The structure of the relative SK1 group of the integral group ring is crucial to compute the K2 group of the integral group ring. However it is very difficult to determine the exact structure of the relative SK1 group. We can only find some results about the structure of the relative SK1 group K1(
Let Cn be a cyclic group of order n,p be a prime number,and Fp be a finite field of p elements. Let J(R) denote the Jacobson radical of a ring R. We first introduce a basic definition which is crucial to compute the relative SK1 group.
Definition 1.1 Let G be a finite Abelian p-group and OF be the ring of integers in an algebraic number field F. A subset
The following two theorems will be used to determine K1(
Theorem 1.1 (Theorem 1.10 in Ref.[1]) Let G be a finite Abelian 2-group and S0 an imaginary cluster of characters for G. Then
$\begin{align} & S{{K}_{1}}\left( \mathbb{Z}\left[ G \right],2\mathbb{Z}\left[ G \right] \right)= \\ & \left[ \underset{\chi \in {{S}_{0}}}{\mathop{\Pi }}\,\operatorname{Im}\chi \right]/{{\psi }_{\chi {{s}_{0}}}}\left( G\otimes \left( 2-\phi \right)\left( J\left( {{{\hat{\mathbb{Z}}}}_{2}}\left[ G \right] \right) \right) \right) \\ \end{align}$ |
Note The elements
$\left( \sum {{\lambda }_{g}}g \right)=\sum {{\lambda }_{g}}{{g}^{2}}$ |
∀g,h∈G,ψχij is defined as follows:
${{\psi }_{\chi ij}}\left( g\otimes h \right)=\left\{ \begin{align} & \chi ij\left( g \right), if\chi ij\left( h \right)=1 \\ & 1, if\chi ij\left( h \right)\ne 1 \\ \end{align} \right.$ |
Theorem 1.2 (Proposition 4.7 in Ref.[1])
exp(SK1(
The following are the main results of this paper.
Theorem 2.1 K1(
Proof Let G=C4×C4=<σ,τ|σ4=τ4=1,στ=τσ>, and ξ be a primitive 4th root of unity. Define the characters of C4×C4 as follows:
χij,0≤i,j≤3,
χij(σ)=ξi,χij(τ)=ξj,
then χij(σhτk)=ξhi+jk. Let S0={χ1j,0≤j≤3,χi1,i=0,2}, then by Proposition 4.7 of Ref.[1],S0 is an imaginary cluster of C4×C4.
Then by Theorem 1.1,
$\begin{align} & S{{K}_{1}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right],2\mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)= \\ & \left[ \underset{\chi \in {{S}_{0}}}{\mathop{\Pi }}\,im\chi \right]/{{\psi }_{\chi {{S}_{0}}}}\left( G\otimes \pm 2-\phi \right)\left. \left( J\left( {{{\hat{\mathbb{Z}}}}_{2}}\left[ G \right] \right) \right) \right) \\ \end{align}$ |
