中国科学院大学学报  2016, Vol. 33 Issue (5): 584-589   PDF    
一个联系特殊函数的多参数Hilbert型积分不等式
黄琳1, 刘琼2     
1. 长沙师范学院师范预科部, 长沙 410100 ;
2. 邵阳学院理学与信息科学系, 湖南 邵阳 422000
摘要: 利用权函数方法和实分析及泛函技巧,引入一些特殊函数联合刻划常数因子,建立一个多参数Hilbert型积分不等式,考虑它的等价式,证明它们的常数因子是最佳的.作为应用,通过选取特殊的参数值,得到一些有意义的结果.
关键词: Hilbert型积分不等式     权函数     最佳常数因子     特殊函数    
A multi-parameter Hilbert-type integral inequality related to special functions
HUANG Lin1, LIU Qiong2     
1. Preparatory Department of Junior Education, Changsha Normal University, Changsha 410100, China ;
2. Department of Science and Information, Shaoyang University, Shaoyang 422000, Hunan, China
Abstract: By using the method of weight function and the techniques of real analysis and functional analysis and by introducing some special functions to jointly score the constant factor, a Hilbert-type integral inequality with multi-parameters is given. Its equivalent form is considered, and their constant factor is proved to be the best. Some meaningful results are obtained by choosing the special parameter values.
Key words: Hilbert-type integral inequality     weight function     the best constant factor     special function    

为后面的叙述方便, 设θ(x)(>0)为可测函数, ρ≥1, 定义如下函数空间:

$\begin{array}{l} {L^\rho }\left( {0, \infty } \right):\; = \left\{ {{{\left\| h \right\|}_\rho }:\; = } \right.\\ \;\;\;\;\left. {{{\left\{ {\int_0^\infty {{{\left| {h\left( x \right)} \right|}^\rho }{\rm{d}}x} } \right\}}^{\frac{1}{\rho }}} < \infty } \right\}, \end{array}$

$\begin{array}{l} L_\theta ^\rho \left( {0, \infty } \right):\; = \left\{ {{{\left\| h \right\|}_{\rho, \theta }}:\; = } \right.\\ \;\;\;\left. {{{\left\{ {\int_0^\infty {\theta \left( x \right){{\left| {h\left( x \right)} \right|}^\rho }{\rm{d}}x} } \right\}}^{\frac{1}{\rho }}} < \infty } \right\}. \end{array}$

$f, g \ge 0, f, g, \in {L^2}\left( {0, \infty } \right), {\left\| f \right\|_2}, {\left\| g \right\|_2} > 0$, 则有下面的Hilbert积分不等式[1]

$\int_0^\infty {\int_0^\infty {\frac{{f\left( x \right)g\left( y \right)}}{{x + y}}{\rm{d}}x{\rm{d}}y < {\rm{\pi }}{{\left\| f \right\|}_2}{{\left\| g \right\|}_2}, } } $ (1)

这里的常数因子π是最佳值.在与式(1)相同的条件下, 还有下面基本Hilbert型积分不等式[2]:

$\int_0^\infty {\int_0^\infty {\frac{{\left| {\ln \frac{x}{y}} \right|f\left( x \right)g\left( y \right)}}{{x + y}}{\rm{d}}x{\rm{d}}y < {c_0}{{\left\| f \right\|}_2}{{\left\| g \right\|}_2}, } } $ (2)

这里的常数因子${c_0}\left( { = \sum\limits_{k = 1}^\infty {\frac{{8{{\left( {-1} \right)}^{k-1}}}}{{{{\left( {2k-1} \right)}^2}}} = 7.327\;{7^ + }} } \right)$是最佳值.近年来, 人们在Hilbert型积分不等式研究中的主要成就:一方面是将以前的基本核进行组合, 得到一些混合核的积分不等式, 同时进行参量化研究, 综合、推广和改进已有结果[3-6].另一方面, 构造一些新的积分核, 发现新的Hilbert型积分不等式[7-10].这些所获得的不等式在分析学和偏微分方程理论等领域有重要应用.本文引入Γ-函数、推广的ζ-函数等刻划常数因子, 利用权函数方法和实分析的技巧, 建立一个联系特殊函数的多参数Hilbert型积分不等式, 给出它的等价式, 证明了它们的常数因子是最佳的, 并通过选取特殊参数值, 得到一些有意义的结果.

1 有关引理

本文将用到以下特殊函数[11]:

Γ-函数:

$\Gamma \left( z \right) = \int_0^\infty {{{\rm{e}}^{-u}}{u^{z-1}}{\rm{d}}u, \left( {z > 0} \right)}, $ (3)

黎曼ζ-函数:

$\zeta \left( s \right) = \sum\limits_{k = 1}^\infty {\frac{1}{{{k^s}}}\left( {{\mathop{\rm Re}\nolimits} \left( s \right) > 1} \right)}, $ (4)

推广的ζ-函数:

$\zeta \left( {s, a} \right) = \sum\limits_{k = 0}^\infty {\frac{1}{{{{\left( {k + a} \right)}^s}}}}, $ (5)

这里Re(s)>1, a不等于零和负整数.显然, ζ(s, 1)=ζ(s).

