中国科学院大学学报  2016, Vol. 33 Issue (4): 433-437   PDF    
Sharp bounds for generalized Hardy operator on product space
Mingquan WEI, Dunyan YAN     
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: We characterize a sufficient and necessary condition which ensures that the generalized Hardy operator Uψf(x)=$\int\limits_0^1 {} \cdots \int\limits_0^1 {} $f(x1t1,…,xntn)ψ(t1,…,tn)dt1dtn is bounded on RMO($\mathbb{R}$n).The condition deeply depends on the nonnegative function ψ defined on [0,1]×…×[0,1].Furthermore, the corresponding operator norm is worked out.In addition, we also extend the results to the high-dimensional product space.
Key words: generalized Hardy operator     product space     RMO($\mathbb{R}$n)    
乘积空间上的广义哈代算子的有界性
魏明权, 燕敦验     
中国科学院大学数学科学学院, 北京 100049
摘要: 研究乘积空间上的一类算子Uψf(x)=$\int\limits_0^1 {} \cdots \int\limits_0^1 {} $f(x1t1,…,xntn)ψ(t1,…,tndt1dtn在RMO($\mathbb{R}$n)上有界的充分必要条件,这个条件完全依赖于定义在[0,1]×…×[0,1]上的非负函数ψ。还给出了Uψ的算子范数。此外,还把这个结果推广到高维乘积空间。
关键词: 广义哈代算子     乘积空间     RMO($\mathbb{R}$n)    

In 1984,Carton-Lebrun and Fosset[1] defined the weighted Hardy-Littlewood average operator Uψ

${{U}_{\psi }}f\left( x \right)=\int\limits_{0}^{1}{{}}f\left( xt \right)\psi \left( t \right)dt,$ (1)

where ψ:[0,1]→[0,∞) is a function. Evidently the operator Uψ deeply depends on the nonnegative function ψ. For example,when n=1 and ψ(x)=1 for x∈[0,1],the operator Hψ is just reduced to the classical Hardy operator

$Hf\left( x \right)=\frac{1}{x}\int\limits_{0}^{x}{{}}f\left( t \right)dt,$ (2)

for x≠0. Consequently,Uψ is the more extensive Hardy operator and sometimes is called the generalized Hardy operator.

The classical Hardy operator H is bounded on Lp($\mathbb{R}$). That is,for 1<p≤∞,

${{\left\| HF \right\|}_{{{L}^{P}}\left( \mathbb{R} \right)}}\le \frac{p}{p-1}{{\left\| f \right\|}_{{{L}^{P}}\left( \mathbb{R} \right)}}$

holds,where the constant $\frac{p}{p-1}$ is best possible.

In Ref.[2],Xiao considered the generalized Hardy operator Uψ and obtained the following theorem.

Theorem A  Suppose that ψ:[0,1]→[0,∞) is a nonnegative function and p∈[1,∞]. Then the operator Uψ is bounded on Lp($\mathbb{R}$n) if and only if

$\int\limits_{0}^{1}{{}}{{t}^{-\frac{1}{p}}}\psi \left( t \right)dt<\infty .$ (3)

Moreover,if the inequality (3) holds,then the operator norm of Uψ on Lp($\mathbb{R}$n) is given by

$\|{{U}_{\psi }}{{\|}_{{{L}^{p}}({{\mathbb{R}}^{n}})\to {{L}^{p}}({{\mathbb{R}}^{n}})}}=\int\limits_{0}^{1}{{}}{{t}^{-\frac{1}{p}}}\psi \left( t \right)dt;$ (4)

and Uψ:BMO($\mathbb{R}$n)→BMO($\mathbb{R}$n) exists as a bounded operator if and only if

$\int\limits_{0}^{1}{{}}\psi \left( t \right)dt<\infty .$ (5)

Moreover,if the inequality (5) holds,then the operator norm of Uψ on BMO($\mathbb{R}$n) is given by

$\|{{U}_{\psi }}{{\|}_{BMO({{\mathbb{R}}^{n}})\to BMO({{\mathbb{R}}^{n}})}}=\int\limits_{0}^{1}{{}}\psi \left( t \right)dt.$ (6)

Recently,Chen et al.[3] studied the operator Uψ defined as

$\begin{align} & {{U}_{\psi }}f\left( x \right)=\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}} \\ & f({{x}_{1}}{{t}_{1}},\ldots ,{{x}_{n}}{{t}_{n}})\psi ({{t}_{1}},\ldots ,{{t}_{n}})d{{t}_{1}}\ldots d{{t}_{n}} \\ \end{align}$ (7)

where f is defined on $\mathbb{R}$n and ψ:[0,1]n→[0,∞). Uψ is an operator defined on the one dimensional product space. In Ref.[3],the following theorem was obtained.

