2. 邵阳学院理学与信息科学系, 湖南 邵阳 422000
2. Department of Science and Information, Shaoyang University, Shaoyang 422000, Hunan, China
为后面的叙述方便, 设θ(x)(>0)为可测函数, ρ≥1, 定义如下函数空间:
$\begin{array}{l} {L^\rho }\left( {0, \infty } \right):\; = \left\{ {{{\left\| h \right\|}_\rho }:\; = } \right.\\ \;\;\;\;\left. {{{\left\{ {\int_0^\infty {{{\left| {h\left( x \right)} \right|}^\rho }{\rm{d}}x} } \right\}}^{\frac{1}{\rho }}} < \infty } \right\}, \end{array}$ |
和
$\begin{array}{l} L_\theta ^\rho \left( {0, \infty } \right):\; = \left\{ {{{\left\| h \right\|}_{\rho, \theta }}:\; = } \right.\\ \;\;\;\left. {{{\left\{ {\int_0^\infty {\theta \left( x \right){{\left| {h\left( x \right)} \right|}^\rho }{\rm{d}}x} } \right\}}^{\frac{1}{\rho }}} < \infty } \right\}. \end{array}$ |
设
$\int_0^\infty {\int_0^\infty {\frac{{f\left( x \right)g\left( y \right)}}{{x + y}}{\rm{d}}x{\rm{d}}y < {\rm{\pi }}{{\left\| f \right\|}_2}{{\left\| g \right\|}_2}, } } $ | (1) |
这里的常数因子π是最佳值.在与式(1)相同的条件下, 还有下面基本Hilbert型积分不等式[2]:
$\int_0^\infty {\int_0^\infty {\frac{{\left| {\ln \frac{x}{y}} \right|f\left( x \right)g\left( y \right)}}{{x + y}}{\rm{d}}x{\rm{d}}y < {c_0}{{\left\| f \right\|}_2}{{\left\| g \right\|}_2}, } } $ | (2) |
这里的常数因子
本文将用到以下特殊函数[11]:
Γ-函数:
$\Gamma \left( z \right) = \int_0^\infty {{{\rm{e}}^{-u}}{u^{z-1}}{\rm{d}}u, \left( {z > 0} \right)}, $ | (3) |
黎曼ζ-函数:
$\zeta \left( s \right) = \sum\limits_{k = 1}^\infty {\frac{1}{{{k^s}}}\left( {{\mathop{\rm Re}\nolimits} \left( s \right) > 1} \right)}, $ | (4) |
推广的ζ-函数:
$\zeta \left( {s, a} \right) = \sum\limits_{k = 0}^\infty {\frac{1}{{{{\left( {k + a} \right)}^s}}}}, $ | (5) |
这里Re(s)>1, a不等于零和负整数.显然, ζ(s, 1)=ζ(s).
引理1.1 设Re(s)>1,
$\sum\limits_{k = 0}^\infty {\frac{{{{\left( {- 1} \right)}^k}}}{{{{\left( {k + a} \right)}^s}}}} = \frac{1}{{{2^s}}}\left[{\zeta \left( {s, \frac{a}{2}} \right)-\zeta \left( {s, \frac{{a + 1}}{2}} \right)} \right].$ | (6) |
证明
$\begin{array}{l} \sum\limits_{k = 0}^\infty {\frac{{{{\left( {- 1} \right)}^k}}}{{{{\left( {k + a} \right)}^s}}} = \sum\limits_{k = 0}^\infty {\frac{1}{{{{\left( {2k + a} \right)}^s}}}- \sum\limits_{k = 0}^\infty {\frac{1}{{{{\left( {2k + 1 + a} \right)}^s}}}} } } \\ = \frac{1}{{{2^s}}}\left[{\sum\limits_{k = 0}^\infty {\frac{1}{{{{\left( {k + \frac{a}{2}} \right)}^s}}}}-\sum\limits_{k = 0}^\infty {\frac{1}{{{{\left( {k + \frac{{a + 1}}{2}} \right)}^s}}}} } \right]\\ = \frac{1}{{{2^s}}}\left[{\zeta \left( {s, \frac{a}{2}} \right)-\zeta \left( {s, \frac{{a + 1}}{2}} \right)} \right]. \end{array}$ |
引理1.2 设