引理1.1   设Re(s)>1, $\frac{a}{2}$$\frac{{a + 1}}{2}$均不等于零和负整数, 则有求和公式

$\sum\limits_{k = 0}^\infty {\frac{{{{\left( {- 1} \right)}^k}}}{{{{\left( {k + a} \right)}^s}}}} = \frac{1}{{{2^s}}}\left[{\zeta \left( {s, \frac{a}{2}} \right)-\zeta \left( {s, \frac{{a + 1}}{2}} \right)} \right].$ (6)

证明

$\begin{array}{l} \sum\limits_{k = 0}^\infty {\frac{{{{\left( {- 1} \right)}^k}}}{{{{\left( {k + a} \right)}^s}}} = \sum\limits_{k = 0}^\infty {\frac{1}{{{{\left( {2k + a} \right)}^s}}}- \sum\limits_{k = 0}^\infty {\frac{1}{{{{\left( {2k + 1 + a} \right)}^s}}}} } } \\ = \frac{1}{{{2^s}}}\left[{\sum\limits_{k = 0}^\infty {\frac{1}{{{{\left( {k + \frac{a}{2}} \right)}^s}}}}-\sum\limits_{k = 0}^\infty {\frac{1}{{{{\left( {k + \frac{{a + 1}}{2}} \right)}^s}}}} } \right]\\ = \frac{1}{{{2^s}}}\left[{\zeta \left( {s, \frac{a}{2}} \right)-\zeta \left( {s, \frac{{a + 1}}{2}} \right)} \right]. \end{array}$

引理1.2   设$p > 1, \frac{1}{p} + \frac{1}{q} = 1, \alpha > 0, \frac{{\beta + 1}}{4}$$\frac{{\beta + 3}}{4}$均不为零和负整数, 定义如下权函数:

$\begin{array}{l} \omega \left( {\alpha, \beta, x} \right) = \int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}}} \\ \frac{{{y^{-\frac{{\beta + 1}}{2}}}}}{{{x^{-\frac{{p\left( {\beta + 1} \right)}}{{2q}}}}}}{\rm{d}}y{\rm{, }}x \in \left( {0, + \infty } \right), \\ \omega \left( {\alpha, \beta, y} \right) = \int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}}} \\ \frac{{{y^{-\frac{{\beta + 1}}{2}}}}}{{{x^{ - \frac{{q\left( {\beta + 1} \right)}}{{2p}}}}}}{\rm{d}}x, y \in \left( {0, + \infty } \right), \;则 \end{array}$
$\begin{array}{l} \omega \left( {\alpha, \beta, x} \right) = C\left( {\alpha, \beta } \right){x^{\frac{{p\left( {\beta + 1} \right)}}{2}-1}}, \\ \omega \left( {\alpha, \beta, y} \right) = C\left( {\alpha, \beta } \right){y^{\frac{{q\left( {\beta + 1} \right)}}{2}-1}}, \end{array}$

其中

$\begin{array}{l} C\left( {\alpha, \beta } \right) = \frac{1}{{{2^\alpha }}}\left[{\zeta \left( {\alpha + 1, \frac{{\beta + 1}}{4}} \right)-} \right.\\ \;\;\;\;\;\;\left. {\zeta \left( {\alpha + 1, \frac{{\beta + 3}}{4}} \right)} \right]\Gamma \left( {\alpha + 1} \right). \end{array}$ (7)

证明$\frac{y}{x} = u$, 由Fubini定理12和引理1.1有

$\begin{array}{l} \omega \left( {\alpha, \beta, x} \right) = \int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}}} \frac{{{y^{- \frac{{\beta + 1}}{2}}}}}{{{x^{- \frac{{p\left( {\beta + 1} \right)}}{{2q}}}}}}{\rm{d}}y\\ = {x^{\frac{{p\left( {\beta + 1} \right)}}{2}- 1}}\int_0^\infty {\frac{{{{\left| {\ln \;u} \right|}^\alpha }{{\left( {\min \left\{ {1, u} \right\}} \right)}^\beta }{u^{ - \frac{{\beta + 1}}{2}}}}}{{1 + u}}{\rm{d}}u} \\ = 2{x^{\frac{{p\left( {\beta + 1} \right)}}{2} - 1}}\int_0^1 {\frac{{{{\left| {\ln u} \right|}^\alpha }{u^{\frac{{\beta - 1}}{2}}}}}{{1 + u}}{\rm{d}}u} \\ = 2{x^{\frac{{p\left( {\beta + 1} \right)}}{2} - 1}}\int_0^\infty {\frac{{{{\rm{e}}^{ - \left( {\frac{{\beta + 1}}{2}} \right)t}}{t^\alpha }}}{{1 + {{\rm{e}}^{ - t}}}}{\rm{d}}t} \\ = 2{x^{\frac{{p\left( {\beta + 1} \right)}}{2} - 1}}\sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}\int_0^\infty {{{\rm{e}}^{ - \left( {k + \frac{{\beta + 1}}{2}} \right)t}}} {t^\alpha }{\rm{d}}t} \\ = 2{x^{\frac{{p\left( {\beta + 1} \right)}}{2} - 1}}\sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{{{\left( {k + \frac{{\beta + 1}}{2}} \right)}^{\alpha + 1}}}}\int_0^\infty {{{\rm{e}}^{ - t}}{t^\alpha }{\rm{d}}t} } \\ = \frac{1}{{{2^\alpha }}}\left[{\zeta \left( {\alpha + 1, \frac{{\beta + 1}}{4}} \right)-\zeta \left( {\alpha + 1, \frac{{\beta + 3}}{4}} \right)} \right] \times \\ \Gamma \left( {\alpha + 1} \right){x^{\frac{{p\left( {\beta + 1} \right)}}{2} -1}} = C\left( {\alpha, \beta } \right){x^{\frac{{p\left( {\beta + 1} \right)}}{2} -1}}. \end{array}$