Theorem B  Suppose that ψ:[0,1]n→[0,∞) is a nonnegative function and p∈[1,∞]. Then,the operator Uψ is bounded on Lp($\mathbb{R}$n) if and only if

$\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}{{\left( {{t}_{1}}\cdots {{t}_{n}} \right)}^{-\frac{1}{p}}}\psi \left( {{t}_{1}},\cdots ,{{t}_{n}} \right)dt<\infty .$ (8)

Moreover,if the inequality (8) holds,then the operator norm of Uψ on Lp($\mathbb{R}$n) is given by

${{\left\| {{U}_{\psi }} \right\|}_{{{L}^{p}}({{\mathbb{R}}^{n}})\to {{L}^{p}}({{\mathbb{R}}^{n}})}}=\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}{{\left( {{t}_{1}}\cdots {{t}_{n}} \right)}^{-\frac{1}{p}}}\psi \left( {{t}_{1}},\cdots ,{{t}_{n}} \right)dt.$ (9)

Campanato space εα,p($\mathbb{R}$n) was first introduced by Campanato in Ref.[4]. The definition of Campanato space is as follows.

Definition A  Let -∞<α<∞ and 0<p<∞. A locally integrable function f is said to belong to Campanato space εα,p($\mathbb{R}$n) if there exists some constant C>0 such that for any cube Q$\mathbb{R}$n with all the sides parallel to the axes,

$\frac{1}{{{\left| Q \right|}^{\frac{\alpha }{n}}}}{{\left( \frac{1}{\left| Q \right|}{{\int }_{Q}}{{\left| f\left( x \right)-{{f}_{Q}} \right|}^{p}}dx \right)}^{1/q}}\le C.$ (10)

The minimal constant C is defined to be the εα,p($\mathbb{R}$n) norm of f and denoted by ‖fεα,p($\mathbb{R}$n).

In Ref.[5],Zhao et al. studied the boundedness for Uψ on the space εα,p($\mathbb{R}$n). Theorem C was obtained.

Theorem C  Suppose that ψ:[0,1]→[0,∞) is a nonnegative function and p∈[1,∞),-np≤α<1. Then Uψ is a bounded operator on εα,p($\mathbb{R}$n) if and only if

$\int\limits_{0}^{1}{{}}{{t}^{\alpha }}\psi \left( t \right)dt<\infty .$ (11)

Moreover,

${{\left\| {{U}_{\psi }} \right\|}_{{{\varepsilon }^{\alpha ,p}}({{\mathbb{R}}^{n}})\to {{\varepsilon }^{\alpha ,p}}({{\mathbb{R}}^{n}})}}=\int\limits_{0}^{1}{{}}{{t}^{\alpha }}\psi \left( t \right)dt.$ (12)

Motivated by the previous studies[2-3, 5],we devoted ourselves to investigating the boundedness of the operators Uψ at the endpoint. A simple computation implies that Uψ is not bounded on BMO($\mathbb{R}$n) and thus is not bounded on εα,p($\mathbb{R}$n),since εα,p($\mathbb{R}$n) equals to BMO($\mathbb{R}$n) as α=0. It is necessary for us to find some new spaces to replace BMO($\mathbb{R}$n) and εα,p($\mathbb{R}$n). In this work,we mainly consider this question and introduce two new spaces RMO($\mathbb{R}$n) and Rα,p($\mathbb{R}$n). We shall give their definitions as follows.

1 Some definitions

Before we put forward our main results,some useful definitions will be given. First we introduce the spaces RMO($\mathbb{R}$n) and Rα,p($\mathbb{R}$n) corresponding to BMO($\mathbb{R}$n) and εα,p($\mathbb{R}$n),respectively.

