中国科学院大学学报  2017, Vol. 34 Issue (5): 538-542   PDF    
Herz space with variable exponent on spaces of homogeneous type
Hongbin WANG1,2     
1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
2. School of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, Shandong, China
Abstract: In this work, a certain Herz space with variable exponent on spaces of homogeneous type is defined, and the block decomposition for this space is established. Using this decomposition, some boundedness for a class of sublinear operators on Herz space with variable exponent on spaces of homogeneous type is obtained.
Key words: Herz space     variable exponent     spaces of homogeneous type     block decomposition     boundedness    
齐型空间上的变指标Herz空间
王洪彬1,2     
1. 中国科学院大学数学科学学院, 北京 100049;
2. 山东理工大学数学与统计学院, 山东 淄博 255049
摘要: 引入一类齐型空间上的变指标Herz空间,并建立该空间的块分解.利用此分解得到一类次线性算子在上述变指标Herz空间中的一些有界性.
关键词: Herz空间     变指标     齐型空间     块分解     有界性    

The theory of function spaces with variable exponent has been extensively studied by researchers since the work of Kováč and Rákosník[1] appeared in 1991(See Refs.[2-4] and references therein). Inspired by Refs.[5-7], we introduce the Herz space with variable exponent on spaces of homogeneous type and obtain the block decomposition for them. Meanwhile, we obtain some boundedness for a class of sublinear operators on the Herz space with variable exponent on spaces of homogeneous type, using this decomposition.

Firstly we give some notations and basic definitions on variable Lebesgue spaces on spaces of homogeneous type. Let X=(X, d, μ) be a space of homogeneous type in the sense of Coifman and Weiss[8]. This is a topological space X endowed with a Borel measure μ and a quasi-metric (or quasi-distance) d. The latter is a mapping $d:X\times X\to {{\mathbb{R}}^{+}}=\left\{ t\in \mathbb{R}:t\ge 0 \right\}$ satisfying

(ⅰ)d(x, y)=d(y, x),

(ⅱ)d(x, y)>0 if and only if xy,

(ⅲ) there exists a constant K such that d(x, y)≤K[d(x, z)+d(z, y)] for all x, y, z in X.

We postulate that μ(B(x, r))>0 whenever r>0, where B(x, r)={yX:d(x, y) < r} denotes the open ball centered at x with a radius r. Our basic assumption relating the measure and the quasi-distance is the existence of a constant A such that

$ \mu \left( {B\left( {x, 2r} \right)} \right) \le A\mu \left( {B\left( {x, r} \right)} \right). $ (1)

As known (See Lemma 14.6 in Ref.[9]), from (1) there follows the property

$ \frac{{\mu \left( {B\left( {x, R} \right)} \right)}}{{\mu \left( {B\left( {y, r} \right)} \right)}} \le A{\left( {\frac{R}{r}} \right)^N}, N = {\log _2}A, $ (2)

for all the balls B(x, R) and B(y, r) with 0 < rR and yB(x, r). From (2) we have

$ \mu \left( {B\left( {x, r} \right)} \right) \ge C{r^N}, x \in \Omega, 0 < r \le l, $ (3)

for any l < +∞ and any open set Ω⊂X on which $\mathop {\inf }\limits_{x \in \Omega } {\mkern 1mu} \mu \left( {B\left( {x,l} \right)} \right) > 0$. Condition (3) is also known as the lower Ahlfors regularity condition.

In addition, the space of homogeneous type (X, d, μ) is assumed in Ref.[5] to satisfy the conditions

(ⅰ) μ({x})=0, μ(X)=∞,

(ⅱ) there exist constants a≥2 and A0>1 such that

$ \mu \left( {B\left( {x, ar} \right)} \right) \ge {A_0}\mu \left( {B\left( {x, r} \right)} \right) $ (4)

holds for all xX and 0 < r < ∞.

