中国科学院大学学报  2016, Vol. 33 Issue (4): 468-476   PDF    
A model for lepton mass spectra and flavor mixing under S3 flavor symmetry
Deshan YANG, Xinghua YANG     
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: We propose a simple model for the lepton mass spectra and flavor mixing by combining the S3 flavor symmetry with type-Ⅱ seesaw mechanism.To obtain the observed mass spectra and mixing patterns of lepton sector, the explicit flavor symmetry breaking chain S3Z2→Ø is considered.It is shown that this ansatz can naturally allow the three neutrino mixing angles (i.e.,θ12,θ23, and θ13) to be in good agreement with the current experiment data and the maximal Dirac CP-violating phase δ≈270° indicated by recent experiments.
Key words: lepton mass spectra     lepton flavor mixing     flavor symmetry     seesaw mechanism    
基于S3味对称性的轻子质量谱和味混合模式模型
杨德山, 杨兴华     
中国科学院大学物理科学学院, 北京 100049
摘要: 为解释轻子质量谱和中微子味混合模式,从味对称性出发,构造一个简单的基于S3味对称性的type-Ⅱ跷跷板模型。在模型中,假设轻子质量矩阵具有S3味对称性,并且该对称性可经由破缺链S3Z2→Ø显示破缺。计算得到与最新实验数据符合较好的中微子振荡混合角(θ12θ23θ13)和最大的Dirac CP破坏相角δ≈270°。
关键词: 轻子质量谱     轻子味混合     味对称性     跷跷板机制    

The solar[1-7],atmospheric[8],reactor[9-12],and accelerator[13-16]neutrino oscillation experiments have provided us with compelling evidences that neutrinos are massive and lepton flavors are mixed. What is of great interest to us is how to explain the observed lepton mass spectra and flavor mixing patterns. To account for the neutrino oscillation parameters (i.e.,Δm2,ΔmA2,θ,θA,θ13), flavor symmetry has currently become a very popular approach to build models[17-18]. Recently a number of authors have paid attention to the discrete flavor symmetries,among which the S3 symmetry is the simplest one[19-21]. A salient feature of the S3 symmetry is that it requires the mass matrices of charged-leptons (Ml) and neutrinos (Mν) to have a universal form Mx=ξxI+ζxD (for x=l,ν),where

$I=\left( \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right),D=\left( \begin{matrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{matrix} \right),$ (1)

stand for the identity and “democracy”[22-24] matrices,respectively.

A great variety of neutrino mass models have been used to explain the smallness of neutrino masses,in which the see-saw mechanism is the most natural one[25-33]. Here,we propose a type-Ⅱ seesaw model by combining the S3 flavor symmetry. In order to obtain the observed mass spectra and mixing patterns of lepton sector,we employ the explicit flavor symmetry breaking chain S3Z2→ for both the charged-lepton and the neutrino matrices,in which Z2 is a subgroup of S3 and it has only a trivial subgroup[21].

1 Lepton mass matrices and their construction

In type-Ⅱ seesaw mechanism,where we extend the standard electroweak model by introducing one Higgs triplet Δ,the gauge-invariant Lagrangian relevant to lepton masses reads as follows:

$\begin{align} & -{{L}_{lepton}}={{{\bar{L}}}_{L}}{{Y}_{l}}H{{E}_{R}}+\frac{1}{2}{{{\bar{L}}}_{L}}{{Y}_{\Delta }}\Delta i{{\sigma }_{2}}L_{L}^{c}- \\ & {{\lambda }_{\Delta }}{{M}_{\Delta }}{{H}^{T}}i{{\sigma }_{2}}\Delta H+h.c., \\ \end{align}$ (2)

where LL is the left-handed doublet of leptons and ER is the right-handed singlet of charged-leptons,H and Δ represent the Higgs doublet and triplet respectively. When the electroweak symmetry is broken spontaneously,all of the leptons become massive,and the corresponding mass terms for charged-leptons and neutrinos are

$-{{L}_{mass}}=\overline{{{E}_{L}}}{{M}_{l}}{{E}_{R}}+\frac{1}{2}\overline{{{\nu }_{L}}}{{M}_{\nu }}\nu _{L}^{c}+h.c.,$ (3)

where Ml=YlH〉 with 〈H〉≈174GeV and Mν=YΔΔ〉 with 〈Δ〉=2λΔH2/MΔ stand for the charged-lepton mass matrix and the Majorana neutrino mass matrix,respectively.

The simplest Non-Abelian discrete symmetry S3,a permutation group of three objects,contains six elements,which can be categorized into three conjugacy classes C0={S(123)},C1={S(231),S(312)} and C2={S(213),S(132),S(321)}. Explicitly,the three-dimensional representations of the S3 group elements are

$\begin{align} & {{S}^{(123)}}=\left( \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right),{{S}^{(213)}}=\left( \begin{matrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right), \\ & {{S}^{(132)}}=\left( \begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ \end{matrix} \right),{{S}^{(321)}}=\left( \begin{matrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{matrix} \right), \\ & {{S}^{(312)}}=\left( \begin{matrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{matrix} \right),{{S}^{(231)}}=\left( \begin{matrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ \end{matrix} \right). \\ \end{align}$ (4)

Taking advantage of the S3 flavor symmetry and its explicit symmetry-breaking scheme,the lepton mass matrices can be decomposed into a symmetry-limit term Mx(0) and a symmetry-breaking perturbation term ΔMx (for x=l,ν):

${{M}_{l}}=M_{l}^{(0)}+\Delta {{M}_{l}},\text{ }{{M}_{\nu }}=M_{v}^{(0)}+\Delta {{M}_{\nu }}.$ (5)