同理可证$\omega \left( {\alpha, \beta, y} \right) = C\left( {\alpha, \beta } \right){y^{\frac{{q\left( {\beta + 1} \right)}}{2}-1}}$.

引理1.3   设$p > 1, \frac{1}{p} + \frac{1}{q} = 1, \alpha > 0, \beta >- 1, \varepsilon + \sqrt[3]{\varepsilon } < \frac{{q\left( {\beta + 1} \right)}}{2}$, 且0 < ε可以充分地小, 定义如下函数:

$\begin{array}{l} \tilde f\left( x \right) = \left\{ \begin{array}{l} 0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \left( {0, 1} \right)\\ {x^{\frac{{- \frac{{p\left( {\beta + 1} \right)}}{2}- \varepsilon }}{p}}}, \;\;\;\;x \in \left[{1, \infty } \right) \end{array} \right., \\ \tilde g\left( y \right) = \left\{ \begin{array}{l} 0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;y \in \left( {0, 1} \right)\\ {y^{\frac{{- \frac{{q\left( {\beta + 1} \right)}}{2}- \varepsilon }}{q}}}, \;\;\;\;y \in \left[{1, \infty } \right) \end{array} \right., \end{array}$

则有

$\begin{array}{l} \tilde J\varepsilon = {\left[{\int_0^\infty {{x^{\frac{{p\left( {\beta-1} \right)}}{2}-1}}} {{\tilde f}^p}\left( x \right){\rm{d}}x} \right]^{\frac{1}{p}}} \times \\ \;\;\;\;\;\;\;\;{\left[{\int_0^\infty {{y^{\frac{{q\left( {\beta + 1} \right)}}{2}-1}}{{\tilde g}^q}\left( y \right){\rm{d}}y} } \right]^{\frac{1}{q}}}\varepsilon = 1, \end{array}$ (8)
$\begin{array}{l} \tilde I\varepsilon = \varepsilon \int_0^\infty {\int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }\tilde f\left( x \right)\tilde g\left( y \right)}}{{x + y}}} } {\rm{d}}x{\rm{d}}y\\ \;\;\;\;\;\;\;\; > C\left( {\alpha, \beta } \right)\left( {1-o\left( 1 \right)} \right)\left( {\varepsilon \to {0^ + }} \right). \end{array}$ (9)

证明   容易得到

$\begin{array}{l} \tilde J\varepsilon = {\left[{\int_0^\infty {{x^{\frac{{p\left( {\beta-1} \right)}}{2}-1}}} {{\tilde f}^p}\left( x \right){\rm{d}}x} \right]^{\frac{1}{p}}} \times \\ \;\;\;\;\;\;\;\;{\left[{\int_0^\infty {{y^{\frac{{q\left( {\beta + 1} \right)}}{2}-1}}{{\tilde g}^q}\left( y \right){\rm{d}}y} } \right]^{\frac{1}{q}}}\varepsilon \\ \;\;\;\;\;\; = {\left[{\int_1^\infty {{x^{-\left( {1 + \varepsilon } \right)}}{\rm{d}}x} } \right]^{\frac{1}{p}}}{\left[{\int_1^\infty {{y^{-\left( {1 + \varepsilon } \right)}}{\rm{d}}y} } \right]^{\frac{1}{q}}}\varepsilon \\ \;\;\;\;\;\; = 1. \end{array}$

因为$F\left( t \right) = \frac{{{t^{\frac{{\beta + 1}}{2}- \frac{{\varepsilon + \sqrt[3]{\varepsilon }}}{q}}}{{\left| {\ln t} \right|}^\alpha }}}{{1 + t}}$在(0, 1]内连续, 且用洛比达法则得$\mathop {\lim }\limits_{t \to {0^ + }} F\left( t \right) = \mathop {\lim }\limits_{t \to {0^ + }} \frac{{{t^{\frac{{\beta + 1}}{2}- \frac{{\varepsilon + \sqrt[3]{\varepsilon }}}{q}}}{{\left| {\ln \;t} \right|}^\alpha }}}{{1 + t}} = 0$, 故存在M>0, 使F(t)≤M, 则有