Given a μ-measurable function p:X→[1, ∞), Lp(·)(X) denotes the set of μ-measurable functions f on X such that for some λ>0,

$ \int_X {{{\left( {\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right)}^{p\left( x \right)}}{\rm{d}}\mu \left( x \right) < \infty .} $

This set becomes a Banach function space when equipped with the Luxemburg-Nakano norm

$ \begin{array}{l} {\left\| f \right\|_{{L^{p\left( \cdot \right)}}\left( X \right)}} = \\ \inf \left\{ {\lambda > 0:\int_X {{{\left( {\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right)}^{p\left( x \right)}}{\rm{d}}\mu \left( x \right) \le 1} } \right\}. \end{array} $

These spaces are referred to as variable Lebesgue spaces on spaces of homogeneous type.

The space $ L_{\text{loc}}^{p\left( \cdot \right)}\left( X \right)$ is defined by $L_{\text{loc}}^{p\left(\cdot \right)}\left(X \right)$:={f:fLp(·)(E) for all compact subsets EX}. Define P(X) to be set of p(·):X→[1, ∞) such that

$ \begin{array}{l} {p^- } = {\rm{ess}}\;{\rm{inf}}\left\{ {p\left( x \right):x \in X} \right\} > 1, \\ {p^ + } = {\rm{ess}}\;{\rm{sup}}\left\{ {p\left( x \right):x \in X} \right\} < \infty . \end{array} $

Denote p'(x)=p(x)/(p(x))-1).

Next we recall some basic properties of the spaces Lp(·)(X). The Hölder inequality is valid in the form

$ \int_X {\left| {f\left( x \right)g\left( x \right)} \right|{\rm{d}}\mu \left( x \right)} \le {r_{\rm{p}}}{\left\| f \right\|_{{L^{p\left( \cdot \right)}}}}{\left\| g \right\|_{{L^{p'\left( \cdot \right)}}}}, $ (5)

where

$ {r_p} = 1 + 1/{p^- }- 1/{p^ + }. $

The standard local logarithmic condition on X is usually introduced in the form

$ \begin{array}{*{20}{c}} {\left| {p\left( x \right) - p\left( y \right)} \right| \le \frac{{{A_p}}}{{ - \ln d\left( {x, y} \right)}}, }\\ {d\left( {x, y} \right) \le 1/2, x, y \in X, } \end{array} $ (6)

where Ap > 0 is independent of x and y. Condition (6) is known as Dini-Lipschitz condition or log-Hölder continuity condition.

1 Main results and their proofs

In this section, firstly we give the definition of the Herz space with variable exponent on spaces of homogeneous type (X, d, μ). Let x0X, Bk={xX:d(x0, x) < ak}, and Rk=Bk\Bk-1 for $ k\in \mathbb{Z}$. Denote ${{\mathbb{Z}}_{+}}$ and $\mathbb{N}$ as the sets of all positive and non-negative integers, χk=χRk for $ k\in \mathbb{Z}$ if ${{\mathbb{Z}}_{+}}, {{{\tilde{\chi }}}_{k}}={{\chi }_{k}}$, and ${{{\tilde{\chi }}}_{0}}={{\chi }_{{{B}_{0}}}} $, where χRk is the characteristic function of Rk.

Definition 1.1  Let 0 < α < ∞, 0 < p < ∞, and q(·)∈P(X). The homogeneous Herz space with variable exponent $ \dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)$ on spaces of homogeneous type (X, d, μ) is defined by

$ \dot K_{q\left( \cdot \right)}^{\alpha, p}\left( X \right) = \left\{ {f \in L_{{\rm{loc}}}^{q\left( \cdot \right)}\left( {X\backslash \left\{ {{x_0}} \right\}} \right):{{\left\| f \right\|}_{\dot K_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}} < \infty } \right\}, $

where

$ {{\left\| f \right\|}_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}}={{\left\{ \sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}\left\| f{{\chi }_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p}} \right\}}^{1/p}}. $

The non-homogeneous Herz space with variable exponent $ {K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)$ on spaces of homogeneous type (X, d, μ) is defined by