Obviously,im χ01=im χ10=im χ11=im χ12=im χ13=im χ21=C4. In the following,we will fix the order of the product
Next we will determine the structure of
For any
$\begin{align} & \left\{ {{\psi }_{\chi {{S}_{0}}}} \right.\left( \sigma \otimes \left( 2-\phi \right)\left( 2 \right) \right),{{\psi }_{\chi {{S}_{0}}}}\left( \tau \otimes \left( 2-\phi \right)\left( 2 \right) \right), \\ & {{\psi }_{\chi {{S}_{0}}}}\left( \sigma \otimes \left( 2-\phi \right)\left( {{\sigma }^{i}}{{\tau }^{j}}-1 \right) \right), \\ & {{\psi }_{\chi {{S}_{0}}}}\left( \tau \otimes \left( 2-\phi \right)\left( {{\sigma }^{i}}{{\tau }^{j}}-1 \right) \right),0\le i,j\le \left. 3 \right\} \\ \end{align}$ |
We will compute the value of
$\begin{align} & \left( 2-\phi \right)\left( \sigma \tau -1 \right)=2\sigma \tau -2-{{\sigma }^{2}}{{\tau }^{2}}+1 \\ & =-{{\sigma }^{2}}{{\tau }^{2}}+2\sigma \tau -1 \\ \end{align}$ |
we have
$\begin{align} & {{\psi }_{\chi {{S}_{0}}}}\left( \tau \otimes \left( 2-\phi \right)\left( \sigma \tau -1 \right) \right)= \\ & {{\psi }_{\chi {{S}_{0}}}}\left( \tau \otimes \left( -{{\sigma }^{2}}{{\tau }^{2}}+2\sigma \tau -1 \right) \right)= \\ & \left( {{y}_{ij}} \right)\in \underset{\chi \in {{S}_{0}}}{\mathop{\Pi }}\,im\chi \\ \end{align}$ |
where
$\begin{align} & {{y}_{ij}}={{\psi }_{\chi ij}}\left( \sigma \otimes \left( -{{\sigma }^{2}}{{\tau }^{2}}+2\sigma \tau -1 \right) \right) \\ & ={{\psi }_{\chi ij}}{{\left( \sigma \otimes {{\sigma }^{2}}{{\tau }^{2}} \right)}^{-1}}{{\psi }_{\chi ij}}{{\left( \sigma \otimes \sigma \tau \right)}^{2}}\times \\ & {{\psi }_{\chi ij}}{{\left( \sigma \otimes 1 \right)}^{-1}} \\ \end{align}$ |
By the definition of ψχij,we have y01=1,y10=ξ3,y11=ξ2,y12=ξ3,y13=1,and y21=ξ2. Hence
ψχS0(σ⊗(2-φ)(στ-1))=(1,ξ3,ξ2,ξ3,1,ξ2).
Using the same method,we can get the following generators:
ψχS0(σ⊗(2-φ)(1-1)
=ψχS0(τ⊗(1-1))=(1,1,1,1,1,1),
{ψχS0(σ⊗(2-φ)(2))=(1,ξ2,ξ2,ξ2,ξ2,1),
ψχS0(τ⊗(2-φ)(2))=(ξ2,1,ξ2,1,ξ2,ξ2),
ψχS0(σ⊗(2-φ)(τ-1))=(1,1,ξ3,ξ2,ξ3,ξ2),
ψχS0(σ⊗(2-φ)(τ2-1))=(1,1,ξ2,1,ξ2,1),
ψχS0(σ⊗(2-φ)(τ3-1))=(1,1,ξ3,ξ2,ξ3,ξ2),
ψχS0(σ⊗(2-φ)(σ-1))=(1,ξ3,ξ3,ξ3,ξ3,1),
ψχS0(σ⊗(2-φ)(στ-1))=(1,ξ3,ξ2,ξ3,1,ξ2),
ψχS0(σ⊗(2-φ)(στ2-1))=(1,ξ3,ξ3,ξ3,ξ3,1),
ψχS0(σ⊗(2-φ)(στ3-1))=(1,ξ3,1,ξ3,ξ2,ξ2),
ψχS0(σ⊗(2-φ)(σ2-1))=(1,ξ2,ξ2,ξ2,ξ2,1),
ψχS0(σ⊗(2-φ)(σ2τ-1))=(1,ξ2,ξ3,1,ξ3,ξ2),