Definition 1.1  Let fLloc($\mathbb{R}$n). We say that f∈RMO($\mathbb{R}$n) if and only if

${{\left\| f \right\|}_{RMO\left( {{\mathbb{R}}^{n}} \right)}}:=\underset{R\in {{\mathbb{R}}^{n}}}{\mathop{\sup }}\,\frac{1}{\left| R \right|}\int_{R}{{}}\left| f\left( x \right)-{{f}_{R}} \right|dx<\infty ,$ (13)

where the supremum is taken over all rectangles with all the sides parallel to the axes and fR denotes the average of f over R,i.e.,fR=$\frac{1}{\left| R \right|}$Rf(x)dx.

Definition 1.2  Suppose that fLloc($\mathbb{R}$n),-∞<α<∞ and 0<p<∞. We say that f∈Rα,p($\mathbb{R}$n) if and only if

$\frac{1}{{{\left| R \right|}^{\frac{\alpha }{n}}}}{{\left( \frac{1}{\left| R \right|}{{\int }_{R}}{{\left| f\left( x \right)-{{f}_{R}} \right|}^{p}}dx \right)}^{1/q}}\le C.$ (14)

holds for all rectangle R$\mathbb{R}$n. The minimal constant C is defined to be the Rα,p($\mathbb{R}$n) norm of f and denoted by ‖fRα,p($\mathbb{R}$n).

Definition 1.3  Suppose that the measurable function f is defined on $\mathbb{R}$m1×…×$\mathbb{R}$mn and φ:[0,1]n→[0,∞). The operator

${{U}_{\psi }}f\left( x \right)=\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}$ (15)

is called the generalized Hardy operator on the high dimensional product space,where xi$\mathbb{R}$mi with i=1,2,…,n.

Obviously,‖·‖RMO forms a norm if we define RMO as the quotient space of all equivalent classes of functions whose difference is a constant. By Definition 1.1 and 1.2,it is not difficult for us to deduce that the space BMO($\mathbb{R}$n) strictly contains RMO($\mathbb{R}$n) and RMO($\mathbb{R}$n)⊃L($\mathbb{R}$n).

Moreover,we conclude that the space Rα,p($\mathbb{R}$n) is strictly contained in εα,p($\mathbb{R}$n) and equals to the space RMO($\mathbb{R}$n) when α=0 as well.

2 Main results and their proofs

First,we study the boundedness of the operators Uψ defined on the space RMO as in (13) and the space Rα,p($\mathbb{R}$n) as in (14),and so does the operator Uφ.

Theorem 2.1  Let ψ:[0,1]n→[0,+∞) be a function. Then Uψ:RMO($\mathbb{R}$n)→RMO($\mathbb{R}$n) exists as a bounded operator if and only if

$\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt<\infty .$ (16)

Moreover,when (16) holds,the operator norm of Uψ on RMO($\mathbb{R}$n) is given by

$\|{{U}_{\psi }}{{\|}_{RMO({{\mathbb{R}}^{n}})\to RMO({{\mathbb{R}}^{n}})}}=\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt.$ (17)

Proof  In what follows,for each t=(t1,…,tn)∈$\mathbb{R}$n with ti>0,i=1,…,n and rectangle R=[a1,b1]×[a2,b2]×…×[an,bn]∈$\mathbb{R}$n,define tR=[t1a1,t1b1]×[t2a2,t2b2]×…×[tnan,tnbn]. Assume that (16) holds. If f∈RMO($\mathbb{R}$n),then,for any rectangle R,it follows from the Fubini’s Theorem that

$\begin{align} & {{\left( {{U}_{\psi }}f \right)}_{R}}=\frac{1}{\left| R \right|}{{\int }_{R}}({{U}_{\psi }}f)\left( y \right)dy \\ & =\frac{1}{\left| R \right|}{{\int }_{R}}\int_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}f\left( {{t}_{1}}{{y}_{1}},\ldots ,{{t}_{n}}{{y}_{n}} \right)\psi \left( t \right)dtdy \\ & =\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\frac{1}{\left| R \right|}{{\int }_{R}}f\left( {{t}_{1}}{{y}_{1}},\ldots ,{{t}_{n}}{{y}_{n}} \right)dy\psi \left( t \right)dtdy \\ & =\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\frac{1}{\left| tR \right|}{{\int }_{tR}}f\left( {{z}_{1}},\ldots ,{{z}_{n}} \right)dy\psi \left( t \right)dt \\ & =\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}{{f}_{tR}}\psi \left( t \right)dt, \\ \end{align}$ (18)

where in the last equality we use the variable substitution zi=tiyi with i=1,2,…,n. We conclude from the Minkowski’s integral inequality that