In the S3 symmetry-limit,we may easily find that the Lagrangian in Eq. (2) is invariant under the transformation LLS(ijk)LL and ERS(ijk)ER with S(ijk) (for (ijk)=(123),(213),(132),(321),(312),(231)) being the group elements of S3,if the following commutation conditions [x,S(ijk)]=0 (for x=l,Δ) are satisfied. It implies that the mass matrices Mx(0) (for x=l,ν) have the same commutation conditions with S(ijk) (i.e.,[Mx(0),S(ijk)]=0) and therefore take a general form

$\begin{align} & M_{l}^{(0)}=\frac{{{c}_{l}}}{3}\left[ \left( \begin{matrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{matrix} \right)+{{r}_{l}}\left( \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right) \right], \\ & M_{v}^{(0)}={{c}_{v}}\left[ \left( \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right)+{{r}_{v}}\left( \begin{matrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{matrix} \right) \right], \\ \end{align}$ (6)

where cl and cν measure the mass scales of charged-leptons and neutrinos respectively,rx is real,and |rx|$\ll $1 holds (for x=l and ν). Moreover,we can see that both of the mass matrices can be diagonalized by the same orthogonal matrix V0 as following,

$\begin{align} & V_{0}^{T}M_{v}^{(0)}{{V}_{0}}=\frac{{{c}_{l}}}{3}\left( \begin{matrix} {{r}_{l}} & 0 & 0 \\ 0 & {{r}_{l}} & 0 \\ 0 & 0 & 3+{{r}_{l}} \\ \end{matrix} \right), \\ & V_{0}^{T}M_{v}^{(0)}{{V}_{0}}={{c}_{v}}\left( \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1+3{{r}_{v}} \\ \end{matrix} \right), \\ \end{align}$ (7)

where

${{V}_{0}}=\frac{1}{\sqrt{6}}\left( \begin{matrix} \sqrt{3} & 1 & \sqrt{2} \\ -\sqrt{3} & 1 & \sqrt{2} \\ 0 & -2 & \sqrt{2} \\ \end{matrix} \right).$ (8)

It is in fair agreement with the observed mass hierarchies of charged-leptons (i.e.,mτ$\gg $mμ$\gg $me) and a nearly degenerate mass spectrum of neutrinos in the S3 symmetry limit. However,in order to obtain more realistic mass spectra of leptons and their flavor mixing patterns,the symmetry-breaking perturbation terms ΔMx are also necessary.

Since the S3 symmetry has three conjugacy classes C0={S(123)},C1={S(231),S(312)}, and C2={S(213),S(132),S(321)}. Then we can easily show the three subgroups of S3 group

$\begin{align} & Z_{2}^{(12)}=\left\{ {{S}^{(123)}},{{S}^{(213)}} \right\}, \\ & Z_{2}^{(23)}=\left\{ {{S}^{(123)}},{{S}^{(132)}} \right\}, \\ & Z_{2}^{(31)}=\left\{ {{S}^{(123)}},{{S}^{(321)}} \right\}. \\ \end{align}$ (9)

Depending on the line that the S3 symmetry can be explicitly broken to its subgroups,we suggest to construct the perturbation terms as

$\begin{align} & \Delta {{M}_{l}}=\Delta M_{l}^{(1)}+\Delta M_{l}^{(2)}, \\ & \Delta {{M}_{v}}=\Delta M_{v}^{(1)}+\Delta M_{v}^{(2)}. \\ \end{align}$ (10)

We propose a simple perturbation ansatz to break the S3 symmetry,in which the flavor symmetry is explicitly broken down via the chain

${{S}_{3}}\xrightarrow{\Delta M_{l,v}^{(1)}}{{Z}_{2}}\xrightarrow{\Delta M_{l,v}^{(2)}}\varnothing ,$ (11)

in both the charged-lepton sector and the neutrino sector.

We take Z2(23) which is also called the μ-τ symmetry as an example. The first-order perturbation term ΔMl,ν(1) in the lepton mass matrix can be obtained by solving the equations [ΔMl,ν(1),S(123)]=0 and [ΔMl,ν(1),S(132)]=0. With no loss of generality,we arrive at

$\begin{align} & \Delta M_{l}^{(1)}=\frac{{{c}_{l}}}{3}\left( \begin{matrix} {{\delta }_{l}} & 0 & 0 \\ 0 & 0 & {{\delta }_{l}} \\ 0 & {{\delta }_{l}} & 0 \\ \end{matrix} \right), \\ & \Delta M_{v}^{(1)}={{c}_{v}}\left( \begin{matrix} {{\delta }_{v}} & 0 & 0 \\ 0 & 0 & {{\delta }_{v}} \\ 0 & {{\delta }_{v}} & 0 \\ \end{matrix} \right). \\ \end{align}$ (12)

For the sake of simplicity,the second-order perturbation terms in the charged-lepton and the neutrino mass matrices can be assumed to take the diagonal forms

$\begin{align} & \Delta M_{l}^{(2)}=\frac{{{c}_{l}}}{3}\left( \begin{matrix} -i{{\in }_{l}} & 0 & 0 \\ 0 & +i{{\in }_{l}} & 0 \\ 0 & 0 & +{{\varepsilon }_{l}} \\ \end{matrix} \right), \\ & \Delta M_{v}^{(2)}={{c}_{v}}\left( \begin{matrix} -i{{\in }_{v}} & 0 & 0 \\ 0 & +i{{\in }_{v}} & 0 \\ 0 & 0 & +{{\varepsilon }_{v}} \\ \end{matrix} \right), \\ \end{align}$ (13)

where cx>0,δx,|x|$\ll $|εx|<1 (for x=l,ν). Note that the second-order symmetry-breaking perturbation term ΔMl(2) is complex. We expect the CP violation in the charged-lepton sector.

At this moment,we have constructed the lepton mass matrices with a symmetry-limit term Ml,ν(0) and a symmetry-breaking perturbation term ΔMl,ν.

2 Lepton mass spectra and flavor mixing matrix

Now the question is how to diagonalize the lepton mass matrices Ml,ν, in order to obtain the lepton mass spectra and the lepton flavor mixing matrix which arises from the mismatch between the diagonalization of Ml and Mν.

