In 1984,Carton-Lebrun and Fosset[1] defined the weighted Hardy-Littlewood average operator Uψ
${{U}_{\psi }}f\left( x \right)=\int\limits_{0}^{1}{{}}f\left( xt \right)\psi \left( t \right)dt,$ | (1) |
where ψ:[0,1]→[0,∞) is a function. Evidently the operator Uψ deeply depends on the nonnegative function ψ. For example,when n=1 and ψ(x)=1 for x∈[0,1],the operator Hψ is just reduced to the classical Hardy operator
$Hf\left( x \right)=\frac{1}{x}\int\limits_{0}^{x}{{}}f\left( t \right)dt,$ | (2) |
for x≠0. Consequently,Uψ is the more extensive Hardy operator and sometimes is called the generalized Hardy operator.
The classical Hardy operator H is bounded on Lp(
${{\left\| HF \right\|}_{{{L}^{P}}\left( \mathbb{R} \right)}}\le \frac{p}{p-1}{{\left\| f \right\|}_{{{L}^{P}}\left( \mathbb{R} \right)}}$ |
holds,where the constant
In Ref.[2],Xiao considered the generalized Hardy operator Uψ and obtained the following theorem.
Theorem A Suppose that ψ:[0,1]→[0,∞) is a nonnegative function and p∈[1,∞]. Then the operator Uψ is bounded on Lp(
$\int\limits_{0}^{1}{{}}{{t}^{-\frac{1}{p}}}\psi \left( t \right)dt<\infty .$ | (3) |
Moreover,if the inequality (3) holds,then the operator norm of Uψ on Lp(
$\|{{U}_{\psi }}{{\|}_{{{L}^{p}}({{\mathbb{R}}^{n}})\to {{L}^{p}}({{\mathbb{R}}^{n}})}}=\int\limits_{0}^{1}{{}}{{t}^{-\frac{1}{p}}}\psi \left( t \right)dt;$ | (4) |
and Uψ:BMO(
$\int\limits_{0}^{1}{{}}\psi \left( t \right)dt<\infty .$ | (5) |
Moreover,if the inequality (5) holds,then the operator norm of Uψ on BMO(
$\|{{U}_{\psi }}{{\|}_{BMO({{\mathbb{R}}^{n}})\to BMO({{\mathbb{R}}^{n}})}}=\int\limits_{0}^{1}{{}}\psi \left( t \right)dt.$ | (6) |
Recently,Chen et al.[3] studied the operator Uψ defined as
$\begin{align} & {{U}_{\psi }}f\left( x \right)=\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}} \\ & f({{x}_{1}}{{t}_{1}},\ldots ,{{x}_{n}}{{t}_{n}})\psi ({{t}_{1}},\ldots ,{{t}_{n}})d{{t}_{1}}\ldots d{{t}_{n}} \\ \end{align}$ | (7) |
where f is defined on
Theorem B Suppose that ψ:[0,1]n→[0,∞) is a nonnegative function and p∈[1,∞]. Then,the operator Uψ is bounded on Lp(
$\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}{{\left( {{t}_{1}}\cdots {{t}_{n}} \right)}^{-\frac{1}{p}}}\psi \left( {{t}_{1}},\cdots ,{{t}_{n}} \right)dt<\infty .$ | (8) |
Moreover,if the inequality (8) holds,then the operator norm of Uψ on Lp(
${{\left\| {{U}_{\psi }} \right\|}_{{{L}^{p}}({{\mathbb{R}}^{n}})\to {{L}^{p}}({{\mathbb{R}}^{n}})}}=\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}{{\left( {{t}_{1}}\cdots {{t}_{n}} \right)}^{-\frac{1}{p}}}\psi \left( {{t}_{1}},\cdots ,{{t}_{n}} \right)dt.$ | (9) |
Campanato space εα,p(
Definition A Let -∞<α<∞ and 0<p<∞. A locally integrable function f is said to belong to Campanato space εα,p(
$\frac{1}{{{\left| Q \right|}^{\frac{\alpha }{n}}}}{{\left( \frac{1}{\left| Q \right|}{{\int }_{Q}}{{\left| f\left( x \right)-{{f}_{Q}} \right|}^{p}}dx \right)}^{1/q}}\le C.$ | (10) |
The minimal constant C is defined to be the εα,p(
In Ref.[5],Zhao et al. studied the boundedness for Uψ on the space εα,p(