$\begin{array}{l} \omega \left( {\alpha, \beta, x} \right) = \int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}}} \\ \frac{{{y^{-\frac{{\beta + 1}}{2}}}}}{{{x^{-\frac{{p\left( {\beta + 1} \right)}}{{2q}}}}}}{\rm{d}}y{\rm{, }}x \in \left( {0, + \infty } \right), \\ \omega \left( {\alpha, \beta, y} \right) = \int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}}} \\ \frac{{{y^{-\frac{{\beta + 1}}{2}}}}}{{{x^{ - \frac{{q\left( {\beta + 1} \right)}}{{2p}}}}}}{\rm{d}}x, y \in \left( {0, + \infty } \right), \;则 \end{array}$ |
$\begin{array}{l} \omega \left( {\alpha, \beta, x} \right) = C\left( {\alpha, \beta } \right){x^{\frac{{p\left( {\beta + 1} \right)}}{2}-1}}, \\ \omega \left( {\alpha, \beta, y} \right) = C\left( {\alpha, \beta } \right){y^{\frac{{q\left( {\beta + 1} \right)}}{2}-1}}, \end{array}$ |
其中
$\begin{array}{l} C\left( {\alpha, \beta } \right) = \frac{1}{{{2^\alpha }}}\left[{\zeta \left( {\alpha + 1, \frac{{\beta + 1}}{4}} \right)-} \right.\\ \;\;\;\;\;\;\left. {\zeta \left( {\alpha + 1, \frac{{\beta + 3}}{4}} \right)} \right]\Gamma \left( {\alpha + 1} \right). \end{array}$ | (7) |
证明令
$\begin{array}{l} \omega \left( {\alpha, \beta, x} \right) = \int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}}} \frac{{{y^{- \frac{{\beta + 1}}{2}}}}}{{{x^{- \frac{{p\left( {\beta + 1} \right)}}{{2q}}}}}}{\rm{d}}y\\ = {x^{\frac{{p\left( {\beta + 1} \right)}}{2}- 1}}\int_0^\infty {\frac{{{{\left| {\ln \;u} \right|}^\alpha }{{\left( {\min \left\{ {1, u} \right\}} \right)}^\beta }{u^{ - \frac{{\beta + 1}}{2}}}}}{{1 + u}}{\rm{d}}u} \\ = 2{x^{\frac{{p\left( {\beta + 1} \right)}}{2} - 1}}\int_0^1 {\frac{{{{\left| {\ln u} \right|}^\alpha }{u^{\frac{{\beta - 1}}{2}}}}}{{1 + u}}{\rm{d}}u} \\ = 2{x^{\frac{{p\left( {\beta + 1} \right)}}{2} - 1}}\int_0^\infty {\frac{{{{\rm{e}}^{ - \left( {\frac{{\beta + 1}}{2}} \right)t}}{t^\alpha }}}{{1 + {{\rm{e}}^{ - t}}}}{\rm{d}}t} \\ = 2{x^{\frac{{p\left( {\beta + 1} \right)}}{2} - 1}}\sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}\int_0^\infty {{{\rm{e}}^{ - \left( {k + \frac{{\beta + 1}}{2}} \right)t}}} {t^\alpha }{\rm{d}}t} \\ = 2{x^{\frac{{p\left( {\beta + 1} \right)}}{2} - 1}}\sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{{{\left( {k + \frac{{\beta + 1}}{2}} \right)}^{\alpha + 1}}}}\int_0^\infty {{{\rm{e}}^{ - t}}{t^\alpha }{\rm{d}}t} } \\ = \frac{1}{{{2^\alpha }}}\left[{\zeta \left( {\alpha + 1, \frac{{\beta + 1}}{4}} \right)-\zeta \left( {\alpha + 1, \frac{{\beta + 3}}{4}} \right)} \right] \times \\ \Gamma \left( {\alpha + 1} \right){x^{\frac{{p\left( {\beta + 1} \right)}}{2} -1}} = C\left( {\alpha, \beta } \right){x^{\frac{{p\left( {\beta + 1} \right)}}{2} -1}}. \end{array}$ |