Let us first consider the charged-lepton sector. As can be seen above,the mass matrix of charged-lepton can be written as

$\begin{align} & {{M}_{l}}=M_{l}^{(0)}+\Delta {{M}_{l}}=\frac{{{c}_{l}}}{3}\left[ \left( \begin{matrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{matrix} \right)+{{r}_{l}}\left( \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right) \right]+ \\ & \frac{{{c}_{l}}}{3}\left( \begin{matrix} {{\delta }_{l}} & 0 & 0 \\ 0 & 0 & {{\delta }_{l}} \\ 0 & {{\delta }_{l}} & 0 \\ \end{matrix} \right)+\frac{{{c}_{l}}}{3}\left( \begin{matrix} -i{{\in }_{l}} & 0 & 0 \\ 0 & +i{{\in }_{l}} & 0 \\ 0 & 0 & +{{\varepsilon }_{l}} \\ \end{matrix} \right), \\ \end{align}$ (14)

where we set cl>0 and the dimensionless parameters obey the hierarchy rll,|l|$\ll $l|<1.

The charged-lepton mass matrix Ml is a complex symmetric matrix,and therefore can be diagonalized by a unitary matrix Vl via VlMlVl*=Diag{me,mμ,mτ} generally,where mα (for α=e,μ,τ) stand for charged-lepton masses. To diagonalize Ml, we transform it into the so-called hierarchy basis first,

$\begin{align} & M_{l}^{'}\equiv V_{0}^{T}{{M}_{l}}{{V}_{0}}= \\ & {{c}_{l}}\left( \begin{matrix} \frac{{{\delta }_{l}}}{6}+\frac{{{r}_{l}}}{3} & \frac{{{\delta }_{l}}}{2\sqrt{3}}-\frac{i{{\in }_{l}}}{3\sqrt{3}} & -\frac{1}{3}\sqrt{\frac{2}{3}}{{\in }_{l}} \\ \frac{{{\delta }_{l}}}{2\sqrt{3}}-\frac{i{{\in }_{l}}}{3\sqrt{3}} & -\frac{{{\delta }_{l}}}{6}+\frac{2{{\varepsilon }_{l}}}{9}+\frac{{{r}_{l}}}{3} & -\frac{\sqrt{2}{{\varepsilon }_{l}}}{9} \\ -\frac{1}{3}i\sqrt{\frac{2}{3}}{{\in }_{l}} & -\frac{\sqrt{2}{{\varepsilon }_{l}}}{9} & 1+\frac{{{\delta }_{l}}}{3}+\frac{{{\varepsilon }_{l}}}{9}+\frac{{{r}_{l}}}{3} \\ \end{matrix} \right), \\ \end{align}$ (15)

where V0 has been given in (8).

The 3-dimensional almost-diagonal matrix Ml can be diagonalized exactly. However,we will use perturbative method to diagonalize it instead,since we are more interested in how the perturbation terms in mass matrix behave in the diagonalization. The fact that Ml′ contains several small parameters,which are hierarchical,implies that we need to do higher order perturbation than commonly-used first order approximation to reach the diagonalization consistently. In this paper,we use Brillouin-Wigner (BW) perturbation theory to diagonalize the mass matrix. The tedious analytic perturbation formulae are listed in Appendix A.

After diagonalizing the above matrix,we can get the three charged-lepton masses in terms of parameters in oringial Ml

$\begin{align} & {{m}_{\tau }}\approx {{c}_{l}}\left( 1+\frac{{{\varepsilon }_{l}}}{9}+\frac{{{r}_{l}}}{3}+\frac{{{\delta }_{l}}}{3} \right), \\ & {{m}_{\mu }}\approx {{c}_{l}}\left( \frac{2{{\varepsilon }_{l}}}{9}+\frac{{{r}_{l}}}{3}-\frac{{{\delta }_{l}}}{6} \right), \\ & {{m}_{e}}\approx {{c}_{l}}\left| \frac{{{r}_{l}}}{3}+\frac{{{\delta }_{l}}}{6}+\frac{\in _{l}^{2}}{6{{\varepsilon }_{l}}}-\frac{3\delta _{l}^{2}}{8{{\varepsilon }_{l}}} \right|. \\ \end{align}$ (16)

Defining m0=cl(2rl+δl)/6, we can re-express the small parameters εll, and l by

$\begin{align} & {{\varepsilon }_{l}}\approx \frac{9}{2}\frac{{{m}_{\mu }}-{{m}_{0}}}{{{m}_{\tau }}-{{m}_{0}}}, \\ & \frac{\in _{l}^{2}}{\varepsilon _{l}^{2}}-\frac{9\delta _{l}^{2}}{4\varepsilon _{l}^{2}}\approx \frac{4}{3}\frac{\left| {{m}_{e}}-\left| {{m}_{0}} \right| \right|}{{{m}_{\mu }}-{{m}_{0}}}. \\ \end{align}$ (17)

Through a little perturbation calculation,the unitary matrix Vl which is used to diagonalize the charged-lepton mass matrix Ml can be obtained as

$\begin{align} & {{V}_{l}}\approx {{V}_{0}}-\frac{i}{\sqrt{6}}{{x}_{l}}\left( \begin{matrix} 1 & \sqrt{3} & 0 \\ 1 & -\sqrt{3} & 0 \\ -2 & 0 & 0 \\ \end{matrix} \right)- \\ & \frac{3{{\delta }_{l}}}{2{{\in }_{l}}}\frac{{{x}_{l}}}{\sqrt{6}}\left( \begin{matrix} 1 & \sqrt{3} & 0 \\ 1 & -\sqrt{3} & 0 \\ -2 & 0 & 0 \\ \end{matrix} \right)+\frac{{{y}_{l}}}{2\sqrt{3}}\left( \begin{matrix} 0 & \sqrt{2} & -1 \\ 0 & \sqrt{2} & -1 \\ 0 & \sqrt{2} & 2 \\ \end{matrix} \right), \\ \end{align}$ (18)

where we define xl$\sqrt{\left| {{m}_{e}}-\left| {{m}_{0}} \right| \right|}/\sqrt{\left( {{m}_{\mu }}-{{m}_{0}} \right)}$ and yl≡(mμ-m0)/(mτ-m0).

