈P(X). The following two statements are equivalent:
(ⅰ)
(ⅱ) f can be represented by
$ f\left( x \right)=\sum\limits_{k\in \mathbb{Z}}{{{\lambda }_{k}}{{b}_{k}}\left( x \right)}, $ | (7) |
where each bk is a central (α, q(·))-block with support contained in Bk and
Proof We first prove that (ⅰ) implies (ⅱ). For every
$ \begin{align} & f\left( x \right)=\sum\limits_{k\in \mathbb{Z}}{f\left( x \right){{\chi }_{k}}\left( x \right)} \\ & \ \ \ \ \ \ \ \ =\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha }}}{{\left\| f{{\chi }_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}\times \\ & \ \ \ \ \ \ \ \ \frac{f\left( x \right){{\chi }_{k}}\left( x \right)}{\mu {{\left( {{B}_{k}} \right)}^{\alpha }}{{\left\| f{{\chi }_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}} \\ & \ \ \ \ \ \ \ \ =\sum\limits_{k\in \mathbb{Z}}{{{\lambda }_{k}}{{b}_{k}}\left( x \right)}, \\ \end{align} $ |
where λk=μ(Bk)α‖fχk‖Lq(·)(X) and
It is obvious that supp bk⊂Bk and ‖bk‖Lq(·)(X)=μ(Bk)-α. Thus, each bk is a central (α, q(·))-block with the support Bk and
$ \begin{align} & \sum\limits_{k\in \mathbb{Z}}{{{\left| {{\lambda }_{k}} \right|}^{p}}}=\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p }}\left\| f{{\chi }_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p}} \\ & \ \ \ \ \ \ \ \ \ \ \ =\left\| f \right\|_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}^{p}<\infty . \\ \end{align} $ |
Now we prove that (ⅱ) implies (ⅰ). Let
$ {{\left\| f{{\chi }_{j}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}\le \sum\limits_{k\ge j}{\left| {{\lambda }_{k}} \right|{{\left\| {{b}_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}}. $ | (8) |
Now we consider two cases for the index p. If 0 < p≤1, from (8) it follows that
$ \begin{align} & \left\| f \right\|_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}^{p} \\ & =\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}\left\| f{{\chi }_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p}} \\ & \le \sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\left( \sum\limits_{j\ge k}{{{\left| {{\lambda }_{k}} \right|}^{p}}\left\| {{b}_{j}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p}} \right) \\ & \le \sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\left( \sum\limits_{j\ge k}{{{\left| {{\lambda }_{k}} \right|}^{p}}\mu {{\left( {{B}_{j}} \right)}^{-\alpha p}}} \right) \\ & =\sum\limits_{k\in \mathbb{Z}}{{{\left| {{\lambda }_{k}} \right|}^{p}}}\sum\limits_{j\ge k}{{{\left( \frac{\mu \left( {{B}_{k}} \right)}{\mu \left( {{B}_{j}} \right)} \right)}^{\alpha p}}} \\ & \le \sum\limits_{k\in \mathbb{Z}}{{{\left| {{\lambda }_{k}} \right|}^{p}}}\sum\limits_{j\ge k}{A_{0}^{\left( k-j \right)\alpha p}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{{{\left| {{\lambda }_{k}} \right|}^{p}}}. \\ \end{align} $ |
If 1 < p < ∞, by (8) and the Hölder inequality we have