$ K_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)=\left\{ f\in L_{\text{loc}}^{q\left( \cdot \right)}\left( X \right):{{\left\| f \right\|}_{K_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}}<\infty \right\}, $

where

$ {{\left\| f \right\|}_{K_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}}={{\left\{ \sum\limits_{k=0}^{\infty }{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}\left\| f{{{\tilde{\chi }}}_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p}} \right\}}^{1/p}}. $

Remark 1.1  When $ X={{\mathbb{R}}^{n}}, d\left( x, y \right)=|x-y|={{\left( \sum\limits_{j=1}^{n}{{{\left( {{x}_{j}}-{{y}_{j}} \right)}^{2}}} \right)}^{1/2}}, {{x}_{0}}=0$ and μ equals Lebesgue measure, we have

$ \dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)=\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( {{\mathbb{R}}^{n}} \right) $

and

$ K_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)=K_{q\left( \cdot \right)}^{\alpha, p}\left( {{\mathbb{R}}^{n}} \right) $

where $\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( {{\mathbb{R}}^{n}} \right) $ and $\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( {{\mathbb{R}}^{n}} \right) $ were introduced by Izuki in Ref.[10].

Next, we consider the decomposition of $\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)$. We begin with the notation of central block.

Definition 1.2  Let 0 < α < ∞ and q(·)∈P(X).

(ⅰ) A function a(x) on X is said to be a central (α, q(·))-block if

(a) supp aBk.

(b) ‖aLq(·)(X)μ(Bk)-α

(ⅱ) A fuction a(x) on X is said to be a central α, q(·)-block of restricted type if

(a) supp aBk for some 1≤d(x0, x) < ak.

(b)‖aLq(·)(X)μ(Bk)-α.

The decomposition theorem (See below) shows that the central blocks are the "building block" of the Herz space with variable exponent on spaces of homogeneous type.

Theorem 1.1  Let 0 < α < ∞, 0 < p < ∞, and q(·)∈P(X). The following two statements are equivalent:

(ⅰ) $ f\in \dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right);$

(ⅱ) f can be represented by

$ f\left( x \right)=\sum\limits_{k\in \mathbb{Z}}{{{\lambda }_{k}}{{b}_{k}}\left( x \right)}, $ (7)

where each bk is a central (α, q(·))-block with support contained in Bk and $ \sum\limits_{k}{|{{\lambda }_{k}}{{|}^{p}}<\infty }$.

Proof  We first prove that (ⅰ) implies (ⅱ). For every $ f\in \dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)$, write

$ \begin{align} & f\left( x \right)=\sum\limits_{k\in \mathbb{Z}}{f\left( x \right){{\chi }_{k}}\left( x \right)} \\ & \ \ \ \ \ \ \ \ =\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha }}}{{\left\| f{{\chi }_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}\times \\ & \ \ \ \ \ \ \ \ \frac{f\left( x \right){{\chi }_{k}}\left( x \right)}{\mu {{\left( {{B}_{k}} \right)}^{\alpha }}{{\left\| f{{\chi }_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}} \\ & \ \ \ \ \ \ \ \ =\sum\limits_{k\in \mathbb{Z}}{{{\lambda }_{k}}{{b}_{k}}\left( x \right)}, \\ \end{align} $

where λk=μ(Bk)αkLq(·)(X) and ${{b}_{k}}\left( x \right)=\frac{f\left( x \right){{\chi }_{k}}\left( x \right)}{\mu {{\left( {{B}_{k}} \right)}^{\alpha }}{{\left\| f{{\chi }_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}} $.