$\begin{array}{l} \tilde I\varepsilon = \varepsilon \int_0^\infty {\int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \;\left\{ {x, y} \right\}} \right)}^\beta }\tilde f\left( x \right)\tilde g\left( y \right)}}{{x + y}}} {\rm{d}}x{\rm{d}}y} \\ = \varepsilon \int_1^\infty {{x^{\frac{{- \frac{{p\left( {\beta + 1} \right)}}{2}- \varepsilon }}{p}}}{\rm{d}}x\left[{\int_1^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}} \times } } \right.} \\ \;\;\;\;\;\;\;\left. {{y^{\frac{{-\frac{{q\left( {\beta + 1} \right)}}{2}-\varepsilon }}{q}}}{\rm{d}}y} \right]\\ \;\; = \varepsilon \int_1^\infty {{x^{ - 1 - \varepsilon }}{\rm{d}}x\left[{\int_0^1 {\frac{{{{\left| {\ln \;t} \right|}^\alpha }{t^{\frac{{\beta-1}}{2}-\frac{\varepsilon }{q}}}}}{{1 + t}}} } \right.} {\rm{d}}t + \\ \;\;\;\left. {\int_0^1 {\frac{{{{\left| {\ln \;t} \right|}^\alpha }{t^{\frac{{\beta-1}}{2} + \frac{\varepsilon }{q}}}}}{{1 + t}}{\rm{d}}t - \int_0^{{x^{ - 1}}} {\frac{{{{\left| {\ln \;t} \right|}^\alpha }{t^{\frac{{\beta - 1}}{2} - \frac{\varepsilon }{q}}}}}{{1 + t}}{\rm{d}}t} } } \right]\\ \;\;=\int_{0}^{\infty }{\frac{\left( {{\text{e}}^{-\ \frac{u\left( \beta +1 \right)}{2}+\frac{\varepsilon }{q}}}\text{+}{{\text{e}}^{-\ \frac{u\left( \beta +1 \right)}{2}-\frac{\varepsilon }{q}}} \right){{u}^{\alpha }}}{1+{{\text{e}}^{-u}}}}\text{d}u-\\ \;\;\varepsilon \int_1^\infty {{x^{ - 1 - \varepsilon }}{\rm{d}}x\int_0^{{x^{ - 1}}} {\frac{{{{\left| {\ln \;t} \right|}^\alpha }{t^{\frac{{\beta - 1}}{2} - \frac{\varepsilon }{q}}}}}{{1 + t}}{\rm{d}}t} } \\ \;\; = \sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{{{\left( {k + \frac{{\beta + 1}}{2} + \frac{\varepsilon }{q}} \right)}^{\alpha + 1}}}}} \int_0^\infty {{{\rm{e}}^{ - u}}{u^\alpha }{\rm{d}}u + } \\ \;\;\sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{{{\left( {k + \frac{{\beta + 1}}{2} - \frac{\varepsilon }{q}} \right)}^{\alpha + 1}}}}\int_0^\infty {{{\rm{e}}^{ - u}}{u^\alpha }{\rm{d}}u - } } \\ \;\;\;\;\varepsilon \int_1^\infty {{x^{ - 1 - \varepsilon }}{\rm{d}}x\int_0^{{x^{ - 1}}} {\frac{{{{\left| {\ln \;t} \right|}^\alpha }{t^{\frac{{\beta - 1}}{2} - \frac{\varepsilon }{q}}}}}{{1 + t}}{\rm{d}}t} } \\ > C\left( {\alpha, \beta } \right) + {o_1}\left( 1 \right) - \\ \;\;\;M\varepsilon \int_1^\infty {{x^{ - 1}}{\rm{d}}x\int_0^{{x^{ - 1}}} {{t^{ - 1 + \frac{{\sqrt[3]{\varepsilon }}}{q}}}{\rm{d}}t} } \\ = C\left( {\alpha, \beta } \right) + {o_1}\left( 1 \right) - M{q^2}\sqrt[3]{\varepsilon }\\ = C\left( {\alpha, \beta } \right)\left( {1 -o\left( 1 \right)} \right)\left( {\varepsilon \to {o^ + }} \right). \end{array}$
2 主要结论

定理2.1   设$\begin{array}{l} p > 1, \frac{1}{p} + \frac{1}{q} = 1, \alpha > 0, \beta >-1, \varphi \left( x \right) = {x^{\frac{{p\left( {\beta + 1} \right)}}{2}-1}}, \psi \left( y \right) = {y^{\frac{{q\left( {\beta + 1} \right)}}{2}-1}}, f, g > 0, f \in L_\varphi ^p\left( {0, \infty } \right), g \in L_\psi ^q\left( {0, \infty } \right) \end{array}$, 则有

$\begin{array}{l} \int_0^\infty {\int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }f\left( x \right)g\left( y \right)}}{{x + y}}} } {\rm{d}}x{\rm{d}}y\\ \;\;\;\;\;\;\;\;\;\;\;\;\; < C\left( {\alpha, \beta } \right){\left\| f \right\|_{p, \varphi }}{\left\| g \right\|_{q, \psi }}, \end{array}$ (10)

这里的常数因子C(α, β)(同式(7))是式(10)的最佳值.