同理可证
引理1.3 设
$\begin{array}{l} \tilde f\left( x \right) = \left\{ \begin{array}{l} 0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \left( {0, 1} \right)\\ {x^{\frac{{- \frac{{p\left( {\beta + 1} \right)}}{2}- \varepsilon }}{p}}}, \;\;\;\;x \in \left[{1, \infty } \right) \end{array} \right., \\ \tilde g\left( y \right) = \left\{ \begin{array}{l} 0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;y \in \left( {0, 1} \right)\\ {y^{\frac{{- \frac{{q\left( {\beta + 1} \right)}}{2}- \varepsilon }}{q}}}, \;\;\;\;y \in \left[{1, \infty } \right) \end{array} \right., \end{array}$ |
则有
$\begin{array}{l} \tilde J\varepsilon = {\left[{\int_0^\infty {{x^{\frac{{p\left( {\beta-1} \right)}}{2}-1}}} {{\tilde f}^p}\left( x \right){\rm{d}}x} \right]^{\frac{1}{p}}} \times \\ \;\;\;\;\;\;\;\;{\left[{\int_0^\infty {{y^{\frac{{q\left( {\beta + 1} \right)}}{2}-1}}{{\tilde g}^q}\left( y \right){\rm{d}}y} } \right]^{\frac{1}{q}}}\varepsilon = 1, \end{array}$ | (8) |
$\begin{array}{l} \tilde I\varepsilon = \varepsilon \int_0^\infty {\int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }\tilde f\left( x \right)\tilde g\left( y \right)}}{{x + y}}} } {\rm{d}}x{\rm{d}}y\\ \;\;\;\;\;\;\;\; > C\left( {\alpha, \beta } \right)\left( {1-o\left( 1 \right)} \right)\left( {\varepsilon \to {0^ + }} \right). \end{array}$ | (9) |
证明 容易得到
$\begin{array}{l} \tilde J\varepsilon = {\left[{\int_0^\infty {{x^{\frac{{p\left( {\beta-1} \right)}}{2}-1}}} {{\tilde f}^p}\left( x \right){\rm{d}}x} \right]^{\frac{1}{p}}} \times \\ \;\;\;\;\;\;\;\;{\left[{\int_0^\infty {{y^{\frac{{q\left( {\beta + 1} \right)}}{2}-1}}{{\tilde g}^q}\left( y \right){\rm{d}}y} } \right]^{\frac{1}{q}}}\varepsilon \\ \;\;\;\;\;\; = {\left[{\int_1^\infty {{x^{-\left( {1 + \varepsilon } \right)}}{\rm{d}}x} } \right]^{\frac{1}{p}}}{\left[{\int_1^\infty {{y^{-\left( {1 + \varepsilon } \right)}}{\rm{d}}y} } \right]^{\frac{1}{q}}}\varepsilon \\ \;\;\;\;\;\; = 1. \end{array}$ |
因为
$\begin{array}{l} \tilde I\varepsilon = \varepsilon \int_0^\infty {\int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \;\left\{ {x, y} \right\}} \right)}^\beta }\tilde f\left( x \right)\tilde g\left( y \right)}}{{x + y}}} {\rm{d}}x{\rm{d}}y} \\ = \varepsilon \int_1^\infty {{x^{\frac{{- \frac{{p\left( {\beta + 1} \right)}}{2}- \varepsilon }}{p}}}{\rm{d}}x\left[{\int_1^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}} \times } } \right.