中国科学院大学学报  2016, Vol. 33 Issue (3): 298-301   PDF    
Structure of SK1(Ζ[C4×C4], 2Ζ[C4×C4])
Zhengguo YANG, Guoping TANG     
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: In this paper we study the K-theory of the integral group ring Ζ[C4×C4]. We prove that the relative SK1 group of the integral group ring Ζ[C4×C4] is an elementary Abelian group of rank-3. We also show that the 4-rank of K2(Ζ[C4×C4]) is at least 1 and the 2-rank of K2(Ζ[C4×C4]) is at least 10.
Key words: integral group ring     relative SK1 group     K2 group    
SK1(Ζ[C4×C4], 2Ζ[C4×C4])的结构
杨正国, 唐国平     
中国科学院大学数学科学学院, 北京 100049
摘要: 主要研究整群环Ζ[C4×C4]的K理论.证明整群环Ζ[C4×C4]的相对SK1群为秩是3的初等阿贝尔群.也证明了K2(Ζ[C4×C4])的4秩至少是1,K2(Ζ[C4×C4])的2秩至少是10.
关键词: 整群环     相对SK1     K2    

The structure of the relative SK1 group of the integral group ring is crucial to compute the K2 group of the integral group ring. However it is very difficult to determine the exact structure of the relative SK1 group. We can only find some results about the structure of the relative SK1 group K1($\mathbb{Z}$[G]) when G is an elementary Abelian p-group. In this paper,we consider the case ofG=C4×C4=<σ,τ|σ44=1,στ=τσ>. We use the a result about the exponent of K1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4]) in Ref.[1] to determine the exact structure of the group K1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4]). We use the result about the structure of K2(F2[C4×C4]) in Ref.[2] to study the structure ofK2($\mathbb{Z}$[C4×C4]),and we obtain a lower bound of the 4-rank ofK2$\mathbb{Z}$[C4×C4]) and a lower bound of the 2-rank ofK2($\mathbb{Z}$[C4×C4]).

1 Preliminaries

Let Cn be a cyclic group of order n,p be a prime number,and Fp be a finite field of p elements. Let J(R) denote the Jacobson radical of a ring R. We first introduce a basic definition which is crucial to compute the relative SK1 group.

Definition 1.1 Let G be a finite Abelian p-group and OF be the ring of integers in an algebraic number field F. A subset $S\subset \hat{G}$ is called an F-cluster of characters for G if S contains exactly one character for each simple F[G]-module. When F=Q,OF=begin{document} $mathbb{Z}$ end{document}, we will call S a cluster of characters for G. If S is a cluster of characters for G,We will define S0=$\left\{ \chi \in S\left| \mathbb{Z}\left[ \chi \right] \right.\ne \mathbb{Z} \right\}$. S0 will be called an imaginarycluster of characters for G. Note that S0=S-trivial character} when p is odd and S0={χ∈S||im(χ)|>2} when p=2.

The following two theorems will be used to determine K1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4]).

Theorem 1.1 (Theorem 1.10 in Ref.[1]) Let G be a finite Abelian 2-group and S0 an imaginary cluster of characters for G. Then

$\begin{align} & S{{K}_{1}}\left( \mathbb{Z}\left[ G \right],2\mathbb{Z}\left[ G \right] \right)= \\ & \left[ \underset{\chi \in {{S}_{0}}}{\mathop{\Pi }}\,\operatorname{Im}\chi \right]/{{\psi }_{\chi {{s}_{0}}}}\left( G\otimes \left( 2-\phi \right)\left( J\left( {{{\hat{\mathbb{Z}}}}_{2}}\left[ G \right] \right) \right) \right) \\ \end{align}$

Note The elements $\sum {{\lambda }_{g}}g\in {{{\hat{\mathbb{Z}}}}_{2}}\left[ G \right]$,Φ is defined as follows:

$\left( \sum {{\lambda }_{g}}g \right)=\sum {{\lambda }_{g}}{{g}^{2}}$

∀g,h∈G,ψχij is defined as follows:

${{\psi }_{\chi ij}}\left( g\otimes h \right)=\left\{ \begin{align} & \chi ij\left( g \right), if\chi ij\left( h \right)=1 \\ & 1, if\chi ij\left( h \right)\ne 1 \\ \end{align} \right.$

Theorem 1.2 (Proposition 4.7 in Ref.[1])

exp(SK1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4])=2.