$\begin{align} & \frac{1}{\left| R \right|}{{\int }_{R}}\left| \left( {{U}_{\psi }}f \right)\left( y \right)-{{\left( {{U}_{\psi }}f \right)}_{R}} \right|dy \\ & =\frac{1}{\left| R \right|}{{\int }_{R}}\left| \left( {{U}_{\psi }}f \right)\left( y \right)-\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}{{f}_{tR}}\psi \left( t \right)dt \right|dy \\ & =\frac{1}{\left| R \right|}{{\int }_{R}}\left| \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}} \right. \\ & \left. \left( f\left( {{t}_{1}}{{y}_{1}},\ldots ,{{t}_{n}}{{y}_{n}} \right)-{{f}_{tR}} \right)\psi \left( t \right)dt \right|dy\le \\ & \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\left( \frac{1}{\left| R \right|}{{\int }_{R}}\left| \left( {{t}_{1}}{{y}_{1}},\ldots ,{{t}_{n}}{{y}_{n}} \right)-{{f}_{tR}} \right|dy \right)\psi \left( t \right)dt= \\ & \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\left( \frac{1}{\left| tR \right|}{{\int }_{tR}}\left| f\left( {{z}_{1}},\ldots ,{{z}_{n}} \right)-{{f}_{tR}} \right|dz \right)\psi \left( t \right)dt \\ & \le \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt{{\left\| f \right\|}_{RMO\left( {{\mathbb{R}}^{n}} \right)}}. \\ \end{align}$ (19)

The inequality (19) shows that

${{\left\| {{U}_{\psi }}f \right\|}_{RMO\left( {{\mathbb{R}}^{n}} \right)}}\le \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt{{\left\| f \right\|}_{RMO\left( {{\mathbb{R}}^{n}} \right)}}.$

Thus we have

${{\left\| {{U}_{\psi }} \right\|}_{RMO\left( {{\mathbb{R}}^{n}} \right)}}\le \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt$ (20)

Conversely,if Uψ is bounded on RMO($\mathbb{R}$n),then we can choose

${{f}_{0}}\left( x \right)=\left\{ \begin{matrix} \begin{matrix} 1, & x\in \mathbb{R}_{l}^{n}, \\ \end{matrix} \\ \begin{matrix} -1, & x\in \mathbb{R}_{r}^{n}, \\ \end{matrix} \\ \end{matrix} \right.$ (21)

where $\mathbb{R}$ln and $\mathbb{R}$rn denote the left and right halves of $\mathbb{R}$n respectively. In fact,$\mathbb{R}$ln and $\mathbb{R}$rn are separated by the hyperplane x1=0,where x1 is the first coordinate of x∈$\mathbb{R}$n. At this point,a simple computation leads to

$\left( {{U}_{\psi }}{{f}_{0}} \right)\left( x \right)=\left\{ \begin{matrix} \begin{matrix} \int_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt, & x\in \mathbb{R}_{l}^{n}, \\ \end{matrix} \\ \begin{matrix} -\int_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt, & x\in \mathbb{R}_{r}^{n}. \\ \end{matrix} \\ \end{matrix} \right.$ (22)

That is to say,

$\left( {{U}_{\psi }}{{f}_{0}} \right)\left( x \right)={{f}_{0}}\left( x \right)\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt.$ (23)

By the definition off0,we clearly have f0∈RMO($\mathbb{R}$n) with ‖f‖RMO($\mathbb{R}$n)≠0,and so does Uψf0 by (23). Obviously,(23) implies that

${{\left\| {{U}_{\psi }}{{f}_{0}} \right\|}_{RMO\left( {{\mathbb{R}}^{n}} \right)}}\le {{\left\| {{f}_{0}} \right\|}_{RMO\left( {{\mathbb{R}}^{n}} \right)}}\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt.$ (24)

Consequently,it follows from (24) that

${{\left\| {{U}_{\psi }} \right\|}_{RMO\left( {{\mathbb{R}}^{n}} \right)}}\ge \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt$ (25)

Combining (20) with (25) yields the conclusion in (17).