In the case of the neutrino sector,the mass matrix

$\begin{align} & {{M}_{v}}=M_{v}^{\left( 0 \right)}+\Delta {{M}_{v}}={{c}_{v}}\left[ \left( \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right)+{{r}_{v}}\left( \begin{matrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{matrix} \right) \right]+ \\ & {{c}_{v}}\left( \begin{matrix} {{\delta }_{v}} & 0 & 0 \\ 0 & 0 & {{\delta }_{v}} \\ 0 & {{\delta }_{v}} & 0 \\ \end{matrix} \right)+{{c}_{v}}\left( \begin{matrix} -{{\in }_{v}} & 0 & 0 \\ 0 & +{{\in }_{v}} & 0 \\ 0 & 0 & +{{\varepsilon }_{v}} \\ \end{matrix} \right), \\ \end{align}$ (19)

in which cν>0,rνν,|∈ν|$\ll $|εν|<1, can be diagonalized by the unitary matrix Vν via VνMνVν*=Diag{m1,m2,m3}. Approximately,Vν[20-21, 34] can be found to be

$\frac{1}{{{\varepsilon }_{\nu }}}\left( \begin{matrix} {{\varepsilon }_{\nu }}{{c}_{\theta }} & {{\varepsilon }_{\nu }}{{s}_{\theta }} & {{r}_{\nu }} \\ -{{\varepsilon }_{\nu }}{{s}_{\theta }} & {{\varepsilon }_{\nu }}{{c}_{\theta }} & {{r}_{\nu }}+{{\delta }_{\nu }} \\ ({{r}_{\nu }}+{{\delta }_{\nu }}){{s}_{\theta }}-{{r}_{\nu }}{{c}_{\theta }} & -({{r}_{\nu }}+{{\delta }_{\nu }}){{c}_{\theta }}-{{r}_{\nu }}{{s}_{\theta }} & {{\varepsilon }_{\nu }} \\ \end{matrix} \right),$ (20)

where cθ≡cosθ and sθ≡sinθ with tan2θ≡2rν/(2∈νν).

Taking advantage of the condition that m1<m2<m3 (the so-called normal ordering),we can easily obtain the three neutrino mass eigenvalues

$\begin{align} & {{m}_{3}}\approx {{c}_{\nu }}(1+{{r}_{\nu }}+{{\varepsilon }_{\nu }}), \\ & {{m}_{2}}\approx {{c}_{\nu }}\left( 1+{{r}_{\nu }}+{{\delta }_{\nu }}/2+\sqrt{{{\left( {{\in }_{\nu }}-{{\delta }_{\nu }}/2 \right)}^{2}}+r_{v}^{2}} \right), \\ & {{m}_{1}}\approx {{c}_{\nu }}\left( 1+{{r}_{\nu }}+{{\delta }_{\nu }}/2-\sqrt{{{\left( {{\in }_{\nu }}-{{\delta }_{\nu }}/2 \right)}^{2}}+r_{v}^{2}} \right). \\ \end{align}$ (21)

As indicated by (21),we can simply obtain that the neutrino masses are nearly degenerate,and the neutrino mass-square differences are

$\begin{align} & \Delta m_{31}^{2}\approx 2c_{\nu }^{2}{{\varepsilon }_{\nu }}, \\ & \Delta m_{21}^{2}\approx 2c_{\nu }^{2}\sqrt{{{\left( 2{{\in }_{v}}-{{\delta }_{v}} \right)}^{2}}+4r_{v}^{2}}. \\ \end{align}$ (22)

From (18) and (20),we can derive the flavor mixing matrix VMNSVlVν[35]

$\begin{align} & {{V}_{MNS}}\approx \frac{1}{\sqrt{6}}\left( \begin{matrix} \sqrt{3}\left( {{c}_{\theta }}+{{s}_{\theta }} \right) & -\sqrt{3}\left( {{c}_{\theta }}-{{s}_{\theta }} \right) & 0 \\ \left( {{c}_{\theta }}-{{s}_{\theta }} \right) & \left( {{c}_{\theta }}+{{s}_{\theta }} \right) & -2 \\ \sqrt{2}\left( {{c}_{\theta }}-{{s}_{\theta }} \right) & \sqrt{2}\left( {{c}_{\theta }}+{{s}_{\theta }} \right) & \sqrt{2} \\ \end{matrix} \right)+\frac{1}{2\sqrt{3}}{{y}_{l}}\left( \begin{matrix} 0 & 0 & 0 \\ \sqrt{2}\left( {{c}_{\theta }}-{{s}_{\theta }} \right) & \sqrt{2}\left( {{c}_{\theta }}+{{s}_{\theta }} \right) & \sqrt{2} \\ -\left( {{c}_{\theta }}-{{s}_{\theta }} \right) & -\left( {{c}_{\theta }}+{{s}_{\theta }} \right) & 2 \\ \end{matrix} \right)+ \\ & \frac{i}{\sqrt{6}}{{x}_{l}}\left( \begin{matrix} \left( {{c}_{\theta }}-{{s}_{\theta }} \right) & \left( {{c}_{\theta }}+{{s}_{\theta }} \right) & -2 \\ \sqrt{3}\left( {{c}_{\theta }}+{{s}_{\theta }} \right) & -\sqrt{3}\left( {{c}_{\theta }}-{{s}_{\theta }} \right) & 0 \\ 0 & 0 & 0 \\ \end{matrix} \right)-\frac{3{{\delta }_{l}}}{2{{\in }_{l}}}\frac{1}{\sqrt{6}}{{x}_{l}}\left( \begin{matrix} \left( {{c}_{\theta }}-{{s}_{\theta }} \right) & \left( {{c}_{\theta }}+{{s}_{\theta }} \right) & -2 \\ -\sqrt{3}\left( {{c}_{\theta }}+{{s}_{\theta }} \right) & \left( {{c}_{\theta }}-{{s}_{\theta }} \right) & 0 \\ 0 & 0 & 0 \\ \end{matrix} \right)+ \\ & \frac{1}{\sqrt{6}}\frac{{{r}_{v}}}{{{\varepsilon }_{v}}}\left( \begin{matrix} 0 & 0 & 0 \\ 2\left( {{c}_{\theta }}-{{s}_{\theta }} \right) & 2\left( {{c}_{\theta }}+{{s}_{\theta }} \right) & 2 \\ -\sqrt{2}\left( {{c}_{\theta }}-{{s}_{\theta }} \right) & -\sqrt{2}\left( {{c}_{\theta }}+{{s}_{\theta }} \right) & 2\sqrt{2} \\ \end{matrix} \right)+\frac{1}{\sqrt{6}}\frac{{{\delta }_{v}}}{{{\varepsilon }_{v}}}\left( \begin{matrix} 0 & 0 & -\sqrt{3} \\ -2{{s}_{\theta }} & 2{{c}_{\theta }} & 1 \\ \sqrt{2}{{s}_{\theta }} & -\sqrt{2}{{c}_{\theta }} & \sqrt{2} \\ \end{matrix} \right), \\ \end{align}$ (23)