$ \begin{align} & {{\left\| f{{\chi }_{j}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}} \\ & \le \sum\limits_{k\ge j}{\left| {{\lambda }_{k}} \right|\left\| {{b}_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{1/2}\left\| {{b}_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{1/2}} \\ & \le {{\left( \sum\limits_{k\ge j}{{{\left| {{\lambda }_{k}} \right|}^{p}}\left\| {{b}_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p/2}} \right)}^{1/p}}\times \\ & \ \ \ {{\left( \sum\limits_{k\ge j}{\left\| {{b}_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{{p}'/2}} \right)}^{1/{p}'}} \\ & \le {{\left( \sum\limits_{k\ge j}{{{\left| {{\lambda }_{k}} \right|}^{p}}\mu {{\left( {{B}_{k}} \right)}^{-\alpha p/2}}} \right)}^{1/p}}\times {{\left( \sum\limits_{k\ge j}{\mu {{\left( {{B}_{k}} \right)}^{-\alpha {p}'/2}}} \right)}^{1/{p}'}}. \\ \end{align} $ |
Therefore,
$ \begin{align} & \left\| f \right\|_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}^{p} \\ & \le C\sum\limits_{j\in \mathbb{Z}}{\mu {{\left( {{B}_{j}} \right)}^{\alpha p}}}\left( \sum\limits_{k\ge j}{{{\left| {{\lambda }_{k}} \right|}^{p}}\mu {{\left( {{B}_{k}} \right)}^{-\alpha p/2}}} \right)\times \\ & \ \ \ {{\left( \sum\limits_{k\ge j}{\mu {{\left( {{B}_{k}} \right)}^{-\alpha {p}'/2}}} \right)}^{p/{p}'}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{{{\left| {{\lambda }_{k}} \right|}^{p}}}\sum\limits_{j\le k}{A_{0}^{\alpha \left( j-k \right)p/2}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{{{\left| {{\lambda }_{k}} \right|}^{p}}}. \\ \end{align} $ |
This leads to
Remark 1.2 From the proof of Theorem 1.1, it is easy to see that if
$ {{\left\| f \right\|}_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}}\approx {{\left( \sum\limits_{k\in \mathbb{Z}}{{{\left| {{\lambda }_{k}} \right|}^{p}}} \right)}^{1/p}}. $ |
By an argument similar to the proof of Theorem 1.1, we can obtain the decomposition characterizations of the non-homogeneous Herz space with variable exponent of X as follows.
Theorem 1.2 Let 0 < α < ∞, 0 < p < ∞, and q(·)∈P(X). The following two statements are equivalent:
(ⅰ)
(ⅱ) f can be represented by
$ f\left( x \right)=\sum\limits_{k=0}^{\infty }{{{\lambda }_{k}}{{b}_{k}}\left( x \right)}, $ | (9) |
where each bk is a central (α, q(·))-block of restricted type with support contained in Bk and
Moreover, the norms
As applications of the decomposition theorems, let us come to investigate the boundedness for some sublinear operators on the Herz space with variable exponent on X.
Theorem 1.3 Let X be bounded, q(·)∈P(X) satisties condition (6), 0 < p < ∞, and
$ \begin{matrix} \left| Tf\left( x \right) \right|\le C{{\left\| f \right\|}_{{{L}^{1}}\left( X \right)}}/\mu \left( B\left( {{x}_{0}}, \text{d}\left( {{x}_{0}}, x \right) \right) \right), \\ \text{if}\ \text{dist}\left( x, \text{supp}\ f \right)>\frac{\text{d}\left( {{x}_{0}}, x \right)}{2K}, \\ \end{matrix} $ | (10) |
for any integrable function f with a compact support and T is bounded on Lq(·)(X), then T is bounded on
To prove Theorem 1.3, we need the follwing auxiliary result.
Lemma 1.1[11] Let X be bounded, the measure μ satisfies condition (3), and p(·) satisfies condition (6). Then
$ {{\left\| {{\chi }_{B\left( x, r \right)}} \right\|}_{p\left( \cdot \right)}}\le C{{\left[\mu \left( B\left( x, r \right) \right) \right]}^{\frac{1}{p\left( x \right)}}} $ |
with C>0 independent of x∈X and r > 0.