} \\ \;\;\;\;\;\;\;\left. {{y^{\frac{{-\frac{{q\left( {\beta + 1} \right)}}{2}-\varepsilon }}{q}}}{\rm{d}}y} \right]\\ \;\; = \varepsilon \int_1^\infty {{x^{ - 1 - \varepsilon }}{\rm{d}}x\left[{\int_0^1 {\frac{{{{\left| {\ln \;t} \right|}^\alpha }{t^{\frac{{\beta-1}}{2}-\frac{\varepsilon }{q}}}}}{{1 + t}}} } \right.} {\rm{d}}t + \\ \;\;\;\left. {\int_0^1 {\frac{{{{\left| {\ln \;t} \right|}^\alpha }{t^{\frac{{\beta-1}}{2} + \frac{\varepsilon }{q}}}}}{{1 + t}}{\rm{d}}t - \int_0^{{x^{ - 1}}} {\frac{{{{\left| {\ln \;t} \right|}^\alpha }{t^{\frac{{\beta - 1}}{2} - \frac{\varepsilon }{q}}}}}{{1 + t}}{\rm{d}}t} } } \right]\\ \;\;=\int_{0}^{\infty }{\frac{\left( {{\text{e}}^{-\ \frac{u\left( \beta +1 \right)}{2}+\frac{\varepsilon }{q}}}\text{+}{{\text{e}}^{-\ \frac{u\left( \beta +1 \right)}{2}-\frac{\varepsilon }{q}}} \right){{u}^{\alpha }}}{1+{{\text{e}}^{-u}}}}\text{d}u-\\ \;\;\varepsilon \int_1^\infty {{x^{ - 1 - \varepsilon }}{\rm{d}}x\int_0^{{x^{ - 1}}} {\frac{{{{\left| {\ln \;t} \right|}^\alpha }{t^{\frac{{\beta - 1}}{2} - \frac{\varepsilon }{q}}}}}{{1 + t}}{\rm{d}}t} } \\ \;\; = \sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{{{\left( {k + \frac{{\beta + 1}}{2} + \frac{\varepsilon }{q}} \right)}^{\alpha + 1}}}}} \int_0^\infty {{{\rm{e}}^{ - u}}{u^\alpha }{\rm{d}}u + } \\ \;\;\sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{{{\left( {k + \frac{{\beta + 1}}{2} - \frac{\varepsilon }{q}} \right)}^{\alpha + 1}}}}\int_0^\infty {{{\rm{e}}^{ - u}}{u^\alpha }{\rm{d}}u - } } \\ \;\;\;\;\varepsilon \int_1^\infty {{x^{ - 1 - \varepsilon }}{\rm{d}}x\int_0^{{x^{ - 1}}} {\frac{{{{\left| {\ln \;t} \right|}^\alpha }{t^{\frac{{\beta - 1}}{2} - \frac{\varepsilon }{q}}}}}{{1 + t}}{\rm{d}}t} } \\ > C\left( {\alpha, \beta } \right) + {o_1}\left( 1 \right) - \\ \;\;\;M\varepsilon \int_1^\infty {{x^{ - 1}}{\rm{d}}x\int_0^{{x^{ - 1}}} {{t^{ - 1 + \frac{{\sqrt[3]{\varepsilon }}}{q}}}{\rm{d}}t} } \\ = C\left( {\alpha, \beta } \right) + {o_1}\left( 1 \right) - M{q^2}\sqrt[3]{\varepsilon }\\ = C\left( {\alpha, \beta } \right)\left( {1 -o\left( 1 \right)} \right)\left( {\varepsilon \to {o^ + }} \right). \end{array}$ |
定理2.1 设
$\begin{array}{l} \int_0^\infty {\int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }f\left( x \right)g\left( y \right)}}{{x + y}}} } {\rm{d}}x{\rm{d}}y\\ \;\;\;\;\;\;\;\;\;\;\;\;\; < C\left( {\alpha, \beta } \right){\left\| f \right\|_{p, \varphi }}{\left\| g \right\|_{q, \psi }}, \end{array}$ | (10) |
这里的常数因子C(α, β)(同式(7))是式(10)的最佳值.