It is obvious that supp bkBk and ‖bkLq(·)(X)=μ(Bk)-α. Thus, each bk is a central (α, q(·))-block with the support Bk and

$ \begin{align} & \sum\limits_{k\in \mathbb{Z}}{{{\left| {{\lambda }_{k}} \right|}^{p}}}=\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p }}\left\| f{{\chi }_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p}} \\ & \ \ \ \ \ \ \ \ \ \ \ =\left\| f \right\|_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}^{p}<\infty . \\ \end{align} $

Now we prove that (ⅱ) implies (ⅰ). Let $ f\left( x \right)=\sum\limits_{k\in \mathbb{Z}}{{{\lambda }_{k}}{{b}_{k}}}\left( x \right)$ be a decomposition of f which satisfies hypothesis (ⅱ) of Theorem 1.1. For each $ j\in \mathbb{Z}$, by Minkowski inequality, we have

$ {{\left\| f{{\chi }_{j}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}\le \sum\limits_{k\ge j}{\left| {{\lambda }_{k}} \right|{{\left\| {{b}_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}}. $ (8)

Now we consider two cases for the index p. If 0 < p≤1, from (8) it follows that

$ \begin{align} & \left\| f \right\|_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}^{p} \\ & =\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}\left\| f{{\chi }_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p}} \\ & \le \sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\left( \sum\limits_{j\ge k}{{{\left| {{\lambda }_{k}} \right|}^{p}}\left\| {{b}_{j}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p}} \right) \\ & \le \sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\left( \sum\limits_{j\ge k}{{{\left| {{\lambda }_{k}} \right|}^{p}}\mu {{\left( {{B}_{j}} \right)}^{-\alpha p}}} \right) \\ & =\sum\limits_{k\in \mathbb{Z}}{{{\left| {{\lambda }_{k}} \right|}^{p}}}\sum\limits_{j\ge k}{{{\left( \frac{\mu \left( {{B}_{k}} \right)}{\mu \left( {{B}_{j}} \right)} \right)}^{\alpha p}}} \\ & \le \sum\limits_{k\in \mathbb{Z}}{{{\left| {{\lambda }_{k}} \right|}^{p}}}\sum\limits_{j\ge k}{A_{0}^{\left( k-j \right)\alpha p}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{{{\left| {{\lambda }_{k}} \right|}^{p}}}. \\ \end{align} $

If 1 < p < ∞, by (8) and the Hölder inequality we have

$ \begin{align} & {{\left\| f{{\chi }_{j}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}} \\ & \le \sum\limits_{k\ge j}{\left| {{\lambda }_{k}} \right|\left\| {{b}_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{1/2}\left\| {{b}_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{1/2}} \\ & \le {{\left( \sum\limits_{k\ge j}{{{\left| {{\lambda }_{k}} \right|}^{p}}\left\| {{b}_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p/2}} \right)}^{1/p}}\times \\ & \ \ \ {{\left( \sum\limits_{k\ge j}{\left\| {{b}_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{{p}'/2}} \right)}^{1/{p}'}} \\ & \le {{\left( \sum\limits_{k\ge j}{{{\left| {{\lambda }_{k}} \right|}^{p}}\mu {{\left( {{B}_{k}} \right)}^{-\alpha p/2}}} \right)}^{1/p}}\times {{\left( \sum\limits_{k\ge j}{\mu {{\left( {{B}_{k}} \right)}^{-\alpha {p}'/2}}} \right)}^{1/{p}'}}. \\ \end{align} $

Therefore,

$ \begin{align} & \left\| f \right\|_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}^{p} \\ & \le C\sum\limits_{j\in \mathbb{Z}}{\mu {{\left( {{B}_{j}} \right)}^{\alpha p}}}\left( \sum\limits_{k\ge j}{{{\left| {{\lambda }_{k}} \right|}^{p}}\mu {{\left( {{B}_{k}} \right)}^{-\alpha p/2}}} \right)\times \\ & \ \ \ {{\left( \sum\limits_{k\ge j}{\mu {{\left( {{B}_{k}} \right)}^{-\alpha {p}'/2}}} \right)}^{p/{p}'}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{{{\left| {{\lambda }_{k}} \right|}^{p}}}\sum\limits_{j\le k}{A_{0}^{\alpha \left( j-k \right)p/2}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{{{\left| {{\lambda }_{k}} \right|}^{p}}}. \\ \end{align} $

This leads to $f\in \dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right) $ and then completes the proof of Theorem 1.1.