Proof of Theorem 1.3 It suffices to prove that T is bounded on
$ {{\left\| f \right\|}_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}}\approx {{\left( \sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}} \right)}^{1/p}}. $ |
Therefore, we get
$ \begin{align} & \left\| Tf \right\|_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}^{p} \\ & =C\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\left\| \left( Tf \right){{\chi }_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p} \\ & \le C\left[\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\times \right. \\ & \ \ \ {{\left( \sum\limits_{j=-\infty }^{k-2}{\left| {{\lambda }_{j}} \right|{{\left\| \left( T{{b}_{j}} \right){{\chi }_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}} \right)}^{p}}+ \\ & \ \ \ \ \sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\times \\ & \left. \ \ \ \ {{\left( \sum\limits_{j=k-1}^{\infty }{\left| {{\lambda }_{j}} \right|{{\left\| \left( T{{b}_{j}} \right){{\chi }_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}} \right)}^{p}} \right] \\ & =:C\left( {{I}_{1}}+{{I}_{2}} \right). \\ \end{align} $ |
Let us first estimate I1. By (5) and (10) we get
$ \begin{align} & \left| T{{b}_{j}}\left( x \right) \right| \\ & \le C\mu {{\left( B\left( {{x}_{0}}, d\left( {{x}_{0}}, x \right) \right) \right)}^{-1}}\int_{{{B}_{j}}}{\left| {{b}_{j}}\left( y \right) \right|\text{d}\mu \left( y \right)} \\ & \le C\mu {{\left( {{B}_{k}} \right)}^{-1}}{{\left\| {{b}_{j}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}{{\left\| {{\chi }_{{{B}_{j}}}} \right\|}_{{{L}^{{q}'\left( \cdot \right)}}\left( X \right)}} \\ & \le C\mu {{\left( {{B}_{k}} \right)}^{-1}}\mu {{\left( {{B}_{j}} \right)}^{-\alpha }}{{\left\| {{\chi }_{{{B}_{j}}}} \right\|}_{{{L}^{{q}'\left( \cdot \right)}}\left( X \right)}}. \\ \end{align} $ |
So by Lemma 1.1 we have
$ \begin{align} & {{\left\| \left( T{{b}_{j}} \right){{\chi }_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}} \\ & \le C\mu {{\left( {{B}_{k}} \right)}^{-1}}\mu {{\left( {{B}_{j}} \right)}^{-\alpha }}{{\left\| {{\chi }_{{{B}_{j}}}} \right\|}_{{{L}^{{q}'\left( \cdot \right)}}\left( X \right)}}\times \\ & \ \ \ {{\left\| {{\chi }_{{{B}_{k}}}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}} \\ & \le C\mu {{\left( {{B}_{k}} \right)}^{-1}}\mu {{\left( {{B}_{j}} \right)}^{-\alpha }}\mu {{\left( {{B}_{j}} \right)}^{1-\frac{1}{q\left( x \right)}}}\mu {{\left( {{B}_{k}} \right)}^{\frac{1}{q\left( x \right)}}} \\ & =C\mu {{\left( {{B}_{k}} \right)}^{-1+\frac{1}{q\left( x \right)}}}\mu {{\left( {{B}_{j}} \right)}^{-\alpha +1-\frac{1}{q\left( x \right)}}}. \\ \end{align} $ | (11) |
Therefore, when 0 < p≤1, by
$ \begin{align} & {{I}_{1}}=\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\times \\ & {{\left( \sum\limits_{j=-\infty }^{k-2}{\left| {{\lambda }_{j}} \right|{{\left\| \left( T{{b}_{j}} \right){{\chi }_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}} \right)}^{p}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\left( \sum\limits_{j=-\infty }^{k-2}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\times \right. \\ & \left. \mu {{\left( {{B}_{k}} \right)}^{\left[-1+\frac{1}{q\left( x \right)} \right]p}}\mu {{\left( {{B}_{j}} \right)}^{\left[-\alpha +1-\frac{1}{q\left( x \right)} \right]p}} \right) \\ & \le C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\sum\limits_{k\ge