where xl≡|$\sqrt{\left| {{m}_{e}}-\left| {{m}_{0}} \right| \right|}/\sqrt{\left( {{m}_{\mu }}-{{m}_{0}} \right)}$ and yl≡(mμ-m0)/(mτ-m0) have been defined,and we have discarded the high-order corrections to the elements of VMNS. Comparing this result with the standard parametrization of neutrino mixing matrix U[36] which is

$U=\left( \begin{matrix} {{c}_{12}}{{c}_{13}} & {{s}_{12}}{{c}_{13}} & {{s}_{13}}{{e}^{-i\delta }} \\ -{{s}_{12}}{{c}_{23}}-{{c}_{12}}{{s}_{23}}{{s}_{13}}{{e}^{i\delta }} & {{c}_{12}}{{c}_{23}}-{{s}_{12}}{{s}_{23}}{{s}_{13}}{{e}^{i\delta }} & {{s}_{23}}{{c}_{13}} \\ {{s}_{12}}{{s}_{23}}-{{c}_{12}}{{c}_{23}}{{s}_{13}}{{e}^{i\delta }} & {{c}_{12}}{{s}_{23}}-{{s}_{12}}{{c}_{23}}{{s}_{13}}{{e}^{i\delta }} & {{c}_{23}}{{c}_{13}} \\ \end{matrix} \right)\times diag(1,{{e}^{i\frac{\alpha 21}{2}}},{{e}^{i\frac{\alpha 31}{2}}}),$ (24)

(cij=cosθij,sij=sinθij, the angles θij=[0,π/2],δ=[0,2π] is the Dirac CP violating phase and α21,α31 are two Majorana CP violating phases),we can immediately get the three neutrino mixing angles

$sin{{\theta }_{12}}\approx \left| {{V}_{e2}} \right|\approx \approx \frac{1}{\sqrt{2}}\left| cos\theta -sin\theta \right|,$ (25)
$\begin{align} & sin{{\theta }_{23}}\approx \left| {{V}_{\mu 3}} \right| \\ & \approx \frac{2}{\sqrt{6}}\left( 1-\frac{1}{2}{{y}_{l}}-\frac{{{r}_{v}}}{{{\varepsilon }_{v}}}-\frac{1}{2}\frac{{{\delta }_{v}}}{{{\varepsilon }_{v}}} \right), \\ \end{align}$ (26)
$\begin{align} & sin{{\theta }_{13}}\approx \left| {{V}_{e3}} \right| \\ & \approx \left| -i\frac{2}{\sqrt{6}}{{x}_{l}}+\frac{3}{\sqrt{6}}{{x}_{l}}\frac{{{\delta }_{l}}}{{{\in }_{l}}}-\frac{1}{\sqrt{2}}\frac{{{\delta }_{v}}}{{{\varepsilon }_{v}}} \right|, \\ \end{align}$ (27)

and the Jarlskog invariant of CP violation[37-38]

$\begin{align} & J=\frac{1}{8}cos{{\theta }_{13}}sin2{{\theta }_{12}}sin2{{\theta }_{23}}sin2{{\theta }_{13}}sin\delta \\ & =Im[{{V}_{\mu 2}}{{V}_{\tau 3}}V_{\mu 3}^{*}V_{\tau 2}^{*}]. \\ \end{align}$ (28)

It is worth emphasizing that there are ten real parameters in our model,i.e.,five real parameters in the charged-lepton sector (i.e.,cl,rl,δl,∈l, and εl), and other five real parameters in the neutrino sector (i.e.,cν,rνν,∈ν, and εν). All of them can be determined by the ten relevant observable quantities,in which there are three charged-lepton masses (i.e.,me,mμ,mτ), three neutrino masses (i.e.,m1,m2,m3), three neutrino mixing angles (i.e.,θ12,θ23,θ13) and one Dirac CP-violating phase δ. Some detailed discussions are given below.

3 Oscillation parameters: a detailed numerical analysis

For convenience,all the best-fit values (at the level of ~1.0σ for normal ordering) for three neutrino oscillation parameters[39] and the values of charged-lepton masses at the electroweak scale[40] used in our numerical analysis are listed in Table 1.