证明   由Hölder不等式13和引理2及Fubini定理有

$\begin{array}{l} I: = \int_0^\infty {\int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }f\left( x \right)g\left( y \right)}}{{x + y}}} } {\rm{d}}x{\rm{d}}y\\ = \int_0^\infty {\int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }f\left( x \right)g\left( y \right)}}{{x + y}} \times } } \\ \;\;\;\;\;\;\;\;\left[{\frac{{{y^{-\frac{{\beta + 1}}{{2p}}}}}}{{{x^{-\frac{{\beta + 1}}{{2q}}}}}}} \right]\left[{\frac{{{x^{-\frac{{\beta + 1}}{{2q}}}}}}{{{y^{-\frac{{\beta + 1}}{{2p}}}}}}} \right]{\rm{d}}x{\rm{d}}y\\ \le {\left[{\int_0^\infty {\int_0^\infty {\frac{{{{\left| {\ln \;\frac{x}{y}} \right|}^a}{{\left( {\min \;\left\{ {x, y} \right\}} \right)}^\beta }{f^p}\left( x \right)}}{{x + y}}\frac{{{y^{-\frac{{\beta + 1}}{2}}}{\rm{d}}x{\rm{d}}y}}{{{x^{-\frac{{p\left( {\beta + 1} \right)}}{{2q}}}}}}} } } \right]^{\frac{1}{p}}} \times \\ {\left[{\int_0^\infty {\int_0^\infty {\frac{{{{\left| {\ln \frac{s}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }{g^q}\left( y \right)}}{{x + y}}\frac{{{x^{-\frac{{\beta + 1}}{2}}}}}{{{y^{-\frac{{q\left( {\beta + 1} \right)}}{{2p}}}}}}{\rm{d}}x{\rm{d}}y} } } \right]^{\frac{1}{q}}}\\ = {\left\{ {\int_0^\infty {\omega \left( {\alpha, \beta, x} \right){f^p}\left( x \right){\rm{d}}x} } \right\}^{\frac{1}{p}}} \times \\ \;\;{\left\{ {\int_0^\infty {\omega \left( {\alpha, \beta, y} \right){g^q}\left( y \right){\rm{d}}y} } \right\}^{\frac{1}{q}}}\\ = C\left( {\alpha, \beta } \right){\left\| f \right\|_{p, \varphi }}{\left\| g \right\|_{q, \psi }}, \end{array}$ (11)

若式(11)取等号, 则存在不全为零的实数AB, 使$A\frac{{{y^{-\frac{{\beta + 1}}{2}}}}}{{{x^{-\frac{{p\left( {\beta + 1} \right)}}{{2q}}}}}}{f^p}\left( x \right) = B\frac{{{x^{-\frac{{\beta + 1}}{2}}}}}{{{y^{ - \frac{{q\left( {\beta + 1} \right)}}{{2p}}}}}}{g^q}\left( y \right), {\rm{a}}{\rm{.e}}$.于$\left( {0, \infty } \right) \times \left( {0, \infty } \right)$, 于是有常数C,使$A{x^{\frac{{p\left( {\beta + 1} \right)}}{2}}}{f^p}\left( x \right) = B{y^{\frac{{q\left( {\beta + 1} \right)}}{2}}}{g^q}\left( y \right) = C, {\rm{a}}{\rm{.e}}{\rm{.}}$.于$\left( {0, \infty } \right) \times \left( {0, \infty } \right)$, 不妨设A≠0, 则有${x^{\frac{{p\left( {\beta + 1} \right)}}{2}-1}}{f^p}\left( x \right) = \frac{C}{{Ax}}, {\rm{a}}{\rm{.e}}{\rm{.}}$$\left( {0, \infty } \right)$, 这与${\rm{0 < }}{\left\| f \right\|_{p, \varphi }} < \infty $矛盾, 故式(11)取严格不等号.若C(α, β)不是式(10)的最佳常数因子, 则存在正数K < C(α, β), 使式(10)的常数因子换成K后仍成立, 于是由式(8)和(9)有C(α, β)(1-o(1)) < K, 让ε→0+得: KC(α, β), 这与K < C(α, β)矛盾, 故C(α, β)是式(10)的最佳常数因子.

定理2.2   在与定理2.1相同的条件下, 我们还有

$\begin{array}{l} {\int_0^\infty y ^{\frac{{- \frac{{q\left( {\beta + 1} \right)}}{2} + 1}}{{q- 1}}}}{\rm{d}}y{\left[{\int_0^\infty {\frac{{{{\left| {\ln \;\frac{x}{y}} \right|}^\alpha }{{\left( {\min \;\left\{ {x, y} \right\}} \right)}^\beta }f\left( x \right)}}{{x + y}}{\rm{d}}x} } \right]^p}\\ \;\;\;\;\; < {C^p}\left( {\alpha, \beta } \right)\left\| f \right\|_{p, \varphi }^p, \end{array}$ (12)

这里的常数因子Cp(α, β)是式(12)的最佳值,且式(12)与(10)等价.