Theorem C Suppose that ψ:[0,1]→[0,∞) is a nonnegative function and p∈[1,∞),-np≤α<1. Then Uψ is a bounded operator on εα,p(
$\int\limits_{0}^{1}{{}}{{t}^{\alpha }}\psi \left( t \right)dt<\infty .$ | (11) |
Moreover,
${{\left\| {{U}_{\psi }} \right\|}_{{{\varepsilon }^{\alpha ,p}}({{\mathbb{R}}^{n}})\to {{\varepsilon }^{\alpha ,p}}({{\mathbb{R}}^{n}})}}=\int\limits_{0}^{1}{{}}{{t}^{\alpha }}\psi \left( t \right)dt.$ | (12) |
Motivated by the previous studies[2-3, 5],we devoted ourselves to investigating the boundedness of the operators Uψ at the endpoint. A simple computation implies that Uψ is not bounded on BMO(
Before we put forward our main results,some useful definitions will be given. First we introduce the spaces RMO(
Definition 1.1 Let f∈Lloc($\mathbb{R}$n). We say that f∈RMO(
${{\left\| f \right\|}_{RMO\left( {{\mathbb{R}}^{n}} \right)}}:=\underset{R\in {{\mathbb{R}}^{n}}}{\mathop{\sup }}\,\frac{1}{\left| R \right|}\int_{R}{{}}\left| f\left( x \right)-{{f}_{R}} \right|dx<\infty ,$ | (13) |
where the supremum is taken over all rectangles with all the sides parallel to the axes and fR denotes the average of f over R,i.e.,fR=
Definition 1.2 Suppose that f∈Lloc(
$\frac{1}{{{\left| R \right|}^{\frac{\alpha }{n}}}}{{\left( \frac{1}{\left| R \right|}{{\int }_{R}}{{\left| f\left( x \right)-{{f}_{R}} \right|}^{p}}dx \right)}^{1/q}}\le C.$ | (14) |
holds for all rectangle R∈
Definition 1.3 Suppose that the measurable function f is defined on
${{U}_{\psi }}f\left( x \right)=\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}$ | (15) |
is called the generalized Hardy operator on the high dimensional product space,where xi∈
Obviously,‖·‖RMO forms a norm if we define RMO as the quotient space of all equivalent classes of functions whose difference is a constant. By Definition 1.1 and 1.2,it is not difficult for us to deduce that the space BMO(
Moreover,we conclude that the space Rα,p(
First,we study the boundedness of the operators Uψ defined on the space RMO as in (13) and the space Rα,p(
Theorem 2.1 Let ψ:[0,1]n→[0,+∞) be a function. Then Uψ:RMO(
$\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt<\infty .$ | (16) |
Moreover,when (16) holds,the operator norm of Uψ on RMO(
$\|{{U}_{\psi }}{{\|}_{RMO({{\mathbb{R}}^{n}})\to RMO({{\mathbb{R}}^{n}})}}=\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt.$ | (17) |
Proof In what follows,for each t=(t1,…,tn)∈
$\begin{align} & {{\left( {{U}_{\psi }}f \right)}_{R}}=\frac{1}{\left| R \right|}{{\int }_{R}}({{U}_{\psi }}f)\left( y \right)dy \\ & =\frac{1}{\left| R \right|}{{\int }_{R}}\int_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}f\left( {{t}_{1}}{{y}_{1}},\ldots ,{{t}_{n}}{{y}_{n}} \right)\psi \left( t \right)dtdy \\ & =\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\frac{1}{\left| R \right|}{{\int }_{R}}f\left( {{t}_{1}}{{y}_{1}},\ldots ,{{t}_{n}}{{y}_{n}} \right)dy\psi \left( t \right)dtdy \\ & =\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\frac{1}{\left| tR \right|}{{\int }_{tR}}f\left( {{z}_{1}},\ldots ,{{z}_{n}} \right)dy\psi \left( t \right)dt \\ & =\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}{{f}_{tR}}\psi \left( t \right)dt, \\ \end{align}$ | (18) |