Remark 1.2  From the proof of Theorem 1.1, it is easy to see that if $f\in \dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right) $ and $ f\left( x \right)=\sum\limits_{k\in \mathbb{Z}}{{{\lambda }_{k}}{{b}_{k}}}\left( x \right)$ is a central (α, q(·))-block decomposition, then

$ {{\left\| f \right\|}_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}}\approx {{\left( \sum\limits_{k\in \mathbb{Z}}{{{\left| {{\lambda }_{k}} \right|}^{p}}} \right)}^{1/p}}. $

By an argument similar to the proof of Theorem 1.1, we can obtain the decomposition characterizations of the non-homogeneous Herz space with variable exponent of X as follows.

Theorem 1.2  Let 0 < α < ∞, 0 < p < ∞, and q(·)∈P(X). The following two statements are equivalent:

(ⅰ) $f\in K_{q\left( \cdot \right)}^{\alpha, p}\left( X \right); $

(ⅱ) f can be represented by

$ f\left( x \right)=\sum\limits_{k=0}^{\infty }{{{\lambda }_{k}}{{b}_{k}}\left( x \right)}, $ (9)

where each bk is a central (α, q(·))-block of restricted type with support contained in Bk and $\sum\limits_{k\ge 0}{|{{\lambda }_{k}}{{|}^{p}}<\infty } $.

Moreover, the norms ${{\left\| f \right\|}_{K_{q\left( \cdot \right)}^{\alpha, p}}}\left( X \right) $ and inf ${{\left( \sum\limits_{k\ge 0}{|{{\lambda }_{k}}{{|}^{p}}} \right)}^{1/p}} $ are equivalent, where the infimum is taken over all decompositions of f as in (9).

As applications of the decomposition theorems, let us come to investigate the boundedness for some sublinear operators on the Herz space with variable exponent on X.

Theorem 1.3  Let X be bounded, q(·)∈P(X) satisties condition (6), 0 < p < ∞, and $ 0<\alpha <1-\frac{1}{{{q}^{-}}}$. If a sublinear operator T satisfies

$ \begin{matrix} \left| Tf\left( x \right) \right|\le C{{\left\| f \right\|}_{{{L}^{1}}\left( X \right)}}/\mu \left( B\left( {{x}_{0}}, \text{d}\left( {{x}_{0}}, x \right) \right) \right), \\ \text{if}\ \text{dist}\left( x, \text{supp}\ f \right)>\frac{\text{d}\left( {{x}_{0}}, x \right)}{2K}, \\ \end{matrix} $ (10)

for any integrable function f with a compact support and T is bounded on Lq(·)(X), then T is bounded on $ \dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)$ and $K_{q\left( \cdot \right)}^{\alpha, p}\left( X \right) $, respectively.

To prove Theorem 1.3, we need the follwing auxiliary result.

Lemma 1.1[11]  Let X be bounded, the measure μ satisfies condition (3), and p(·) satisfies condition (6). Then

$ {{\left\| {{\chi }_{B\left( x, r \right)}} \right\|}_{p\left( \cdot \right)}}\le C{{\left[\mu \left( B\left( x, r \right) \right) \right]}^{\frac{1}{p\left( x \right)}}} $

with C>0 independent of xX and r > 0.

Proof of Theorem 1.3  It suffices to prove that T is bounded on $\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right) $. Suppose of $ f\in \dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)$. By Theorem 1.1, $f\left( x \right)=\sum\limits_{j\in \mathbb{Z}}{{{\lambda }_{j}}{{b}_{j}}}\left( x \right) $, where each bj is a central (α, q(·))-block with support contained in Bj and

$ {{\left\| f \right\|}_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}}\approx {{\left( \sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}} \right)}^{1/p}}. $