证明   设置如下有界可测函数

${\left[{f\left( x \right)} \right]_n}:\min \left\{ {n, f\left( x \right)} \right\} = \left\{ \begin{array}{l} f\left( x \right), \;\;\;f\left( x \right) < n\\ n, \;\;\;\;\;\;\;\;\;f\left( x \right) \ge n \end{array} \right..$

${\rm{0 < }}{\left\| f \right\|_{p, \varphi }} < \infty $, 存在n0∈N, 使得当nn0时, 有$0 < \int_{\frac{1}{n}}^n {{x^{\frac{{p\left( {\beta + 1} \right)}}{2}- 1}}\left[{f\left( x \right)} \right]_n^p{\rm{d}}x < \infty } $, 置${g_n}\left( y \right): = {y^{\frac{{- \frac{{q\left( {\beta + 1} \right)}}{2} + 1}}{{q- 1}}}}{\left[{\int_{\frac{1}{n}}^n {\frac{{{{\left| {\ln \;\frac{x}{y}} \right|}^\alpha }{{\left( {\min \;\left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}}{{\left[{f\left( x \right)} \right]}_n}{\rm{d}}x} } \right]^{\frac{p}{q}}}\left( {\frac{1}{n} < y < n, n \ge {n_0}} \right)$, 则当nn0时, 由式(10)有

$\begin{array}{l} 0 < \int_{\frac{1}{n}}^n {{y^{\frac{{q\left( {\beta + 1} \right)}}{2}- 1}}g_n^q\left( y \right){\rm{d}}y} \\ \;\;\;\;\; = \int_{\frac{1}{n}}^n {{y^{\frac{{- \frac{{q\left( {\beta + 1} \right)}}{2} + 1}}{{q- 1}}}}\left[{\int_{\frac{1}{n}}^n {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}} \times } } \right.} \\ \;\;\;\;\;\;\;\;\;{\left. {\;{{\left[{f\left( x \right)} \right]}_n}{\rm{d}}x} \right]^p}{\rm{d}}y\\ \;\;\;\; = \int_{\frac{1}{n}}^n {\int_{\frac{1}{n}}^n {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}}{{\left[{f\left( x \right)} \right]}_n}{g_n}\left( y \right){\rm{d}}x{\rm{d}}y} } \\ \;\;\;\; < C\left( {\alpha, \beta } \right){\left\{ {\int_{\frac{1}{n}}^n {{x^{\frac{{p\left( {\beta + 1} \right)}}{2} - 1}}\left[{f\left( x \right)} \right]_n^p{\rm{d}}x} } \right\}^{\frac{1}{p}}} \times \\ \;\;\;\;\;\;{\left\{ {\int_{\frac{1}{n}}^n {{y^{\frac{{q\left( {\beta + 1} \right)}}{2} -1}}g_n^q\left( y \right){\rm{d}}y} } \right\}^{\frac{1}{q}}}, \end{array}$ (13)
$\begin{array}{l} 0 < \int_{\frac{1}{n}}^n {{y^{\frac{{q\left( {\beta + 1} \right)}}{2}-1}}g_n^q\left( y \right){\rm{d}}y} \\ \;\;\; < {C^p}\left( {\alpha, \beta } \right)\left\| f \right\|_{p, \varphi }^p < \infty, \end{array}$ (14)

${\rm{0 < }}{\left\| f \right\|_{p, \varphi }} < \infty $.当 $n \to \infty $时, 应用式(10), 则式(13)取严格不等号, 式(14)亦然, 故有式(12).

反之, 由带权Hölder不等式有

$\begin{array}{l} I = \int_0^\infty {\int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}}} } f\left( x \right)g\left( y \right){\rm{d}}x{\rm{d}}y\\ \;\; = \int_0^\infty {\left[{{y^{\frac{{-\frac{{q\left( {\beta + 1} \right)}}{2} + 1}}{{p\left( {q-1} \right)}}}}\int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }f\left( x \right){\rm{d}}x}}{{x + y}}} } \right]} \; \times \\ \;\;\;\;\;\left[{{y^{\frac{{\frac{{q\left( {\beta + 1} \right)}}{2}-1}}{{p\left( {q-1} \right)}}}}g\left( y \right)} \right]{\rm{d}}y\\ \le \left\{ {\int_0^\infty {{y^{\frac{{ - \frac{{q\left( {\beta + 1} \right)}}{2} + 1}}{{\left( {q - 1} \right)}}}}{\rm{d}}y \times } } \right.\\ {\left. {{{\left[{\int_0^\infty {\frac{{{{\left| {\ln \frac{x}{y}} \right|}^\alpha }{{\left( {\min \left\{ {x, y} \right\}} \right)}^\beta }}}{{x + y}}f\left( x \right)} {\rm{d}}x} \right]}^p}} \right\}^{\frac{1}{p}}}{\left\| g \right\|_{q, \psi }}\\ < C\left( {\alpha, \beta } \right){\left\| f \right\|_{p, \varphi }}{\left\| g \right\|_{q, \psi }}. \end{array}$

上不等式即为式(10), 因此式(10)和式(12)等价.