where in the last equality we use the variable substitution zi=tiyi with i=1,2,…,n. We conclude from the Minkowski’s integral inequality that
$\begin{align} & \frac{1}{\left| R \right|}{{\int }_{R}}\left| \left( {{U}_{\psi }}f \right)\left( y \right)-{{\left( {{U}_{\psi }}f \right)}_{R}} \right|dy \\ & =\frac{1}{\left| R \right|}{{\int }_{R}}\left| \left( {{U}_{\psi }}f \right)\left( y \right)-\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}{{f}_{tR}}\psi \left( t \right)dt \right|dy \\ & =\frac{1}{\left| R \right|}{{\int }_{R}}\left| \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}} \right. \\ & \left. \left( f\left( {{t}_{1}}{{y}_{1}},\ldots ,{{t}_{n}}{{y}_{n}} \right)-{{f}_{tR}} \right)\psi \left( t \right)dt \right|dy\le \\ & \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\left( \frac{1}{\left| R \right|}{{\int }_{R}}\left| \left( {{t}_{1}}{{y}_{1}},\ldots ,{{t}_{n}}{{y}_{n}} \right)-{{f}_{tR}} \right|dy \right)\psi \left( t \right)dt= \\ & \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\left( \frac{1}{\left| tR \right|}{{\int }_{tR}}\left| f\left( {{z}_{1}},\ldots ,{{z}_{n}} \right)-{{f}_{tR}} \right|dz \right)\psi \left( t \right)dt \\ & \le \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt{{\left\| f \right\|}_{RMO\left( {{\mathbb{R}}^{n}} \right)}}. \\ \end{align}$ | (19) |
The inequality (19) shows that
${{\left\| {{U}_{\psi }}f \right\|}_{RMO\left( {{\mathbb{R}}^{n}} \right)}}\le \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt{{\left\| f \right\|}_{RMO\left( {{\mathbb{R}}^{n}} \right)}}.$ |
Thus we have
${{\left\| {{U}_{\psi }} \right\|}_{RMO\left( {{\mathbb{R}}^{n}} \right)}}\le \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt$ | (20) |
Conversely,if Uψ is bounded on RMO(
${{f}_{0}}\left( x \right)=\left\{ \begin{matrix} \begin{matrix} 1, & x\in \mathbb{R}_{l}^{n}, \\ \end{matrix} \\ \begin{matrix} -1, & x\in \mathbb{R}_{r}^{n}, \\ \end{matrix} \\ \end{matrix} \right.$ | (21) |
where
$\left( {{U}_{\psi }}{{f}_{0}} \right)\left( x \right)=\left\{ \begin{matrix} \begin{matrix} \int_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt, & x\in \mathbb{R}_{l}^{n}, \\ \end{matrix} \\ \begin{matrix} -\int_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt, & x\in \mathbb{R}_{r}^{n}. \\ \end{matrix} \\ \end{matrix} \right.$ | (22) |
That is to say,
$\left( {{U}_{\psi }}{{f}_{0}} \right)\left( x \right)={{f}_{0}}\left( x \right)\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt.$ | (23) |
By the definition off0,we clearly have f0∈RMO(
${{\left\| {{U}_{\psi }}{{f}_{0}} \right\|}_{RMO\left( {{\mathbb{R}}^{n}} \right)}}\le {{\left\| {{f}_{0}} \right\|}_{RMO\left( {{\mathbb{R}}^{n}} \right)}}\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt.$ | (24) |
Consequently,it follows from (24) that
${{\left\| {{U}_{\psi }} \right\|}_{RMO\left( {{\mathbb{R}}^{n}} \right)}}\ge \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt$ | (25) |
Combining (20) with (25) yields the conclusion in (17).