Therefore, we get

$ \begin{align} & \left\| Tf \right\|_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}^{p} \\ & =C\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\left\| \left( Tf \right){{\chi }_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p} \\ & \le C\left[\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\times \right. \\ & \ \ \ {{\left( \sum\limits_{j=-\infty }^{k-2}{\left| {{\lambda }_{j}} \right|{{\left\| \left( T{{b}_{j}} \right){{\chi }_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}} \right)}^{p}}+ \\ & \ \ \ \ \sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\times \\ & \left. \ \ \ \ {{\left( \sum\limits_{j=k-1}^{\infty }{\left| {{\lambda }_{j}} \right|{{\left\| \left( T{{b}_{j}} \right){{\chi }_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}} \right)}^{p}} \right] \\ & =:C\left( {{I}_{1}}+{{I}_{2}} \right). \\ \end{align} $

Let us first estimate I1. By (5) and (10) we get

$ \begin{align} & \left| T{{b}_{j}}\left( x \right) \right| \\ & \le C\mu {{\left( B\left( {{x}_{0}}, d\left( {{x}_{0}}, x \right) \right) \right)}^{-1}}\int_{{{B}_{j}}}{\left| {{b}_{j}}\left( y \right) \right|\text{d}\mu \left( y \right)} \\ & \le C\mu {{\left( {{B}_{k}} \right)}^{-1}}{{\left\| {{b}_{j}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}{{\left\| {{\chi }_{{{B}_{j}}}} \right\|}_{{{L}^{{q}'\left( \cdot \right)}}\left( X \right)}} \\ & \le C\mu {{\left( {{B}_{k}} \right)}^{-1}}\mu {{\left( {{B}_{j}} \right)}^{-\alpha }}{{\left\| {{\chi }_{{{B}_{j}}}} \right\|}_{{{L}^{{q}'\left( \cdot \right)}}\left( X \right)}}. \\ \end{align} $

So by Lemma 1.1 we have

$ \begin{align} & {{\left\| \left( T{{b}_{j}} \right){{\chi }_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}} \\ & \le C\mu {{\left( {{B}_{k}} \right)}^{-1}}\mu {{\left( {{B}_{j}} \right)}^{-\alpha }}{{\left\| {{\chi }_{{{B}_{j}}}} \right\|}_{{{L}^{{q}'\left( \cdot \right)}}\left( X \right)}}\times \\ & \ \ \ {{\left\| {{\chi }_{{{B}_{k}}}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}} \\ & \le C\mu {{\left( {{B}_{k}} \right)}^{-1}}\mu {{\left( {{B}_{j}} \right)}^{-\alpha }}\mu {{\left( {{B}_{j}} \right)}^{1-\frac{1}{q\left( x \right)}}}\mu {{\left( {{B}_{k}} \right)}^{\frac{1}{q\left( x \right)}}} \\ & =C\mu {{\left( {{B}_{k}} \right)}^{-1+\frac{1}{q\left( x \right)}}}\mu {{\left( {{B}_{j}} \right)}^{-\alpha +1-\frac{1}{q\left( x \right)}}}. \\ \end{align} $ (11)

Therefore, when 0 < p≤1, by $ 0<\alpha <1-\frac{1}{{{q}^{-}}}$, we get

$ \begin{align} & {{I}_{1}}=\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\times \\ & {{\left( \sum\limits_{j=-\infty }^{k-2}{\left| {{\lambda }_{j}} \right|{{\left\| \left( T{{b}_{j}} \right){{\chi }_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}} \right)}^{p}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\left( \sum\limits_{j=-\infty }^{k-2}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\times \right. \\ & \left. \mu {{\left( {{B}_{k}} \right)}^{\left[-1+\frac{1}{q\left( x \right)} \right]p}}\mu {{\left( {{B}_{j}} \right)}^{\left[-\alpha +1-\frac{1}{q\left( x \right)} \right]p}} \right) \\ & \le C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\sum\limits_{k\ge j+2}{{{\left( \frac{\mu \left( {{B}_{j}} \right)}{\mu \left( {{B}_{k}} \right)} \right)}^{\left[-\alpha +1-\frac{1}{q\left( x \right)} \right]p}}} \\ & \le C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\sum\limits_{k\ge j+2}{A_{0}^{\left( j-k \right)\left[-\alpha +1-\frac{1}{q\left( x \right)} \right]p}} \\ & \le C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\le C\left\| f \right\|_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}^{p}. \\ \end{align} $ (12)