Using the almost same method,we obtain the following results.

Corollary 2.1  Let φ:[0,1]n→[0,+∞) be a function. Then Uφ:RMO($\mathbb{R}$m1×…×$\mathbb{R}$mn)→RMO($\mathbb{R}$m1×…×$\mathbb{R}$mn) exists as a bounded operator if and only if

$\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt<\infty .$ (26)

Moreover,when (25) holds,the operator norm of Uφ on RMO($\mathbb{R}$m1×…×$\mathbb{R}$mn) is given by

${{\left\| {{U}_{\psi }} \right\|}_{RMO\left( {{\mathbb{R}}^{{{m}_{_{1}}}}}\times \cdots \times {{\mathbb{R}}^{{{m}_{n}}}} \right)}}\to RMO\left( {{\mathbb{R}}^{{{m}_{_{1}}}}}\times \cdots \times {{\mathbb{R}}^{{{m}_{n}}}} \right)=\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\psi \left( t \right)dt.$ (27)

Next we will consider the boundedness of the operators Uψ on Rα,p($\mathbb{R}$n).

Theorem 2.2  Suppose that -$\frac{n}{p}$<α<∞ and 1≤p<∞. Let ψ:[0,1]n→[0,+∞) be a function. If

$\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\alpha /n}\psi \left( t \right)dt<\infty ,$ (28)

then Uψ is bounded from Rα,p($\mathbb{R}$n) to Rα,p($\mathbb{R}$n) and the following inequality

${{\left\| {{U}_{\psi }} \right\|}_{{{R}^{\alpha ,p}}\left( {{\mathbb{R}}^{n}} \right)\to {{R}^{\alpha ,p}}\left( {{\mathbb{R}}^{n}} \right)}}\le \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\alpha /n}\psi \left( t \right)dt$ (29)

holds.

Proof  Assume

$\int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\alpha /n}\psi \left( t \right)dt<\infty $

holds. Noting the equality (18),it follows from the Minkowski’s integral inequality that

$\begin{align} & \frac{1}{{{\left| R \right|}^{\frac{\alpha }{n}}}}{{\left( \frac{1}{\left| R \right|}{{\int }_{R}}{{\left| \left( {{U}_{\psi }}f \right)\left( y \right)-{{({{U}_{\psi }}f)}_{R}} \right|}^{p}}dy \right)}^{\frac{1}{p}}} \\ & =\frac{1}{{{\left| R \right|}^{\frac{\alpha }{n}}}}\left( \frac{1}{\left| R \right|} \right.{{\int }_{R}} \\ & {{\left. {{\left| ({{U}_{\psi }}f)\left( y \right)-\int_{0}^{1}{{}}\cdots \int_{0}^{1}{{}}{{f}_{tR}}\psi \left( t \right)d{{t}^{1p}} \right|}^{p}}dy \right)}^{\frac{1}{p}}} \\ & =\frac{1}{{{\left| R \right|}^{\frac{\alpha }{n}}}}\left( \frac{1}{\left| R \right|} \right.{{\int }_{R}}\left| \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}} \right. \\ & {{\left. \left( f\left( {{t}_{1}}{{y}_{1}},\ldots ,{{t}_{n}}{{y}_{n}} \right)-{{f}_{tR}} \right)\psi \left( t \right)dt \right|}^{p}}dy{{)}^{\frac{1}{p}}} \\ & \le \frac{1}{{{\left| R \right|}^{\frac{\alpha }{n}}}}\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}} \\ & {{\left( \frac{1}{\left| R \right|}{{\int }_{R}}{{\left| f({{t}_{1}}{{y}_{1}},\ldots ,{{t}_{n}}{{y}_{n}})-{{f}_{tR}} \right|}^{p}}dy \right)}^{\frac{1}{p}}}\psi \left( t \right)dt \\ & =\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\frac{1}{{{\left| tR \right|}^{\frac{\alpha }{n}}}}\left( \frac{1}{\left| tR \right|}{{\int }_{tR}} \right. \\ & {{\left| f({{z}_{1}},\ldots ,{{z}_{n}})-{{f}_{tR}} \right|}^{p}}dy{{)}^{\frac{1}{p}}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\alpha /n}\psi \left( t \right)dt \\ & \le \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\alpha /n}\psi \left( t \right)dt{{\left\| f \right\|}_{{{R}^{\alpha ,p}}\left( {{\mathbb{R}}^{n}} \right)}}. \\ \end{align}$ (30)