证明 由Hölder不等式13和引理2及Fubini定理有
$\begin{array}{l} I: = \int_0^\infty {\int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }f\left( x \right)g\left( y \right)}}{{x + y}}} } {\rm{d}}x{\rm{d}}y\\ = \int_0^\infty {\int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }f\left( x \right)g\left( y \right)}}{{x + y}} \times } } \\ \;\;\;\;\;\;\;\;\left[{\frac{{{y^{-\frac{{\beta + 1}}{{2p}}}}}}{{{x^{-\frac{{\beta + 1}}{{2q}}}}}}} \right]\left[{\frac{{{x^{-\frac{{\beta + 1}}{{2q}}}}}}{{{y^{-\frac{{\beta + 1}}{{2p}}}}}}} \right]{\rm{d}}x{\rm{d}}y\\ \le {\left[{\int_0^\infty {\int_0^\infty {\frac{{{{\left| {\ln \;\frac{x}{y}} \right|}^a}{{\left( {\min \;\left\{ {x, y} \right\}} \right)}^\beta }{f^p}\left( x \right)}}{{x + y}}\frac{{{y^{-\frac{{\beta + 1}}{2}}}{\rm{d}}x{\rm{d}}y}}{{{x^{-\frac{{p\left( {\beta + 1} \right)}}{{2q}}}}}}} } } \right]^{\frac{1}{p}}} \times \\ {\left[{\int_0^\infty {\int_0^\infty {\frac{{{{\left| {\ln \frac{s}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }{g^q}\left( y \right)}}{{x + y}}\frac{{{x^{-\frac{{\beta + 1}}{2}}}}}{{{y^{-\frac{{q\left( {\beta + 1} \right)}}{{2p}}}}}}{\rm{d}}x{\rm{d}}y} } } \right]^{\frac{1}{q}}}\\ = {\left\{ {\int_0^\infty {\omega \left( {\alpha, \beta, x} \right){f^p}\left( x \right){\rm{d}}x} } \right\}^{\frac{1}{p}}} \times \\ \;\;{\left\{ {\int_0^\infty {\omega \left( {\alpha, \beta, y} \right){g^q}\left( y \right){\rm{d}}y} } \right\}^{\frac{1}{q}}}\\ = C\left( {\alpha, \beta } \right){\left\| f \right\|_{p, \varphi }}{\left\| g \right\|_{q, \psi }}, \end{array}$ | (11) |
若式(11)取等号, 则存在不全为零的实数A和B, 使
定理2.2 在与定理2.1相同的条件下, 我们还有
$\begin{array}{l} {\int_0^\infty y ^{\frac{{- \frac{{q\left( {\beta + 1} \right)}}{2} + 1}}{{q- 1}}}}{\rm{d}}y{\left[{\int_0^\infty {\frac{{{{\left| {\ln \;\frac{x}{y}} \right|}^\alpha }{{\left( {\min \;\left\{ {x, y} \right\}} \right)}^\beta }f\left( x \right)}}{{x + y}}{\rm{d}}x} } \right]^p}\\ \;\;\;\;\; < {C^p}\left( {\alpha, \beta } \right)\left\| f \right\|_{p, \varphi }^p, \end{array}$ | (12) |
这里的常数因子Cp(α, β)是式(12)的最佳值,且式(12)与(10)等价.
证明 设置如下有界可测函数
${\left[{f\left( x \right)} \right]_n}:\min \left\{ {n, f\left( x \right)} \right\} = \left\{ \begin{array}{l} f\left( x \right), \;\;\;f\left( x \right) < n\\ n, \;\;\;\;\;\;\;\;\;f\left( x \right) \ge n \end{array} \right..$ |
因
$\begin{array}{l} 0 < \int_{\frac{1}{n}}^n {{y^{\frac{{q\left( {\beta + 1} \right)}}{2}- 1}}g_n^q\left( y \right){\rm{d}}y} \\ \;\;\;\;\; = \int_{\frac{1}{n}}^n {{y^{\frac{{- \frac{{q\left( {\beta + 1} \right)}}{2} + 1}}{{q- 1}}}}\left[{\int_{\frac{1}{n}}^n {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}} \times } } \right.