Table 1 The best-fit values (at the level of ~1.0σ for Normal Ordering) of three neutrino oscillation parameters[39]

①It is important to stress that the values we use here are the latest global fit to three neutrino oscillation parameters,and we just make some calculations that are not very strict in order to test the correctness of our model. The recent results from T2K (Salzgeber M R,[T2K Collaboration],Antineutrino oscillations with T2K,talk given at European Physical Society HEP conference,Vienna,22-29 July 2015) and NOνA (Patterson R,[NOνA Collaboration],First oscillation results from NOVA,talk given at the Joint Experimental-Theoretical Physics Seminar,Fermilab,6 August 2015) experiments which indicate at the 2σ level that θ23>45° and δ≈270° of a normal neutrino mass ordering imply that the value of θ23 favors the second octant and the CP violation effects in neutrino oscillations are relatively large.

while

$\begin{align} & {{m}_{e}}\approx 0.4866MeV,{{m}_{\mu }}\approx 102.718MeV, \\ & {{m}_{\tau }}\approx 1746.17MeV \\ \end{align}$

Now,let us illustrate how to calculate all the parameters in our model.

First of all,from (25),we can easily obtain θ12θ-$\frac{\pi }{4}$ (then θ≈78.48°) when inputting the best-fit value θ12≈33.48°[39]. One may estimate the magnitude of 2rν/(2∈ν-δν) with the help of (25) and the condition tan2θ=2rν/(2∈ν-δν) defined above. The result is

$\frac{2{{r}_{\nu }}}{2{{\in }_{v}}-{{\delta }_{\nu }}}=-cot2{{\theta }_{12}}\approx -0.425_{-0.031}^{+0.032},$ (29)

where the best-fit value θ12≈33.48° has been input. With the help of (22),from which rννcθsθΔm2121/Δm3131 can be obtained,the ratio rνν can also be determined

$\frac{{{r}_{\nu }}}{{{\varepsilon }_{\nu }}}\approx (5.97_{-0.41}^{+0.43})\times {{10}^{-3}},$ (30)

where Δm2121≈7.50×10-5eV2 and Δm3131≈2.457×10-3eV2[39].

Because of the strong mass hierarchy of charged-leptons mτ$\gg $mμ$\gg $me and the magnitude of m0 is about the same as that of me, we can safely neglect the m0-induced correction in (26). By inputting mμ≈102.718 MeV and mτ≈1746.17 MeV at the electroweak scale[40] and the best-fit value of θ23≈42.3°[39],we obtain

$\frac{{{\delta }_{v}}}{{{\varepsilon }_{v}}}\approx 0.281_{-0.051}^{+0.095}.$ (31)

Taking advantage of the recent results from T2K and NOνA experiments which indicate a maximal CP-violating phase δ≈270° and combining (27) with (28),we can immediately obtain

${{x}_{l}}=\frac{\sqrt{\left| {{m}_{e}}-\left| {{m}_{0}} \right| \right|}}{\sqrt{\left( {{m}_{\mu }}-{{m}_{0}} \right)}}\approx 0.182_{-0.0055}^{+0.0057},$ (32)
$\frac{{{\delta }_{l}}}{{{\varepsilon }_{l}}}\approx 0.448_{-0.08}^{+0.15}.$ (33)

Using (32) and adopting the condition m0=cl(2rl+δl)/6, we can write

$\left| 2{{r}_{l}}+{{\delta }_{l}} \right|\approx 0.0134_{-0.00071}^{+0.00073}$ (34)

where clmτ≈1746.17MeV.

According to (17),the sizes of εl and ∈l can be obtained εl≈0.265,(35)

${{\varepsilon }_{l}}\approx 0.265$ (35)
${{\in }_{l}}\approx 0.0752_{-0.011}^{+0.021}$ (36)

Making use of (33) and (34),we finally find

${{\delta }_{l}}\approx 0.034_{-0.008}^{+0.015},$ (37)
${{r}_{l}}\approx -0.0103_{-0.0040}^{+0.0075}(or~{{r}_{l}}\approx -0.0237_{-0.0040}^{+0.0075}).$ (38)

Finally,from (21),we find that the neutrino masses are nearly degenerate,which implies that the effective neutrino-mass in tritium beta decays 〈me and that in neutrinoless double-beta decays 〈mee are on the same order of the mass-scale parameter cν. With the current cosmological observations[36],we can get the strong constraint: 〈me≈〈meecνO(0.1eV). Then,the magnitude of εν can be determined by (22)

${{\varepsilon }_{\nu }}\approx \frac{\Delta m_{31}^{2}}{2c_{v}^{2}}\approx 0.123_{-0.002}^{+0.0024}$ (39)

The model parameters rν and δν can in turn be determined in terms of (30) and (31)

${{r}_{\nu }}\approx (7.34_{-0.52}^{+0.55})\times {{10}^{-4}},$ (40)
${{\delta }_{\nu }}\approx 0.0337_{-0.006}^{+0.012}.$ (41)

From (29),one can find that

${{\in }_{\nu }}\approx 0.0152_{-0.003}^{+0.006}.$ (42)

It is easy to find that all the model parameters are in good agreement with the condition that cx>0,rxx,|∈x|$\ll $x|<1 (for x=l,ν).

However,the latest results from T2K and NOνA experiments indicate that θ23 favors the second octant. At the 2σ level,the T2K data imply that θ23≈45.8°±3.2° in the case of normal neutrino mass ordering. Replacing the best-fit value of θ23 with its latest experimental result and repeating the above calculation,we obtain

$\begin{align} & {{\varepsilon }_{l}}\approx 0.265 \\ & {{\in }_{l}}\approx 0.0613_{-0.007}^{+0.007} \\ & {{\delta }_{l}}\approx 0.017_{-0.009}^{+0.009}, \\ & {{r}_{l}}\approx -0.0103_{-0.0040}^{+0.0045} \\ & (or~{{r}_{l}}\approx -0.0153_{-0.0045}^{+0.0045}), \\ & {{\varepsilon }_{\nu }}0.123_{-0.0024}^{+0.0024} \\ & {{r}_{\nu }}\approx (7.34_{-0.52}^{+0.55})\times {{10}^{-4}}, \\ & {{\delta }_{\nu }}\approx 0.0208_{-0.012}^{+0.012}. \\ & {{\in }_{\nu }}\approx 0.0087_{-0.006}^{+0.006}. \\ \end{align}$ (43)

which are also in agreement with cx>0,rxx,|∈x|$\ll $|εx|<1 (for x=l,ν). Since the parameters δl,∈l,δν, and ∈ν exist in the perturbation terms,we prefer to choose their more smaller values,that is to say,our model is more suitable for θ23>45°.