2 Main results

The following are the main results of this paper.

Theorem 2.1 K1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4])=C23.

Proof Let G=C4×C4=<σ,τ|σ44=1,στ=τσ>, and ξ be a primitive 4th root of unity. Define the characters of C4×C4 as follows:

χij,0≤i,j≤3,

χij(σ)=ξiij(τ)=ξj,

then χijhτk)=ξhi+jk. Let S0={χ1j,0≤j≤3,χi1,i=0,2}, then by Proposition 4.7 of Ref.[1],S0 is an imaginary cluster of C4×C4.

Then by Theorem 1.1,

$\begin{align} & S{{K}_{1}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right],2\mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)= \\ & \left[ \underset{\chi \in {{S}_{0}}}{\mathop{\Pi }}\,im\chi \right]/{{\psi }_{\chi {{S}_{0}}}}\left( G\otimes \pm 2-\phi \right)\left. \left( J\left( {{{\hat{\mathbb{Z}}}}_{2}}\left[ G \right] \right) \right) \right) \\ \end{align}$

Obviously,im χ01=im χ10=im χ11=im χ12=im χ13=im χ21=C4. In the following,we will fix the order of the product $\underset{\chi \in {{S}_{0}}}{\mathop{\Pi }}\,$im χ as $\underset{\chi \in {{S}_{0}}}{\mathop{\Pi }}\,$im χ=im χ01×im χ10×im χ11×im χ12×im χ13×im χ21=C46.

Next we will determine the structure of ${{\psi }_{\chi {{S}_{0}}}}\left( G\otimes \pm 2-\phi \right)\left. \left( J\left( {{{\hat{\mathbb{Z}}}}_{2}}\left[ G \right] \right) \right) \right)$.

For any $x\in J\left( {{{\hat{\mathbb{Z}}}}_{2}}\left[ G \right] \right)=<2,g-1\left| g\in G> \right.$, we have ${{\psi }_{\chi {{S}_{0}}}}\left( \sigma \tau \otimes \left( 2-\phi \right)\left( x \right) \right)={{\psi }_{\chi {{S}_{0}}}}\left( \sigma \otimes \left( 2-\phi \right)\left( x \right) \right)\cdot {{\psi }_{\chi {{S}_{0}}}}\left( \tau \otimes \left( 2-\phi \right)\left( x \right) \right)$, then ${{\psi }_{\chi {{S}_{0}}}}\left( G\otimes \pm 2-\phi \right)\left. \left( J\left( {{{\hat{\mathbb{Z}}}}_{2}}\left[ G \right] \right) \right) \right)$ is generated by the following 34 elements,

$\begin{align} & \left\{ {{\psi }_{\chi {{S}_{0}}}} \right.\left( \sigma \otimes \left( 2-\phi \right)\left( 2 \right) \right),{{\psi }_{\chi {{S}_{0}}}}\left( \tau \otimes \left( 2-\phi \right)\left( 2 \right) \right), \\ & {{\psi }_{\chi {{S}_{0}}}}\left( \sigma \otimes \left( 2-\phi \right)\left( {{\sigma }^{i}}{{\tau }^{j}}-1 \right) \right), \\ & {{\psi }_{\chi {{S}_{0}}}}\left( \tau \otimes \left( 2-\phi \right)\left( {{\sigma }^{i}}{{\tau }^{j}}-1 \right) \right),0\le i,j\le \left. 3 \right\} \\ \end{align}$

We will compute the value of ${{\psi }_{\chi {{S}_{0}}}}\left( \sigma \otimes \left( 2-\phi \right)\left( \sigma \tau -1 \right) \right)$ as an example,and the same method can be used to determine the values of the other 33 elements. For