} \\ \;\;\;\;\;\;\;\;\;{\left. {\;{{\left[{f\left( x \right)} \right]}_n}{\rm{d}}x} \right]^p}{\rm{d}}y\\ \;\;\;\; = \int_{\frac{1}{n}}^n {\int_{\frac{1}{n}}^n {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}}{{\left[{f\left( x \right)} \right]}_n}{g_n}\left( y \right){\rm{d}}x{\rm{d}}y} } \\ \;\;\;\; < C\left( {\alpha, \beta } \right){\left\{ {\int_{\frac{1}{n}}^n {{x^{\frac{{p\left( {\beta + 1} \right)}}{2} - 1}}\left[{f\left( x \right)} \right]_n^p{\rm{d}}x} } \right\}^{\frac{1}{p}}} \times \\ \;\;\;\;\;\;{\left\{ {\int_{\frac{1}{n}}^n {{y^{\frac{{q\left( {\beta + 1} \right)}}{2} -1}}g_n^q\left( y \right){\rm{d}}y} } \right\}^{\frac{1}{q}}}, \end{array}$ | (13) |
$\begin{array}{l} 0 < \int_{\frac{1}{n}}^n {{y^{\frac{{q\left( {\beta + 1} \right)}}{2}-1}}g_n^q\left( y \right){\rm{d}}y} \\ \;\;\; < {C^p}\left( {\alpha, \beta } \right)\left\| f \right\|_{p, \varphi }^p < \infty, \end{array}$ | (14) |
即
反之, 由带权Hölder不等式有
$\begin{array}{l} I = \int_0^\infty {\int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}}} } f\left( x \right)g\left( y \right){\rm{d}}x{\rm{d}}y\\ \;\; = \int_0^\infty {\left[{{y^{\frac{{-\frac{{q\left( {\beta + 1} \right)}}{2} + 1}}{{p\left( {q-1} \right)}}}}\int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }f\left( x \right){\rm{d}}x}}{{x + y}}} } \right]} \; \times \\ \;\;\;\;\;\left[{{y^{\frac{{\frac{{q\left( {\beta + 1} \right)}}{2}-1}}{{p\left( {q-1} \right)}}}}g\left( y \right)} \right]{\rm{d}}y\\ \le \left\{ {\int_0^\infty {{y^{\frac{{ - \frac{{q\left( {\beta + 1} \right)}}{2} + 1}}{{\left( {q - 1} \right)}}}}{\rm{d}}y \times } } \right.\\ {\left. {{{\left[{\int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}}f\left( x \right)} {\rm{d}}x} \right]}^p}} \right\}^{\frac{1}{p}}}{\left\| g \right\|_{q, \psi }}\\ < C\left( {\alpha, \beta } \right){\left\| f \right\|_{p, \varphi }}{\left\| g \right\|_{q, \psi }}. \end{array}$ |
上不等式即为式(10), 因此式(10)和式(12)等价.
若式(12)中的常数因子不是最佳的, 则由式(12)得到式(10)的常数因子也不是最佳的, 故常数因子Cp(α, β)是式(12)的最佳值.
我们在式(10)和(12)中选取符合定理条件的参数α, β以及共轭指数对(p, q)的合适值, 并借助Maple数学软件的计算, 可以得到一些有意义的不等式.
如取α=1, β=0, p=q=2, 计算式(7)得
$\int_0^\infty {{\rm{d}}y{{\left[{\int_0^\infty {\frac{{\left( {\ln \frac{x}{y}} \right)f\left( x \right)}}{{x + y}}{\rm{d}}x} } \right]}^2} < c_0^2\left\| f \right\|_2^2.} $ | (15) |
这里的常数因子c02是式(15)的最佳值.
如取α=2, β=1, p=q=2, 计算式(7)得
$\begin{array}{l} \int_0^\infty {\int_0^\infty {\frac{{{{\left( {\ln \frac{x}{y}} \right)}^2}\min \left\{ {x, y} \right\}}}{{x + y}}f\left( x \right)g\left( y \right){\rm{d}}x{\rm{d}}y} } \\ \;\;\;\;\;\;\; < 3\zeta \left( 3 \right){\left\| f \right\|_{2, \varphi }}{\left\| g \right\|_{2, \varphi }}, \; \end{array}$ | (16) |
$\begin{array}{l} \int_0^\infty {{y^{- 1}}{\rm{d}}y{{\left[{\int_0^\infty {\frac{{{{\left( {\ln \frac{x}{y}} \right)}^2}\min \left\{ {x, y} \right\}}}{{x + y}}f\left( x \right){\rm{d}}x} } \right]}^2}} \\ \;\;\;\;\;\;\;\;\;\; < 9{\zeta ^2}\left( 3 \right)\left\| f \right\|_{2, \varphi }^2.\; \end{array}$ | (17) |
这里的常数因子3ζ(3), 9ζ2(3)分别是式(16), (17)的最佳值.