ψχS0(σ⊗(2-φ)(σ2τ2-1))=(1,ξ2,1,ξ2,1,1),
ψχS0(σ⊗(2-φ)(σ2τ3-1))=(1,ξ2,ξ3,1,ξ3,ξ2),
ψχS0(σ⊗(2-φ)(σ3-1))=(1,ξ3,ξ3,ξ3,ξ3,1),
ψχS0(σ⊗(2-φ)(σ3τ-1))=(1,ξ3ξ3,1,ξ3,ξ2,ξ2),
ψχS0(σ⊗(2-φ)(σ3τ2-1))=(1,ξ3ξ3,ξ3,ξ3,ξ3,1),
ψχS0(σ⊗(2-φ)(σ3τ3-1))=(1,ξ3,ξ2,ξ3,1,ξ2),
ψχS0(τ⊗(2-φ)(τ-1))=(ξ3,1,ξ3,1,ξ,ξ3),
ψχS0(τ⊗(2-φ)(τ2-1))=(ξ2,1,ξ2,1,ξ2,ξ2),
ψχS0(τ⊗(2-φ)(τ3-1))=(ξ3,1,ξ3,1,ξ,ξ3),
ψχS0(τ⊗(2-φ)(σ-1))=(1,1,ξ3,ξ2,ξ,ξ2),
ψχS0(τ⊗(2-φ)(στ-1))=(ξ3,1,ξ2,ξ2,1,ξ3),
ψχS0(τ⊗(2-φ)(στ2-1))=(ξ2,1,ξ3,ξ2,ξ,1),
ψχS0(τ⊗(2-φ)(στ3-1))=(ξ3,1,1,ξ2,ξ2,ξ3),
ψχS0(τ⊗(2-φ)(σ2-1))=(1,1,ξ2,1,ξ2,1),
ψχS0(τ⊗(2-φ)(σ2τ-1))=(ξ3,1,ξ3,1,ξ,ξ3),
ψχS0(τ⊗(2-φ)(σ2τ2-1))=(ξ2,1,1,1,1,ξ2),
ψχS0(τ⊗(2-φ)(σ2τ3-1))=(ξ3,1,ξ3,1,ξ,ξ3),
ψχS0(τ⊗(2-φ)(σ3-1))=(1,1,ξ3,ξ2,ξ,ξ2),
ψχS0(τ⊗(2-φ)(σ3τ-1))=(ξ3,1,1,ξ2,ξ2,ξ3),
ψχS0(τ⊗(2-φ)(σ3τ2-1))=(ξ2,1,ξ3,ξ2,ξ,1),
ψχS0(τ⊗(2-φ)(σ3τ3-1))=(ξ3,1,ξ2,ξ2,1,ξ3)}.
Because some of these generators are the same,we use ai to denote the different generators:
{a1=(1,ξ2,ξ2,ξ2,ξ2,1);
a2=(ξ2,1,ξ2,1,ξ2,ξ2);
a3=(1,1,ξ3,ξ2,ξ3,ξ2);
a4=(1,1,ξ2,1,ξ2,1);
a5=(1,ξ3,ξ3,ξ3,ξ3,1);
a6=(1,ξ3,ξ2,ξ3,1,ξ2);
a7=(1,ξ3,1,ξ3,ξ2,ξ2);
a8=(1,ξ2,ξ3,1,ξ3,ξ2);
a9=(1,ξ2,1,ξ2,1,1);
a10=(ξ3,1,ξ3,1,ξ,ξ3);
a11=(1,1,ξ3,ξ2,ξ,ξ2);
a12=(ξ3,1,ξ2,ξ2,1,ξ3);
a13=(ξ2,1,ξ3,ξ2,ξ,1);
a14=(ξ3,1,1,ξ2,ξ2,ξ3);
a15=(ξ2,1,1,1,1,ξ2);
a16=(ξ3,1,ξ2,ξ2,1,ξ3).}
Next we will determine the structure of the group generated by ai which is ψχS0(G⊗(2-φ)(J(
For 1≤i≤6,let bi be the vector of dimension 6 in which the ith component is ξ2 and the other components are all equal to 1. Let b7=(ξ,1,1,1,1,ξ),b8=(1,ξ,1,ξ,1,1),b9=(1,1,ξ,1,ξ,1). We show that {bi,1≤i≤9} is a generating set of the group generated by {ai,1≤i≤16}.
On one hand,{bi,1≤i≤9} can be generated by {ai,1≤i≤16}:
a5·a6·a11=(1,ξ2,1,1,1,1)=b2,
a9·b2=(1,1,1,ξ2,1,1)=b4,
a5·a7·a8·b4=(1,1,ξ2,1,1,1)=b3,
a4·b3=(1,1,1,1,ξ2,1)=b5,
a3·a4·a10·a12·a14·a16=(1,1,1,1,1,ξ2)=b6,
a15·b6=(ξ2,1,1,1,1,1)=b1,
a12·b1·b3·b4·b6=(ξ,1,1,1,1,ξ)=b7,
a7·b2·b4·b5·b6=(1,ξ,1,ξ,1,1)=b8,
a8·b2·b3·b5·b6=(1,1,ξ,1,ξ,1)=b9.
On the other hand,{ai,1≤i≤16} can be generated by {bi,1≤i≤9}:
a1=b2·b3·b4·b5,a2=b1·b3·b5·b6,
a3=b3·b4·b5·b6·b9,a4=b3·b5,
a5=b2·b3·b4·b5·b8·b9,a6
=b2·b3·b4·b6·b8,
a7=b2·b4·b5·b6·b8,a8=b2·b3·b5·b6·b9,
a9=b2·b4,a10=b1·b3·b6·b7·b9,
a11=b3·b4·b6·b9,a12=b1·b3·b4·b6·b7,
a13=b1·b3·b4·b9,a14=b1·b4·b5·b6·b7,
a15=b1·b6,a16=b1·b3·b4·b6·b7.