$\begin{align} & \left( 2-\phi \right)\left( \sigma \tau -1 \right)=2\sigma \tau -2-{{\sigma }^{2}}{{\tau }^{2}}+1 \\ & =-{{\sigma }^{2}}{{\tau }^{2}}+2\sigma \tau -1 \\ \end{align}$

we have

$\begin{align} & {{\psi }_{\chi {{S}_{0}}}}\left( \tau \otimes \left( 2-\phi \right)\left( \sigma \tau -1 \right) \right)= \\ & {{\psi }_{\chi {{S}_{0}}}}\left( \tau \otimes \left( -{{\sigma }^{2}}{{\tau }^{2}}+2\sigma \tau -1 \right) \right)= \\ & \left( {{y}_{ij}} \right)\in \underset{\chi \in {{S}_{0}}}{\mathop{\Pi }}\,im\chi \\ \end{align}$

where

$\begin{align} & {{y}_{ij}}={{\psi }_{\chi ij}}\left( \sigma \otimes \left( -{{\sigma }^{2}}{{\tau }^{2}}+2\sigma \tau -1 \right) \right) \\ & ={{\psi }_{\chi ij}}{{\left( \sigma \otimes {{\sigma }^{2}}{{\tau }^{2}} \right)}^{-1}}{{\psi }_{\chi ij}}{{\left( \sigma \otimes \sigma \tau \right)}^{2}}\times \\ & {{\psi }_{\chi ij}}{{\left( \sigma \otimes 1 \right)}^{-1}} \\ \end{align}$

By the definition of ψχij,we have y01=1,y103,y112,y123,y13=1,and y212. Hence

ψχS0(σ⊗(2-φ)(στ-1))=(1,ξ323,1,ξ2).

Using the same method,we can get the following generators:

ψχS0(σ⊗(2-φ)(1-1)

=ψχS0(τ⊗(1-1))=(1,1,1,1,1,1),

χS0(σ⊗(2-φ)(2))=(1,ξ2222,1),

ψχS0(τ⊗(2-φ)(2))=(ξ2,1,ξ2,1,ξ22),

ψχS0(σ⊗(2-φ)(τ-1))=(1,1,ξ3232),

ψχS0(σ⊗(2-φ)(τ2-1))=(1,1,ξ2,1,ξ2,1),

ψχS0(σ⊗(2-φ)(τ3-1))=(1,1,ξ3232),

ψχS0(σ⊗(2-φ)(σ-1))=(1,ξ3333,1),

ψχS0(σ⊗(2-φ)(στ-1))=(1,ξ323,1,ξ2),

ψχS0(σ⊗(2-φ)(στ2-1))=(1,ξ3333,1),

ψχS0(σ⊗(2-φ)(στ3-1))=(1,ξ3,1,ξ322),

ψχS0(σ⊗(2-φ)(σ2-1))=(1,ξ2222,1),

ψχS0(σ⊗(2-φ)(σ2τ-1))=(1,ξ23,1,ξ32),

ψχS0(σ⊗(2-φ)(σ2τ2-1))=(1,ξ2,1,ξ2,1,1),

ψχS0(σ⊗(2-φ)(σ2τ3-1))=(1,ξ23,1,ξ32),

ψχS0(σ⊗(2-φ)(σ3-1))=(1,ξ3333,1),

ψχS0(σ⊗(2-φ)(σ3τ-1))=(1,ξ3ξ3,1,ξ322),

ψχS0(σ⊗(2-φ)(σ3τ2-1))=(1,ξ3ξ3333,1),

ψχS0(σ⊗(2-φ)(σ3τ3-1))=(1,ξ323,1,ξ2),

ψχS0(τ⊗(2-φ)(τ-1))=(ξ3,1,ξ3,1,ξ,ξ3),

ψχS0(τ⊗(2-φ)(τ2-1))=(ξ2,1,ξ2,1,ξ22),

ψχS0(τ⊗(2-φ)(τ3-1))=(ξ3,1,ξ3,1,ξ,ξ3),

ψχS0(τ⊗(2-φ)(σ-1))=(1,1,ξ32,ξ,ξ2),

ψχS0(τ⊗(2-φ)(στ-1))=(ξ3,1,ξ22,1,ξ3),

ψχS0(τ⊗(2-φ)(στ2-1))=(ξ2,1,ξ32,ξ,1),

ψχS0(τ⊗(2-φ)(στ3-1))=(ξ3,1,1,ξ223),

ψχS0(τ⊗(2-φ)(σ2-1))=(1,1,ξ2,1,ξ2,1),

ψχS0(τ⊗(2-φ)(σ2τ-1))=(ξ3,1,ξ3,1,ξ,ξ3),

ψχS0(τ⊗(2-φ)(σ2τ2-1))=(ξ2,1,1,1,1,ξ2),

ψχS0(τ⊗(2-φ)(σ2τ3-1))=(ξ3,1,ξ3,1,ξ,ξ3),

ψχS0(τ⊗(2-φ)(σ3-1))=(1,1,ξ32,ξ,ξ2),

ψχS0(τ⊗(2-φ)(σ3τ-1))=(ξ3,1,1,ξ223),

ψχS0(τ⊗(2-φ)(σ3τ2-1))=(ξ2,1,ξ32,ξ,1),

ψχS0(τ⊗(2-φ)(σ3τ3-1))=(ξ3,1,ξ22,1,ξ3)}.