如取
$\begin{array}{l} \int_0^\infty {\int_0^\infty {\frac{{\sqrt {\left| {\ln \frac{x}{y}} \right|\min \left\{ {x, y} \right\}} }}{{x + y}}f\left( x \right)g\left( y \right){\rm{d}}x{\rm{d}}y} } \\ < \frac{{\sqrt {2{\rm{\pi }}} }}{4}\left[{\zeta \left( {\frac{3}{2}, \frac{3}{8}} \right)-\zeta \left( {\frac{3}{2}, \frac{7}{8}} \right)} \right]{\left\| f \right\|_{2, \varphi }}{\left\| g \right\|_{2, \varphi }}, \end{array}$ | (18) |
$\begin{array}{l} \int_0^\infty {\frac{1}{{\sqrt y }}{\rm{d}}y{{\left[{\int_0^\infty {\frac{{\sqrt {\left| {\ln \frac{x}{y}} \right|\min \left\{ {x, y} \right\}} }}{{x + y}}} f\left( x \right){\rm{d}}x} \right]}^2}} \\ \;\; < \frac{{\rm{\pi }}}{8}{\left[{\zeta \left( {\frac{3}{2}, \frac{3}{8}} \right)-\zeta \left( {\frac{3}{2}, \frac{7}{8}} \right)} \right]^2}\left\| f \right\|_{2, \varphi }^2. \end{array}$ | (19) |
这里的常数因子
如取α=1, β=-12, p=q=2, 计算式(7)有
$\begin{array}{l} \int_0^\infty {\int_0^\infty {\frac{{\left| {\ln \frac{x}{y}} \right|}}{{\left( {x + y} \right)\sqrt {\min \left\{ {x, y} \right\}} }}} f\left( x \right)g\left( y \right){\rm{d}}x{\rm{d}}y} \\ < \frac{{\Psi \left( {1, \frac{1}{8}} \right)-\Psi \left( {1, \frac{5}{8}} \right)}}{2}{\left\| f \right\|_{2, \varphi }}{\left\| g \right\|_{2, \varphi }}, \end{array}$ | (20) |
$\begin{array}{l} \int_0^\infty {\sqrt y {\rm{d}}y{{\left[{\int\limits_0^\infty {\frac{{\left| {\ln \frac{x}{y}} \right|}}{{\left( {x + y} \right)\sqrt {\min \left\{ {x, y} \right\}} }}f\left( x \right){\rm{d}}x} } \right]}^2}} \\ \;\; < \frac{1}{4}{\left[{\Psi \left( {1, \frac{1}{8}} \right)-\Psi \left( {1, \frac{5}{8}} \right)} \right]^2}\left\| f \right\|_{2, \varphi }^2. \end{array}$ | (21) |
这里的常数因子
[1] | Weyl H. Singulare integral Gleichungenn Mit Besonderer Berucksichtigung Des Fourierschen integral theorems[M]. Gottingen: Inaugeral-Dissertation, 1908 . |
[2] | Hardy G H. Note on a theorem of Hilbert concerning series of positive term[J]. Proc London Math Soc , 1925, 23 :45–46. |
[3] | 杨必成. 一个具有混合核的Hilbert型积分不等式及其推广[J]. 四川师范大学学报:自然科学版 , 2006, 31 (3) :281–284. |
[4] | 刘琼, 杨必成. 一个多参数混合核的Hilbert型积分不等式及其应用[J]. 浙江大学学报:理学版 , 2012, 39 (2) :135–141. |
[5] | Liu Q, Chen D. A Hilbert-type intetral inequality with a hybrid kernel and its applications[J]. Colloquium Mathematicum , 2016, 143 (2) :193–207. |
[6] | 杨必成. 参量化Hilbert型不等式研究综述[J]. 数学进展 , 2009, 38 (3) :257–258. |
[7] | 杨必成. 关于一个非齐次核的Hilbert型积分不等式[J]. 上海大学学报:自然科学版 , 2011, 17 (5) :603–606. |
[8] | 刘琼, 龙顺潮. 一个核为双曲正割函数的Hilbert型积分不等式[J]. 浙江大学学报:理学版 , 2013, 40 (3) :255–259. |
[9] | 刘琼, 龙顺潮. 一个核为双曲余割函数的Hilbert型积分不等式[J]. 数学学报:中文版 , 2013, 56 (1) :97–104. |
[10] | Liu Q. Two new integral inequalities and a relationship among operator norms[J]. Journal of University of Chinese Academy of Sciences , 2015, 32 (3) :398–403. |
[11] | 苏变萍, 陈东立. 复变函数与积分变换[M]. 北京: 高等教育出版社, 2003 . |
[12] | 匡继昌. 实分析引论[M]. 长沙: 湖南教育出版社, 1996 . |
[13] | 匡继昌. 常用不等式[M].3版. 济南: 山东科学技术出版社, 2004 . |