j+2}{{{\left( \frac{\mu \left( {{B}_{j}} \right)}{\mu \left( {{B}_{k}} \right)} \right)}^{\left[-\alpha +1-\frac{1}{q\left( x \right)} \right]p}}} \\ & \le C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\sum\limits_{k\ge j+2}{A_{0}^{\left( j-k \right)\left[-\alpha +1-\frac{1}{q\left( x \right)} \right]p}} \\ & \le C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\le C\left\| f \right\|_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}^{p}. \\ \end{align} $ | (12) |
When 1 < p < ∞, take 1/p+1/p'=1. Since
$ \begin{align} & {{I}_{1}}\le C\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\left( \sum\limits_{j=-\infty }^{k-2}{\left| {{\lambda }_{j}} \right|\mu {{\left( {{B}_{k}} \right)}^{-1+\frac{1}{q\left( x \right)}}}}\times \right. \\ & \ \ \ \ {{\left. \mu {{\left( {{B}_{j}} \right)}^{-\alpha +1-\frac{1}{q\left( x \right)}}} \right)}^{p}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{\left( \sum\limits_{j=-\infty }^{k-2}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\times {{\left( \frac{\mu \left( {{B}_{j}} \right)}{\mu \left( {{B}_{k}} \right)} \right)}^{\left[-\alpha +1-\frac{1}{q\left( x \right)} \right]p/2}} \right)}\times \\ & \ \ \ \ \ {{\left( \sum\limits_{j=-\infty }^{k-2}{{{\left( \frac{\mu \left( {{B}_{j}} \right)}{\mu \left( {{B}_{k}} \right)} \right)}^{\left[-\alpha +1-\frac{1}{q\left( x \right)} \right]{p}'/2}}} \right)}^{p/{p}'}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{\left( \sum\limits_{j=-\infty }^{k-2}{{{\left| {{\lambda }_{j}} \right|}^{p}}A_{0}^{\left( j-k \right)\left[-\alpha +1-\frac{1}{q\left( x \right)} \right]p/2}} \right)} \\ & =C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\sum\limits_{k\ge j+2}{A_{0}^{\left( j-k \right)\left[-\alpha +1-\frac{1}{q\left( x \right)} \right]p/2}} \\ & \le C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\le C\left\| f \right\|_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}^{p}. \\ \end{align} $ | (13) |
Let us now estimate I2. Similarly, we consider two cases for p. When 0 < p≤1, by Lq(·)(X) boundedness of T, we have
$ \begin{align} & {{I}_{2}}=\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\times \\ & \ \ \ \ {{\left( \sum\limits_{j=k-1}^{\infty }{\left| {{\lambda }_{j}} \right|{{\left\| \left( T{{b}_{j}} \right){{\chi }_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}} \right)}^{p}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\left( \sum\limits_{j=k-1}^{\infty }{{{\left| {{\lambda }_{j}} \right|}^{p}}\left\| {{b}_{j}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p}} \right) \\ & \le C\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\left( \sum\limits_{j=k-1}^{\infty }{{{\left| {{\lambda }_{j}} \right|}^{p}}\mu {{\left( {{B}_{j}} \right)}^{-\alpha p}}} \right) \\ & =C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\sum\limits_{k\le j+1}{{{\left( \frac{\mu \left( {{B}_{k}} \right)}{\mu \left( {{B}_{j}} \right)} \right)}^{\alpha p}}} \\ & \le C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\le C\left\| f \right\|_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}^{p}. \\ \end{align} $ | (14) |
When 1 < p < ∞. take 1/p+1/p'=1. By Lq(·)(X) boundedness of T and the Hölder inequality. we have