若式(12)中的常数因子不是最佳的, 则由式(12)得到式(10)的常数因子也不是最佳的, 故常数因子Cp(α, β)是式(12)的最佳值.

我们在式(10)和(12)中选取符合定理条件的参数α, β以及共轭指数对(p, q)的合适值, 并借助Maple数学软件的计算, 可以得到一些有意义的不等式.

如取α=1, β=0, p=q=2, 计算式(7)得$C\left( {1, 0} \right) = {c_0} = \frac{{{{\rm{\pi }}^2}}}{2} + 4{\rm{catalan}}-\frac{1}{2}\Psi \left( {1, \frac{3}{4}} \right) = 7.327\;724\;{76^ + }\left( {其中\Psi \left( {n, z} \right)为n次\Gamma 函数} \right)$, 则有式(2)和它的等价式:

$\int_0^\infty {{\rm{d}}y{{\left[{\int_0^\infty {\frac{{\left( {\ln \frac{x}{y}} \right)f\left( x \right)}}{{x + y}}{\rm{d}}x} } \right]}^2} < c_0^2\left\| f \right\|_2^2.} $ (15)

这里的常数因子c02是式(15)的最佳值.

如取α=2, β=1, p=q=2, 计算式(7)得$C\left( {2, 1} \right) = 3\zeta \left( 3 \right) = 3.606\;170\;{709^ + }$, 这时$\varphi \left( x \right) = x$, 设$f, g \in L_\varphi ^2\left( {0, \infty } \right), {\left\| f \right\|_{2, \varphi }}, {\left\| g \right\|_{2, \varphi }} > 0$, 则有下列等价式:

$\begin{array}{l} \int_0^\infty {\int_0^\infty {\frac{{{{\left( {\ln \frac{x}{y}} \right)}^2}\min \left\{ {x, y} \right\}}}{{x + y}}f\left( x \right)g\left( y \right){\rm{d}}x{\rm{d}}y} } \\ \;\;\;\;\;\;\; < 3\zeta \left( 3 \right){\left\| f \right\|_{2, \varphi }}{\left\| g \right\|_{2, \varphi }}, \; \end{array}$ (16)
$\begin{array}{l} \int_0^\infty {{y^{- 1}}{\rm{d}}y{{\left[{\int_0^\infty {\frac{{{{\left( {\ln \frac{x}{y}} \right)}^2}\min \left\{ {x, y} \right\}}}{{x + y}}f\left( x \right){\rm{d}}x} } \right]}^2}} \\ \;\;\;\;\;\;\;\;\;\; < 9{\zeta ^2}\left( 3 \right)\left\| f \right\|_{2, \varphi }^2.\; \end{array}$ (17)

这里的常数因子3ζ(3), 9ζ2(3)分别是式(16), (17)的最佳值.

如取$\alpha = \beta = \frac{1}{2}, p = q = 2$, 计算式(7)有$C\left( {\frac{1}{2}, \frac{1}{2}} \right) = \frac{{\sqrt {2{\rm{\pi }}} }}{4}\left[{\zeta \left( {\frac{3}{2}, \frac{3}{8}} \right)-\zeta \left( {\frac{3}{2}, \frac{7}{8}} \right)} \right] = 2.206\;556\;{861^ + }$, 这时φ(x)=x, 设$f, g \in L_\varphi ^2\left( {0, \infty } \right), {\left\| f \right\|_{2, \varphi }}, {\left\| g \right\|_{2, \varphi }} > 0$, 则有下列等价式:

$\begin{array}{l} \int_0^\infty {\int_0^\infty {\frac{{\sqrt {\left| {\ln \frac{x}{y}} \right|\min \left\{ {x, y} \right\}} }}{{x + y}}f\left( x \right)g\left( y \right){\rm{d}}x{\rm{d}}y} } \\ < \frac{{\sqrt {2{\rm{\pi }}} }}{4}\left[{\zeta \left( {\frac{3}{2}, \frac{3}{8}} \right)-\zeta \left( {\frac{3}{2}, \frac{7}{8}} \right)} \right]{\left\| f \right\|_{2, \varphi }}{\left\| g \right\|_{2, \varphi }}, \end{array}$ (18)
$\begin{array}{l} \int_0^\infty {\frac{1}{{\sqrt y }}{\rm{d}}y{{\left[{\int_0^\infty {\frac{{\sqrt {\left| {\ln \frac{x}{y}} \right|\min \left\{ {x, y} \right\}} }}{{x + y}}} f\left( x \right){\rm{d}}x} \right]}^2}} \\ \;\; < \frac{{\rm{\pi }}}{8}{\left[{\zeta \left( {\frac{3}{2}, \frac{3}{8}} \right)-\zeta \left( {\frac{3}{2}, \frac{7}{8}} \right)} \right]^2}\left\| f \right\|_{2, \varphi }^2. \end{array}$ (19)

这里的常数因子$\frac{{\sqrt {2{\rm{\pi }}} }}{4}\left[{\zeta \left( {\frac{3}{2}, \frac{3}{8}} \right)-\zeta \left( {\frac{3}{2}, \frac{7}{8}} \right)} \right], \frac{{\rm{\pi }}}{8}{\left[{\zeta \left( {\frac{3}{2}, \frac{3}{8}} \right)-\zeta \left( {\frac{3}{2}, \frac{7}{8}} \right)} \right]^2}$分别是式(18), (19)的最佳值.