Because some of these generators are the same,we use ai to denote the different generators:

{a1=(1,ξ2222,1);

a2=(ξ2,1,ξ2,1,ξ22);

a3=(1,1,ξ3232);

a4=(1,1,ξ2,1,ξ2,1);

a5=(1,ξ3333,1);

a6=(1,ξ323,1,ξ2);

a7=(1,ξ3,1,ξ322);

a8=(1,ξ23,1,ξ32);

a9=(1,ξ2,1,ξ2,1,1);

a10=(ξ3,1,ξ3,1,ξ,ξ3);

a11=(1,1,ξ32,ξ,ξ2);

a12=(ξ3,1,ξ22,1,ξ3);

a13=(ξ2,1,ξ32,ξ,1);

a14=(ξ3,1,1,ξ223);

a15=(ξ2,1,1,1,1,ξ2);

a16=(ξ3,1,ξ22,1,ξ3).}

Next we will determine the structure of the group generated by ai which is ψχS0(G⊗(2-φ)(J(${\hat{\mathbb{Z}}}$2[G]))).

For 1≤i≤6,let bi be the vector of dimension 6 in which the ith component is ξ2 and the other components are all equal to 1. Let b7=(ξ,1,1,1,1,ξ),b8=(1,ξ,1,ξ,1,1),b9=(1,1,ξ,1,ξ,1). We show that {bi,1≤i≤9} is a generating set of the group generated by {ai,1≤i≤16}.

On one hand,{bi,1≤i≤9} can be generated by {ai,1≤i≤16}:

a5·a6·a11=(1,ξ2,1,1,1,1)=b2,

a9·b2=(1,1,1,ξ2,1,1)=b4,

a5·a7·a8·b4=(1,1,ξ2,1,1,1)=b3,

a4·b3=(1,1,1,1,ξ2,1)=b5,

a3·a4·a10·a12·a14·a16=(1,1,1,1,1,ξ2)=b6,

a15·b6=(ξ2,1,1,1,1,1)=b1,

a12·b1·b3·b4·b6=(ξ,1,1,1,1,ξ)=b7,

a7·b2·b4·b5·b6=(1,ξ,1,ξ,1,1)=b8,

a8·b2·b3·b5·b6=(1,1,ξ,1,ξ,1)=b9.

On the other hand,{ai,1≤i≤16} can be generated by {bi,1≤i≤9}:

a1=b2·b3·b4·b5,a2=b1·b3·b5·b6,

a3=b3·b4·b5·b6·b9,a4=b3·b5,

a5=b2·b3·b4·b5·b8·b9,a6

=b2·b3·b4·b6·b8,

a7=b2·b4·b5·b6·b8,a8=b2·b3·b5·b6·b9,

a9=b2·b4,a10=b1·b3·b6·b7·b9,

a11=b3·b4·b6·b9,a12=b1·b3·b4·b6·b7,

a13=b1·b3·b4·b9,a14=b1·b4·b5·b6·b7,

a15=b1·b6,a16=b1·b3·b4·b6·b7.

Hence {bi,1≤i≤9} is an generating set of ψχS0(G⊗(2-φ)(J(${\hat{\mathbb{Z}}}$2[G]))).

It is easy to know that these 6 elements {bi,1≤i≤6} generate an elementary Abelian 2-group of rank 6. We denote this group by H. Then the 8 cosets,

{H,b7H,b8H,b9H,b7b8H,b7b9H,b8b9H,b7b8b9H},

are disjoint with each other and their union is ψχS0(G⊗(2-φ)(J(${\hat{\mathbb{Z}}}$2[G]))). Hence

χS0(G⊗(2-φ)(J(${\hat{\mathbb{Z}}}$2[G])))|=26·8=29,

and

$\left| S{{K}_{1}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right],2\mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right) \right|\frac{{{4}^{6}}}{{{2}^{9}}}={{2}^{3}}$

By Theorem 1.2,

exp(SK1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4])=2.