The inequality (30) implies that

${{\left\| {{U}_{\psi }} \right\|}_{{{R}^{\alpha ,p}}\left( {{\mathbb{R}}^{n}} \right)}}\le \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\alpha /n}\psi \left( t \right)dt{{\left\| f \right\|}_{{{R}^{\alpha ,p}}\left( {{\mathbb{R}}^{n}} \right)}}.$

Naturally we have

${{\left\| {{U}_{\psi }} \right\|}_{{{R}^{\alpha ,p}}\left( {{\mathbb{R}}^{n}} \right)\to {{R}^{\alpha ,p}}\left( {{\mathbb{R}}^{n}} \right)}}\le \int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\alpha /n}\psi \left( t \right)dt.$

Now we formulate the similar conclusion on the high dimensional product space.

Corollary 2.2  Suppose that -$\frac{n}{p}$<α<∞ and 1≤p<∞. Let φ:[0,1]n→[0,+∞) be a function. if

$\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\frac{\alpha {{m}_{i}}}{n}}\psi \left( t \right)dt<\infty ,$ (31)

then Uφ is bounded on Rα,p($\mathbb{R}$m1×…×$\mathbb{R}$mn),and the operator norm of Uφ is no more than

$\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{\frac{\alpha {{m}_{i}}}{n}}\psi \left( t \right)dt.$

Using the same method as in the proof of Theorem B,the obtain the following corollary.

Corollary 2.3  Suppose that φ:[0,1]n→[0,∞) is a nonnegative function and p∈[1,∞]. Then the operator Uφ is bounded on Lp($\mathbb{R}$m1×…×$\mathbb{R}$mn) if and only if

$\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{-\frac{{{m}_{i}}}{p}}\psi \left( {{t}_{1}},\ldots ,{{t}_{n}} \right)dt<\infty .$ (32)

Moreover,if the inequality (32) holds,then the operator norm of Uφ on Lp($\mathbb{R}$m1×…×$\mathbb{R}$mn) is given by

$\begin{align} & {{\left\| {{U}_{\psi }} \right\|}_{Lp\left( {{\mathbb{R}}^{{{m}_{1}}}}\times \cdots \times {{\mathbb{R}}^{{{m}_{n}}}} \right)\to Lp\left( {{\mathbb{R}}^{{{m}_{1}}}}\times \cdots \times {{\mathbb{R}}^{{{m}_{n}}}} \right)}} \\ & =\int\limits_{0}^{1}{{}}\cdots \int\limits_{0}^{1}{{}}\prod\limits_{i=1}^{n}{{}}t_{i}^{-\frac{{{m}_{i}}}{p}}\psi \left( {{t}_{1}},\ldots ,{{t}_{n}} \right)dt. \\ \end{align}$ (33)
References
[1] Carton-Lebrun C, Fosset M. Moyennes et quotinents de Taylor dans BMO[J]. Bull Soc Roy Sci Liège , 1984, 53 :85–87.
[2] Xiao J. Lp and BMO bounds of weighted Hardy-littlewood averages[J]. Math Anal Appl , 2001, 262 :660–666. DOI:10.1006/jmaa.2001.7594
[3] Chen G, Wei M, Yan D. Lp-bounds of a class of mean operators on product spaces[J]. Journal of University of Chinese Academy of Sciences , 2015, 32 (4) :437–440.
[4] Campanato S. Proprieta di holderianita di alcune classi difunzioni[J]. Ann Scuola Norm Sup Pisa , 1963, 17 (3) :175–188.
[5] Zhao F, Fu Z, Lu S. Endpoint estimates for n-dimensional Hardy operators and their commutators[J]. Science in Chaina Mathematics , 2012, 55 (10) :1977–1990. DOI:10.1007/s11425-012-4465-0