When 1 < p < ∞, take 1/p+1/p'=1. Since $ 0<\alpha <1-\frac{1}{{{q}^{-}}}$, by (11) and the Hölder inequality, we have

$ \begin{align} & {{I}_{1}}\le C\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\left( \sum\limits_{j=-\infty }^{k-2}{\left| {{\lambda }_{j}} \right|\mu {{\left( {{B}_{k}} \right)}^{-1+\frac{1}{q\left( x \right)}}}}\times \right. \\ & \ \ \ \ {{\left. \mu {{\left( {{B}_{j}} \right)}^{-\alpha +1-\frac{1}{q\left( x \right)}}} \right)}^{p}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{\left( \sum\limits_{j=-\infty }^{k-2}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\times {{\left( \frac{\mu \left( {{B}_{j}} \right)}{\mu \left( {{B}_{k}} \right)} \right)}^{\left[-\alpha +1-\frac{1}{q\left( x \right)} \right]p/2}} \right)}\times \\ & \ \ \ \ \ {{\left( \sum\limits_{j=-\infty }^{k-2}{{{\left( \frac{\mu \left( {{B}_{j}} \right)}{\mu \left( {{B}_{k}} \right)} \right)}^{\left[-\alpha +1-\frac{1}{q\left( x \right)} \right]{p}'/2}}} \right)}^{p/{p}'}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{\left( \sum\limits_{j=-\infty }^{k-2}{{{\left| {{\lambda }_{j}} \right|}^{p}}A_{0}^{\left( j-k \right)\left[-\alpha +1-\frac{1}{q\left( x \right)} \right]p/2}} \right)} \\ & =C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\sum\limits_{k\ge j+2}{A_{0}^{\left( j-k \right)\left[-\alpha +1-\frac{1}{q\left( x \right)} \right]p/2}} \\ & \le C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\le C\left\| f \right\|_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}^{p}. \\ \end{align} $ (13)

Let us now estimate I2. Similarly, we consider two cases for p. When 0 < p≤1, by Lq(·)(X) boundedness of T, we have

$ \begin{align} & {{I}_{2}}=\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\times \\ & \ \ \ \ {{\left( \sum\limits_{j=k-1}^{\infty }{\left| {{\lambda }_{j}} \right|{{\left\| \left( T{{b}_{j}} \right){{\chi }_{k}} \right\|}_{{{L}^{q\left( \cdot \right)}}\left( X \right)}}} \right)}^{p}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\left( \sum\limits_{j=k-1}^{\infty }{{{\left| {{\lambda }_{j}} \right|}^{p}}\left\| {{b}_{j}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p}} \right) \\ & \le C\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\left( \sum\limits_{j=k-1}^{\infty }{{{\left| {{\lambda }_{j}} \right|}^{p}}\mu {{\left( {{B}_{j}} \right)}^{-\alpha p}}} \right) \\ & =C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\sum\limits_{k\le j+1}{{{\left( \frac{\mu \left( {{B}_{k}} \right)}{\mu \left( {{B}_{j}} \right)} \right)}^{\alpha p}}} \\ & \le C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\le C\left\| f \right\|_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}^{p}. \\ \end{align} $ (14)

When 1 < p < ∞. take 1/p+1/p'=1. By Lq(·)(X) boundedness of T and the Hölder inequality. we have