So

K1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4])=C23.

Corollary 2.1 K1($\mathbb{Z}$[C4×C4×C2])=C24.

Proof By Theorem 1.11 in Ref.[1],we have K1($\mathbb{Z}$[C4×C4×C2])⊕SK1($\mathbb{Z}$[C4×C4)SK1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4]). By Theorem 5.5 in Ref.[1],K1($\mathbb{Z}$[C4×C4])=C2 . Then by Theorem 2.1,we have

K1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4])=C23.

So K1($\mathbb{Z}$[C4×C4×C2])=C24. □

Theorem 2.2 The 4-rank ofK2($\mathbb{Z}$[C4×C4]) is at least 1 and its 2-rank is at least 10.

Proof By the long exact sequence of K-theory,we have

$\begin{align} & {{K}_{2}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)\xrightarrow{{{f}_{1}}}{{K}_{2}}\left( {{\mathbb{Z}}_{2}}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)\xrightarrow{{{f}_{2}}} \\ & S{{K}_{1}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right),2\mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right]\xrightarrow{{{f}_{3}}} \\ & S{{K}_{1}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)\xrightarrow{{{f}_{4}}}S{{K}_{1}}\left( {{F}_{2}}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right) \\ \end{align}$

By Theorem 1.2 in Ref.[2], K2(F2[C4×C4])=C29⊕C43. By Theorem 2.1,

K1($\mathbb{Z}$[C4×C4],2$\mathbb{Z}$[C4×C4])=C23. By Theorem 5.5 in Ref.[1],we have K1($\mathbb{Z}$[C4×C4])=C2. Then the exact sequence becomes

$\begin{align} & {{K}_{2}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)\xrightarrow{{{f}_{1}}}C_{2}^{9}\oplus C_{4}^{3}\xrightarrow{{{f}_{2}}} \\ & C_{2}^{3}\xrightarrow{{{f}_{3}}}{{C}_{2}}\xrightarrow{{{f}_{4}}}1 \\ \end{align}$

By the exactness, im(f2)=ker(f3)=C22. Then we get the following exact sequence,

$\begin{align} & {{K}_{2}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)\xrightarrow{{{f}_{1}}}C_{2}^{9}\oplus C_{4}^{3}\xrightarrow{{{f}_{2}}} \\ & C_{2}^{2}\to 1 \\ \end{align}$

By the exactness, im(f1)=ker(f2) can only be one of the following three cases,

{C211⊕C4;C29⊕C42;C27⊕C43}.

In any of these cases, im(f1) contains one cyclic subgroup of order 4 as its direct summand. Then the 4-rank ofK2($\mathbb{Z}$[C4×C4]) is at least 1 and the 2-rank is at least 10. □

References
[1] Alperin R C, Dennis R K, Oliver R, et al. SK1 of finite abelian groups[J]. Invent Math , 1987, 87 :253–302. DOI:10.1007/BF01389416
[2] Chen H, Gao Y B, Tang G P. Calculation of K2(F2[J]. Journal of Graduate University of Chinese Academy of Sciences , 2011, 28 (4) :419–423.
[3] Rosenberg, J. Algebraic K-Theory and Its Applications[M]. Grad Texts in Math 147,New York: Springer-Verlag, 1994 .
[4] Dunwoody M J. K2( Z π) for π a group of order two or three[J]. J London Math Soc (2) , 1975, 11 (4) :481–490.
[5] Stein M R. Excision and K2 of group rings[J]. J Pure Appl Algebra , 1980, 18 :213–224. DOI:10.1016/0022-4049(80)90130-9
[6] Dennis R K, Keating M E, Stein M R. Lower bounds for the order of K2( Z G) and Wh2(G)[J]. Math Ann , 1976, 223 :97–103. DOI:10.1007/BF01360875
[7] Gao Y B, Tang G P. K2 of finite abelian group algebras[J]. J Pure Appl Algebra , 2009, 213 :1. DOI:10.1016/j.jpaa.2008.05.001
[8] Milnor J. Introduction to algebraic K-theory[M]. Annals of Math Studies,Vol 72, Princeton: Princeton Univ Press, 1971 .