$ \begin{align} & {{I}_{2}}\le C\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\times \left( \sum\limits_{j=k-1}^{\infty }{{{\left| {{\lambda }_{j}} \right|}^{p}}\left\| \left( T{{b}_{j}} \right){{\chi }_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p/2}} \right)\times \\ & {{\left( \sum\limits_{j=k-1}^{\infty }{\left\| \left( T{{b}_{j}} \right){{\chi }_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{{p}'/2}} \right)}^{p/{p}'}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\left( \sum\limits_{j=k-1}^{\infty }{{{\left| {{\lambda }_{j}} \right|}^{p}}\left\| {{b}_{j}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p/2}} \right)\times \\ & {{\left( \sum\limits_{j=k-1}^{\infty }{\left\| {{b}_{j}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{{p}'/2}} \right)}^{p/{p}'}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{\left( \sum\limits_{j=k-1}^{\infty }{{{\left| {{\lambda }_{j}} \right|}^{p}}{{\left( \frac{\mu \left( {{B}_{k}} \right)}{\mu \left( {{B}_{j}} \right)} \right)}^{\alpha p/2}}} \right)}\times \\ & {{\left( \sum\limits_{j=k-1}^{\infty }{{{\left( \frac{\mu \left( {{B}_{k}} \right)}{\mu \left( {{B}_{j}} \right)} \right)}^{\alpha {p}'/2}}} \right)}^{p/{p}'}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{\left( \sum\limits_{j=k-1}^{\infty }{{{\left| {{\lambda }_{j}} \right|}^{p}}{{\left( \frac{\mu \left( {{B}_{k}} \right)}{\mu \left( {{B}_{j}} \right)} \right)}^{\alpha p/2}}} \right)} \\ & =C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\sum\limits_{k\le j+1}{{{\left( \frac{\mu \left( {{B}_{k}} \right)}{\mu \left( {{B}_{j}} \right)} \right)}^{\alpha p/2}}} \\ & \le C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\le C\left\| f \right\|_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}^{p}. \\ \end{align} $ | (15) |
Combining inequalities (12)-(15), we have
$ {{\left\| Tf \right\|}_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}}\le C{{\left\| f \right\|}_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}}. $ |
Thus, the proof of Theorem 1.3 is completed.
[1] | Kováč ik O, Rákosník J. On spaces Lp(x) and Wk, p(x)[J]. Czechoslovak Math J, 1991, 41:592–618. |
[2] | Cruz-Uribe D, Fiorenza A. Variable Lebesgue spaces:foundations and harmonic analysis (applied and numerical harmonic analysis)[M]. Heidelberg: Springer, 2013. |
[3] | Diening L, Harjulehto P, Hästö P, et al. Lebesgue and Sobolev spaces with variable exponents[M]. Lecture Notes in Math, vol. 2017. Heidelberg: Springer, 2011. |
[4] | Harjulehto P, Hästö P, Pere M. Variable exponent Lebesgue spaces on metric spaces:the Hardy-Littlewood maximal operator[J]. Real Anal Exchange, 2004, 30(1):87–104. |
[5] | Liu Z, Zeng Y. The Herz spaces on spaces of homogeneous type and their applications[J]. Acta Math Sci Ser A Chin Ed, 1999, 19:270–277. |
[6] |
Lu S, Yang D. The decomposition of weighted Herz space on |
[7] | Wang H. The decomposition for the Herz spaces[J]. Panamer Math J, 2015, 25:15–28. |
[8] | Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis[J]. Bull Amer Math Soc, 1977, 83:569–645. DOI:10.1090/S0002-9904-1977-14325-5 |
[9] | Hajlasz P, Koskela P. Sobolev met Poincare[J]. Mem Amer Math Soc, 2000, 145(688):1–106. |
[10] | Izuki M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization[J]. Anal Math, 2010, 36:33–50. DOI:10.1007/s10476-010-0102-8 |
[11] | Almeida A, Hasanov J, Samko S. Maximal and potential operators in variable exponent Morrey spaces[J]. Georgian Math J, 2008, 15:195–208. |