Using the almost same method,we obtain the following results.
Corollary 2.1 Let φ:[0,1]n→[0,+∞) be a function. Then Uφ:RMO(
$\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt<\infty .$ | (26) |
Moreover,when (25) holds,the operator norm of Uφ on RMO(
${{\left\| {{U}_{\psi }} \right\|}_{RMO\left( {{\mathbb{R}}^{{{m}_{_{1}}}}}\times \cdots \times {{\mathbb{R}}^{{{m}_{n}}}} \right)}}\to RMO\left( {{\mathbb{R}}^{{{m}_{_{1}}}}}\times \cdots \times {{\mathbb{R}}^{{{m}_{n}}}} \right)=\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt.$ | (27) |
Next we will consider the boundedness of the operators Uψ on Rα,p(
Theorem 2.2 Suppose that -
$\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\alpha /n}\psi \left( t \right)dt<\infty ,$ | (28) |
then Uψ is bounded from Rα,p(
${{\left\| {{U}_{\psi }} \right\|}_{{{R}^{\alpha ,p}}\left( {{\mathbb{R}}^{n}} \right)\to {{R}^{\alpha ,p}}\left( {{\mathbb{R}}^{n}} \right)}}\le \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\alpha /n}\psi \left( t \right)dt$ | (29) |
holds.
Proof Assume
$\int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\alpha /n}\psi \left( t \right)dt<\infty $ |
holds. Noting the equality (18),it follows from the Minkowski’s integral inequality that
$\begin{align} & \frac{1}{{{\left| R \right|}^{\frac{\alpha }{n}}}}{{\left( \frac{1}{\left| R \right|}{{\int }_{R}}{{\left| \left( {{U}_{\psi }}f \right)\left( y \right)-{{({{U}_{\psi }}f)}_{R}} \right|}^{p}}dy \right)}^{\frac{1}{p}}} \\ & =\frac{1}{{{\left| R \right|}^{\frac{\alpha }{n}}}}\left( \frac{1}{\left| R \right|} \right.{{\int }_{R}} \\ & {{\left. {{\left| ({{U}_{\psi }}f)\left( y \right)-\int_{0}^{1}{{}}\cdots \int_{0}^{1}{{}}{{f}_{tR}}\psi \left( t \right)d{{t}^{1p}} \right|}^{p}}dy \right)}^{\frac{1}{p}}} \\ & =\frac{1}{{{\left| R \right|}^{\frac{\alpha }{n}}}}\left( \frac{1}{\left| R \right|} \right.{{\int }_{R}}\left| \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}} \right. \\ & {{\left. \left( f\left( {{t}_{1}}{{y}_{1}},\ldots ,{{t}_{n}}{{y}_{n}} \right)-{{f}_{tR}} \right)\psi \left( t \right)dt \right|}^{p}}dy{{)}^{\frac{1}{p}}} \\ & \le \frac{1}{{{\left| R \right|}^{\frac{\alpha }{n}}}}\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}} \\ & {{\left( \frac{1}{\left| R \right|}{{\int }_{R}}{{\left| f({{t}_{1}}{{y}_{1}},\ldots ,{{t}_{n}}{{y}_{n}})-{{f}_{tR}} \right|}^{p}}dy \right)}^{\frac{1}{p}}}\psi \left( t \right)dt \\ & =\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\frac{1}{{{\left| tR \right|}^{\frac{\alpha }{n}}}}\left( \frac{1}{\left| tR \right|}{{\int }_{tR}} \right. \\ & {{\left| f({{z}_{1}},\ldots ,{{z}_{n}})-{{f}_{tR}} \right|}^{p}}dy{{)}^{\frac{1}{p}}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\alpha /n}\psi \left( t \right)dt \\ & \le \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\alpha /n}\psi \left( t \right)dt{{\left\| f \right\|}_{{{R}^{\alpha ,p}}\left( {{\mathbb{R}}^{n}} \right)}}. \\ \end{align}$ | (30) |