Hence {bi,1≤i≤9} is an generating set of ψχS0(G⊗(2-φ)(J(
It is easy to know that these 6 elements {bi,1≤i≤6} generate an elementary Abelian 2-group of rank 6. We denote this group by H. Then the 8 cosets,
{H,b7H,b8H,b9H,b7b8H,b7b9H,b8b9H,b7b8b9H},
are disjoint with each other and their union is ψχS0(G⊗(2-φ)(J(
|ψχS0(G⊗(2-φ)(J(
and
$\left| S{{K}_{1}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right],2\mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right) \right|\frac{{{4}^{6}}}{{{2}^{9}}}={{2}^{3}}$ |
By Theorem 1.2,
exp(SK1(
So
K1(
□
Corollary 2.1 K1(
Proof By Theorem 1.11 in Ref.[1],we have K1(
K1(
So K1(
Theorem 2.2 The 4-rank ofK2(
Proof By the long exact sequence of K-theory,we have
$\begin{align} & {{K}_{2}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)\xrightarrow{{{f}_{1}}}{{K}_{2}}\left( {{\mathbb{Z}}_{2}}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)\xrightarrow{{{f}_{2}}} \\ & S{{K}_{1}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right),2\mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right]\xrightarrow{{{f}_{3}}} \\ & S{{K}_{1}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)\xrightarrow{{{f}_{4}}}S{{K}_{1}}\left( {{F}_{2}}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right) \\ \end{align}$ |
By Theorem 1.2 in Ref.[2], K2(F2[C4×C4])=C29⊕C43. By Theorem 2.1,
K1(
$\begin{align} & {{K}_{2}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)\xrightarrow{{{f}_{1}}}C_{2}^{9}\oplus C_{4}^{3}\xrightarrow{{{f}_{2}}} \\ & C_{2}^{3}\xrightarrow{{{f}_{3}}}{{C}_{2}}\xrightarrow{{{f}_{4}}}1 \\ \end{align}$ |
By the exactness, im(f2)=ker(f3)=C22. Then we get the following exact sequence,
$\begin{align} & {{K}_{2}}\left( \mathbb{Z}\left[ {{C}_{4}}\times {{C}_{4}} \right] \right)\xrightarrow{{{f}_{1}}}C_{2}^{9}\oplus C_{4}^{3}\xrightarrow{{{f}_{2}}} \\ & C_{2}^{2}\to 1 \\ \end{align}$ |
By the exactness, im(f1)=ker(f2) can only be one of the following three cases,
{C211⊕C4;C29⊕C42;C27⊕C43}.
In any of these cases, im(f1) contains one cyclic subgroup of order 4 as its direct summand. Then the 4-rank ofK2(
[1] | Alperin R C, Dennis R K, Oliver R, et al. SK1 of finite abelian groups[J]. Invent Math , 1987, 87 :253–302. DOI:10.1007/BF01389416 |
[2] | Chen H, Gao Y B, Tang G P. Calculation of K2(F2[J]. Journal of Graduate University of Chinese Academy of Sciences , 2011, 28 (4) :419–423. |
[3] | Rosenberg, J. Algebraic K-Theory and Its Applications[M]. Grad Texts in Math 147,New York: Springer-Verlag, 1994 . |
[4] | Dunwoody M J. K2( Z π) for π a group of order two or three[J]. J London Math Soc (2) , 1975, 11 (4) :481–490. |
[5] | Stein M R. Excision and K2 of group rings[J]. J Pure Appl Algebra , 1980, 18 :213–224. DOI:10.1016/0022-4049(80)90130-9 |
[6] | Dennis R K, Keating M E, Stein M R. Lower bounds for the order of K2( Z G) and Wh2(G)[J]. Math Ann , 1976, 223 :97–103. DOI:10.1007/BF01360875 |
[7] | Gao Y B, Tang G P. K2 of finite abelian group algebras[J]. J Pure Appl Algebra , 2009, 213 :1. DOI:10.1016/j.jpaa.2008.05.001 |
[8] | Milnor J. Introduction to algebraic K-theory[M]. Annals of Math Studies,Vol 72, Princeton: Princeton Univ Press, 1971 . |