$ \begin{align} & {{I}_{2}}\le C\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\times \left( \sum\limits_{j=k-1}^{\infty }{{{\left| {{\lambda }_{j}} \right|}^{p}}\left\| \left( T{{b}_{j}} \right){{\chi }_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p/2}} \right)\times \\ & {{\left( \sum\limits_{j=k-1}^{\infty }{\left\| \left( T{{b}_{j}} \right){{\chi }_{k}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{{p}'/2}} \right)}^{p/{p}'}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{\mu {{\left( {{B}_{k}} \right)}^{\alpha p}}}\left( \sum\limits_{j=k-1}^{\infty }{{{\left| {{\lambda }_{j}} \right|}^{p}}\left\| {{b}_{j}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{p/2}} \right)\times \\ & {{\left( \sum\limits_{j=k-1}^{\infty }{\left\| {{b}_{j}} \right\|_{{{L}^{q\left( \cdot \right)}}\left( X \right)}^{{p}'/2}} \right)}^{p/{p}'}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{\left( \sum\limits_{j=k-1}^{\infty }{{{\left| {{\lambda }_{j}} \right|}^{p}}{{\left( \frac{\mu \left( {{B}_{k}} \right)}{\mu \left( {{B}_{j}} \right)} \right)}^{\alpha p/2}}} \right)}\times \\ & {{\left( \sum\limits_{j=k-1}^{\infty }{{{\left( \frac{\mu \left( {{B}_{k}} \right)}{\mu \left( {{B}_{j}} \right)} \right)}^{\alpha {p}'/2}}} \right)}^{p/{p}'}} \\ & \le C\sum\limits_{k\in \mathbb{Z}}{\left( \sum\limits_{j=k-1}^{\infty }{{{\left| {{\lambda }_{j}} \right|}^{p}}{{\left( \frac{\mu \left( {{B}_{k}} \right)}{\mu \left( {{B}_{j}} \right)} \right)}^{\alpha p/2}}} \right)} \\ & =C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\sum\limits_{k\le j+1}{{{\left( \frac{\mu \left( {{B}_{k}} \right)}{\mu \left( {{B}_{j}} \right)} \right)}^{\alpha p/2}}} \\ & \le C\sum\limits_{j\in \mathbb{Z}}{{{\left| {{\lambda }_{j}} \right|}^{p}}}\le C\left\| f \right\|_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}^{p}. \\ \end{align} $ (15)

Combining inequalities (12)-(15), we have

$ {{\left\| Tf \right\|}_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}}\le C{{\left\| f \right\|}_{\dot{K}_{q\left( \cdot \right)}^{\alpha, p}\left( X \right)}}. $

Thus, the proof of Theorem 1.3 is completed.

References
[1] Kováč ik O, Rákosník J. On spaces Lp(x) and Wk, p(x)[J]. Czechoslovak Math J, 1991, 41:592–618.
[2] Cruz-Uribe D, Fiorenza A. Variable Lebesgue spaces:foundations and harmonic analysis (applied and numerical harmonic analysis)[M]. Heidelberg: Springer, 2013.
[3] Diening L, Harjulehto P, Hästö P, et al. Lebesgue and Sobolev spaces with variable exponents[M]. Lecture Notes in Math, vol. 2017. Heidelberg: Springer, 2011.
[4] Harjulehto P, Hästö P, Pere M. Variable exponent Lebesgue spaces on metric spaces:the Hardy-Littlewood maximal operator[J]. Real Anal Exchange, 2004, 30(1):87–104.
[5] Liu Z, Zeng Y. The Herz spaces on spaces of homogeneous type and their applications[J]. Acta Math Sci Ser A Chin Ed, 1999, 19:270–277.
[6] Lu S, Yang D. The decomposition of weighted Herz space on ${{mathbb{R}}.{n}}$ and its applications[J]. Sci China Ser A-Math, 1995, 38:147–158.
[7] Wang H. The decomposition for the Herz spaces[J]. Panamer Math J, 2015, 25:15–28.
[8] Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis[J]. Bull Amer Math Soc, 1977, 83:569–645. DOI:10.1090/S0002-9904-1977-14325-5
[9] Hajlasz P, Koskela P. Sobolev met Poincare[J]. Mem Amer Math Soc, 2000, 145(688):1–106.
[10] Izuki M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization[J]. Anal Math, 2010, 36:33–50. DOI:10.1007/s10476-010-0102-8
[11] Almeida A, Hasanov J, Samko S. Maximal and potential operators in variable exponent Morrey spaces[J]. Georgian Math J, 2008, 15:195–208.