The inequality (30) implies that
${{\left\| {{U}_{\psi }} \right\|}_{{{R}^{\alpha ,p}}\left( {{\mathbb{R}}^{n}} \right)}}\le \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\alpha /n}\psi \left( t \right)dt{{\left\| f \right\|}_{{{R}^{\alpha ,p}}\left( {{\mathbb{R}}^{n}} \right)}}.$ |
Naturally we have
${{\left\| {{U}_{\psi }} \right\|}_{{{R}^{\alpha ,p}}\left( {{\mathbb{R}}^{n}} \right)\to {{R}^{\alpha ,p}}\left( {{\mathbb{R}}^{n}} \right)}}\le \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\alpha /n}\psi \left( t \right)dt.$ |
Now we formulate the similar conclusion on the high dimensional product space.
Corollary 2.2 Suppose that -
$\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\frac{\alpha {{m}_{i}}}{n}}\psi \left( t \right)dt<\infty ,$ | (31) |
then Uφ is bounded on Rα,p(
$\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\frac{\alpha {{m}_{i}}}{n}}\psi \left( t \right)dt.$ |
Using the same method as in the proof of Theorem B,the obtain the following corollary.
Corollary 2.3 Suppose that φ:[0,1]n→[0,∞) is a nonnegative function and p∈[1,∞]. Then the operator Uφ is bounded on Lp(
$\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{-\frac{{{m}_{i}}}{p}}\psi \left( {{t}_{1}},\ldots ,{{t}_{n}} \right)dt<\infty .$ | (32) |
Moreover,if the inequality (32) holds,then the operator norm of Uφ on Lp(
$\begin{align} & {{\left\| {{U}_{\psi }} \right\|}_{Lp\left( {{\mathbb{R}}^{{{m}_{1}}}}\times \cdots \times {{\mathbb{R}}^{{{m}_{n}}}} \right)\to Lp\left( {{\mathbb{R}}^{{{m}_{1}}}}\times \cdots \times {{\mathbb{R}}^{{{m}_{n}}}} \right)}} \\ & =\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{-\frac{{{m}_{i}}}{p}}\psi \left( {{t}_{1}},\ldots ,{{t}_{n}} \right)dt. \\ \end{align}$ | (33) |
[1] | Carton-Lebrun C, Fosset M. Moyennes et quotinents de Taylor dans BMO[J]. Bull Soc Roy Sci Liège , 1984, 53 :85–87. |
[2] | Xiao J. Lp and BMO bounds of weighted Hardy-littlewood averages[J]. Math Anal Appl , 2001, 262 :660–666. DOI:10.1006/jmaa.2001.7594 |
[3] | Chen G, Wei M, Yan D. Lp-bounds of a class of mean operators on product spaces[J]. Journal of University of Chinese Academy of Sciences , 2015, 32 (4) :437–440. |
[4] | Campanato S. Proprieta di holderianita di alcune classi difunzioni[J]. Ann Scuola Norm Sup Pisa , 1963, 17 (3) :175–188. |
[5] | Zhao F, Fu Z, Lu S. Endpoint estimates for n-dimensional Hardy operators and their commutators[J]. Science in Chaina Mathematics , 2012, 55 (10) :1977–1990. DOI:10.1007/s11425-012-4465-0 |