A few remarks that we would like to say in the consistency of our model are listed as follows.

1) In (28),we find that xl is essential for obtaining maximal CP-violating phase (i.e. δ≈$\frac{\pi }{2}$). It is also essential for obtaining large sinθ13 in (27).

2) Just considering the leading-order in (26),we have θ23≈54.7°. Apparently,the value of θ23 we obtain in this case is much larger than the current experimental data. In order to get correct value of θ23, we need slightly larger δν/εν. That implies that large δl/∈l, which is some what unexpected to cancel the contribution of δν/εν to sinθ13 is also necessary,that is to say,the S3Z2→ symmetry breaking chain in our ansatz is necessary.

3) In consideration of the relation between xl and δl, the parameter rl in our model is important too.

4 Summary

In this paper,we combine the permutation symmetry S3 with the type-Ⅱ seesaw mechanism to lepton mass matrices,and propose a simple perturbation ansatz to break the S3 symmetry,in which the flavor symmetry is explicitly broken down via S3Z2→ in both the charged-lepton sector and the neutrino sector. Based on this hypothesis we can see that the mass matrices of charged-leptons are strongly hierarchical while the spectrum of three neutrinos is nearly degenerate and the lepton flavor mixing matrix contains two large mixing angles. It is shown that the ansatz can naturally lead to the three neutrino mixing angles (i.e.,θ12,θ23,θ13) to be in good agreement with the current experiment data. One may also incorporate other mechanisms of neutrino mass generation,such as the type-Ⅰ seesaw mechanism and the type-(Ⅰ+Ⅱ) seesaw mechanism,with S3 flavor symmetry to explain the lepton mass spectra and flavor mixing patterns.

Finally,we have to point out that our results are all dependent on the patterns of the perturbation matrices ΔMl and ΔMν. Of course,one may also carry out some other different forms of ΔMx (for x=l,ν), which might be off-diagonal or partially off-diagonal.

We are grateful to Prof. Xing Zhizhong and Prof. Zhou Shun for helpful discussions.