如取α=1, β=-12, p=q=2, 计算式(7)有$C\left( {1, \;\;-\;\;\frac{1}{2}} \right) = \frac{{\Psi \left( {1, \frac{1}{8}} \right)-\Psi \left( {1, \frac{5}{8}} \right)}}{2} = 30.993\;475\;{13^ + }$, 这时$\varphi \left( x \right) = \frac{1}{{\sqrt x }}$, 设$f, g \in L_\varphi ^2\left( {0, \infty } \right), {\left\| f \right\|_{2, \varphi }}, {\left\| g \right\|_{2, \varphi }} > 0$, 则有下列等价式:

$\begin{array}{l} \int_0^\infty {\int_0^\infty {\frac{{\left| {\ln \frac{x}{y}} \right|}}{{\left( {x + y} \right)\sqrt {\min \left\{ {x, y} \right\}} }}} f\left( x \right)g\left( y \right){\rm{d}}x{\rm{d}}y} \\ < \frac{{\Psi \left( {1, \frac{1}{8}} \right)-\Psi \left( {1, \frac{5}{8}} \right)}}{2}{\left\| f \right\|_{2, \varphi }}{\left\| g \right\|_{2, \varphi }}, \end{array}$ (20)
$\begin{array}{l} \int_0^\infty {\sqrt y {\rm{d}}y{{\left[{\int\limits_0^\infty {\frac{{\left| {\ln \frac{x}{y}} \right|}}{{\left( {x + y} \right)\sqrt {\min \left\{ {x, y} \right\}} }}f\left( x \right){\rm{d}}x} } \right]}^2}} \\ \;\; < \frac{1}{4}{\left[{\Psi \left( {1, \frac{1}{8}} \right)-\Psi \left( {1, \frac{5}{8}} \right)} \right]^2}\left\| f \right\|_{2, \varphi }^2. \end{array}$ (21)

这里的常数因子$\frac{{\Psi \left( {1, \frac{1}{8}} \right)- \Psi \left( {1, \frac{5}{8}} \right)}}{2}, \frac{1}{4}{\left[{\Psi \left( {1, \frac{1}{8}} \right)-\Psi \left( {1, \frac{5}{8}} \right)} \right]^2}$分别是式(20), (21)的最佳值.

参考文献
[1] Weyl H. Singulare integral Gleichungenn Mit Besonderer Berucksichtigung Des Fourierschen integral theorems[M]. Gottingen: Inaugeral-Dissertation, 1908 .
[2] Hardy G H. Note on a theorem of Hilbert concerning series of positive term[J]. Proc London Math Soc , 1925, 23 :45–46.
[3] 杨必成. 一个具有混合核的Hilbert型积分不等式及其推广[J]. 四川师范大学学报:自然科学版 , 2006, 31 (3) :281–284.
[4] 刘琼, 杨必成. 一个多参数混合核的Hilbert型积分不等式及其应用[J]. 浙江大学学报:理学版 , 2012, 39 (2) :135–141.
[5] Liu Q, Chen D. A Hilbert-type intetral inequality with a hybrid kernel and its applications[J]. Colloquium Mathematicum , 2016, 143 (2) :193–207.
[6] 杨必成. 参量化Hilbert型不等式研究综述[J]. 数学进展 , 2009, 38 (3) :257–258.
[7] 杨必成. 关于一个非齐次核的Hilbert型积分不等式[J]. 上海大学学报:自然科学版 , 2011, 17 (5) :603–606.
[8] 刘琼, 龙顺潮. 一个核为双曲正割函数的Hilbert型积分不等式[J]. 浙江大学学报:理学版 , 2013, 40 (3) :255–259.
[9] 刘琼, 龙顺潮. 一个核为双曲余割函数的Hilbert型积分不等式[J]. 数学学报:中文版 , 2013, 56 (1) :97–104.
[10] Liu Q. Two new integral inequalities and a relationship among operator norms[J]. Journal of University of Chinese Academy of Sciences , 2015, 32 (3) :398–403.
[11] 苏变萍, 陈东立. 复变函数与积分变换[M]. 北京: 高等教育出版社, 2003 .
[12] 匡继昌. 实分析引论[M]. 长沙: 湖南教育出版社, 1996 .
[13] 匡继昌. 常用不等式[M].3版. 济南: 山东科学技术出版社, 2004 .