References
[1] Cleveland B T, Daily T, Davis R, et al. Measurement of the solar electron neutrino flux with the homestake chlorine detector[J]. Astrophys J , 1988, 496 :505–526.
[2] Fukuda Y, Hayakawa T, Inoue K, et al. , Solar neutrino data covering solar cycle 22[J]. Phys Rev Lett , 1996, 77 :1683–1686. DOI:10.1103/PhysRevLett.77.1683
[3] Abdurashitov J N, Gavrin V N, Gorbachev V V, et al. ,Measurement of the solar neutrino capture rate with gallium metal.Ⅲ.Results for the 2002-2007 data-taking period[J]. Phys Rev C , 2009, 80 :015807. DOI:10.1103/PhysRevC.80.015807
[4] Anselmann P, Hampel W, Heusser G, et al. , Solar neutrinos observed by GALLEX at Gran Sasso[J]. Phys Lett B , 1992, 285 :376–389. DOI:10.1016/0370-2693(92)91521-A
[5] Altmann M, Balata M, Belli P, et al. , Complete results for five years of GNO solar neutrino observations[J]. Phys Lett B , 2005, 616 :174–190. DOI:10.1016/j.physletb.2005.04.068
[6] Fukuda S, Fukuda Y, Ishitsuka M, et al. , Determination of solar neutrino oscillation parameters using 1496 days of Super-Kamiokande-I data[J]. Phys Lett B , 2002, 539 :179–187. DOI:10.1016/S0370-2693(02)02090-7
[7] Ahmad Q R, Allen R C, Andersen T C, et al. , Measurement of the Rate of νe+d→p+p+e- interactions produced by B8 solar neutrinos at the Sudbury Neutrino Observatory[J]. Phys Rev Lett , 2001, 87 :071301. DOI:10.1103/PhysRevLett.87.071301
[8] Fukuda Y, Hayakawa T, Ichihara E, et al. , Evidence for oscillation of atmospheric neutrinos[J]. Phys Rev Lett , 1998, 81 :1562–1567. DOI:10.1103/PhysRevLett.81.1562
[9] Eguchi K, Enomoto S, Furuno K, et al. , First results from KamLAND: evidence for reactor antineutrino disappearance[J]. Phys Rev Lett , 2003, 90 :021802. DOI:10.1103/PhysRevLett.90.021802
[10] Abe Y, Aberle C, Akiri T, et al. , Indication of reactorve disappearance in the Double Chooz Experiment[J]. Phys Rev Lett , 2012, 108 :131801. DOI:10.1103/PhysRevLett.108.131801
[11] An F P, Bai J Z, Balantekin A B, et al. , Observation of electron-antineutrino disappearance at Daya Bay[J]. Phys Rev Lett , 2012, 108 :171803. DOI:10.1103/PhysRevLett.108.171803
[12] Ahn J K, Chebotaryov S, Choi J H, et al. , Observation of reactor electron antineutrinos disappearance in the RENO experiment[J]. Phys Rev Lett , 2012, 108 :191802. DOI:10.1103/PhysRevLett.108.191802
[13] Ahn M H, Aliu E, Andringa S, et al. , Measurement of neutrino oscillation by the K2K experiment[J]. Phys Rev D , 2006, 74 :072003. DOI:10.1103/PhysRevD.74.072003
[14] Michael D G, Adamson P, Alexopoulos T, et al. , Observation of muon neutrino disappearance with the MINOS detectors in the NuMI neutrino beam[J]. Phys Rev Lett , 2006, 97 :191801. DOI:10.1103/PhysRevLett.97.191801
[15] Abe K, Abgrall N, Ajima Y, et al. , First muon-neutrino disappearance study with an off-axis beam[J]. Phys Rev D , 2012, 85 :031103. DOI:10.1103/PhysRevD.85.031103
[16] Abe K, Hayato Y, Iida T, et al. , Evidence for the appearance of atmospheric Tau neutrinos in super-kamiokande[J]. Phys Rev Lett , 2013, 110 :181802. DOI:10.1103/PhysRevLett.110.181802
[17] Harari H, Haut H, Weyers J. Quark masses and cabibbo angles[J]. Phys Lett B , 1978, 78 :459–461. DOI:10.1016/0370-2693(78)90485-9
[18] Froggatt C D, Nielsen H B. Hierarchy of quark masses, Cabibbo angles and CP violation[J]. Nucl Phys B , 1979, 147 :277–298. DOI:10.1016/0550-3213(79)90316-X
[19] Ishimori H, Kobayashi T, Ohki H, et al. Non-Abelian discrete symmetries in particle physics[J]. Prog Theor Phys Suppl , 2010, 183 :1–163. DOI:10.1143/PTPS.183.1
[20] Xing Z Z, Yang D, Zhou S. Broken S3 flavor symmetry of leptons and quarks: mass spectra and flavor mixing patterns[J]. Phys Lett B , 2010, 690 :304–310. DOI:10.1016/j.physletb.2010.05.045
[21] Zhou S. Relatively large θ13 and nearly maximal θ23 from the approximate S3 symmetry of lepton mass matrices[J]. Phys Lett B , 2011, 704 :291–295. DOI:10.1016/j.physletb.2011.09.027
[22] Fritzsch H, Xing Z Z. Lepton mass hierarchy and neutrino oscillations[J]. Phys Lett B , 1996, 372 :265–270. DOI:10.1016/0370-2693(96)00107-4
[23] Fritzsch H, Xing Z Z. Large leptonic flavor mixing and the mass spectrum of leptons[J]. Phys Lett B , 1998, 440 :313–318. DOI:10.1016/S0370-2693(98)01106-X
[24] Fritzsch H, Xing Z Z. Maximal neutrino mixing and maximal CP violation[J]. Phys Rev D , 2000, 61 :073016. DOI:10.1103/PhysRevD.61.073016
[25] Minkowski P. μ→eγ at a rate of one out of 109 muon decays?[J]. Phys Lett B , 1977, 67 :421–428. DOI:10.1016/0370-2693(77)90435-X
[26] Mohapatra R N, Senjanovic G. Neutrino mass and spontaneous parity nonconservation[J]. Phys Rev Lett , 1980, 44 (14) :912–915. DOI:10.1103/PhysRevLett.44.912
[27] Konetschny W, Kummer W. Nonconservation of total lepton number with scalar bosons[J]. Phys Lett B , 1977, 70 :433–435. DOI:10.1016/0370-2693(77)90407-5
[28] Magg M, Wetterich C. Neutrino mass problem and gauge hierarchy[J]. Phys Lett B , 1980, 94 :61–64. DOI:10.1016/0370-2693(80)90825-4
[29] Schechter J, Valle J W F. Neutrino masses in SU(2)⊗U(1) theories[J]. Phys Rev D , 1980, 22 (9) :2227–2235. DOI:10.1103/PhysRevD.22.2227
[30] Cheng T P, Li L F. Neutrino masses, mixings, and oscillations in SU(2)×U(1) models of electroweak interactions[J]. Phys Rev D , 1980, 22 (11) :2860–2868. DOI:10.1103/PhysRevD.22.2860
[31] Lazarides G, Shafi Q, Wetterich C. Proton lifetime and fermion masses in an SO(10) model[J]. Nucl Phys B , 1981, 181 :287–300. DOI:10.1016/0550-3213(81)90354-0
[32] Mohapatra R N, Senjanovic G. Neutrino masses and mixings in gauge models with spontaneous parity violation[J]. Phys Rev D , 1981, 23 (1) :165–180. DOI:10.1103/PhysRevD.23.165
[33] Foot R, Lew H, He X G, et al. See-saw neutrino masses induced by a triplet of leptons[J]. Z Phys C , 1989, 44 :441–444. DOI:10.1007/BF01415558
[34] Fritzsch H, Xing Z Z. Democratic neutrino mixing reexamined[J]. Phys Lett B , 2004, 598 :237–242. DOI:10.1016/j.physletb.2004.07.061
[35] Maki Z, Nakagawa M, Sakata S. Remarks on the unified model of elementary particles[J]. Prog Theor Phys , 1962, 28 (5) :870–880. DOI:10.1143/PTP.28.870
[36] Olive K A, Agashe K, Amsler C, et al. Review of particle physics (particle data group)[J]. Chin Phys C , 2014, 38 (9) :090001. DOI:10.1088/1674-1137/38/9/090001
[37] Jarlskog C. Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP nonconservation[J]. Phys Rev Lett , 1985, 55 (10) :1039–1042. DOI:10.1103/PhysRevLett.55.1039
[38] Wu D D. Rephasing invariants and CP violation[J]. Phys Rev D , 1986, 33 (3) :860–863. DOI:10.1103/PhysRevD.33.860
[39] Gonzalez-Garcia M C, Maltoni M, Schwetz T. Updated fit to three neutrino mixing: status of leptonic CP violation[J]. JHEP , 2014, 1411 :052.
[40] Xing Z Z, Zhang H, Zhou S. Impacts of the Higgs mass on vacuum stability, running fermion masses, and two-body Higgs decays[J]. Phys Rev D , 2012, 86 :013013. DOI:10.1103/PhysRevD.86.013013