The law of the iterated logarithm(abbr.LIL) of the classical Galton-Watson process was firstly proved by Heyde[1] under the condition that the 2+δ moment of the process is finite. In the same year,Heyde and Leslie[2] again obtained the LIL under the condition that the second moment is finite. Later,Asmussen[3] gave another proof via a very delicate truncation procedure and Kronecker lemma. The proof of Huggins[4] is based on the Skorohod embedding techniques and new properties of Brownian motion and stopping times.
Gao[5] proved the LIL of the super-critical Galton-Watson processes in varying environment satisfied that there is a uniform upper bound for the 2+δ moment of the number of the offspring of each individual of each generation. In addition,the author pointed out a mistake in the proof of Theorem 1 in Heyde and Leslie[2]. Enlightened by the proof of the LIL of the classical Galton-Watson process in Asmussen[3],we obtain the LIL of the super-critical Galton-Watson processes in varying environment under the condition that the second moment has a uniform upper bound and a uniform lower bound.
1 Main resultLet Z0≡1 and for all n≥1,define
${{Z}_{n+1}}=\left\{ \begin{array}{*{35}{l}} \sum\limits_{j=1}^{{{Z}_{n}}}{{{X}_{n,j}}}, & \text{if }{{Z}_{n}}\ne 0; \\ 0, & \text{if }{{Z}_{n}}=0, \\ \end{array} \right.$ |
where {Xn,j;n≥0,j≥1} are independent and for each n≥0,{Xn,j,j≥1} have the same distribution {pn(k),k∈N }. pn(k) denotes the probability of k offspring produced by an individual of the n’th generation and N is the set of non-negative integers. Then {Zn,n≥0} is said to be a Galton-Watson process in varying environment(GWVE).
Let the generating functions of Zn and Xn,j are respectively fn(s) and
$\begin{align} & {{f}_{n}}\left( s \right)={{\phi }_{0}}\left( {{\phi }_{1}}\left( \cdots {{\phi }_{n-1}}\left( s \right)\cdots \right) \right), \\ & {{m}_{n}}=f{{'}_{n}}\left( 1 \right)=\prod\limits_{i=0}^{n-1}{\phi {{'}_{i}}\left( 1 \right)}=\prod\limits_{i=0}^{n-1}{{{\mu }_{i}}.} \\ \end{align}$ |
From now on,we always assume that ∏k=nn-1μk=1,0<mn<∞,
Lemma 1.1 (Decomposition Lemma 1)
Let {Zn,n≥0} be a GWVE,then
${{Z}_{n+r}}-{{m}_{n,r}}{{Z}_{n}}=\left\{ \begin{array}{*{35}{l}} \sum\limits_{j=1}^{{{Z}_{n}}}{\left( Z_{n,r}^{\left( j \right)}-{{m}_{n,r}} \right)}, & \text{if }{{Z}_{n}}\ne 0; \\ 0, & \text{if }{{Z}_{n}}=0, \\ \end{array} \right.$ |
where Zn,r(j) represents the number of r’th generation offspring of the j’th of the Zn individuals of the n’th generation,and {Zn,r(j),j≥1} are independent and identically distributed and independent of Zn. Furthermore,
$\begin{align} & {{m}_{n,r}}:=\text{E}\left( Z_{n,r}^{\left( j \right)} \right)=\prod\limits_{j=n}^{n+r-1}{{{\mu }_{j}},} \\ & \sigma _{n,r}^{2}:=\text{Var}\left( Z_{n,r}^{\left( j \right)} \right)={{\left( {{m}_{n,r}} \right)}^{2}}\sum\limits_{j=n}^{n+r-1}{\frac{\delta _{j}^{2}}{\mu _{j}^{2}{{m}_{n,j-n}}}}. \\ \end{align}$ |
Proof See Ref.[5].
Remark 1.1 Zn,1(j)=Xn,j,m0,r=mr,mn,1=μn,mn,0=1,σ0,r2=Var(Zr)and σn,12=δn2.
Lemma 1.2(Decomposition Lemma 2)
Let {Zn,n≥0} be a GWVE,then
${{m}_{n}}W-{{Z}_{n}}=\left\{ \begin{array}{*{35}{l}} \sum\limits_{j=1}^{{{Z}_{n}}}{\left( W_{n}^{\left( j \right)}-1 \right)}, & \text{if }{{Z}_{n}}\ne 0; \\ 0, & \text{if }{{Z}_{n}}=0, \\ \end{array} \right.$ |
where {Wn(j),j≥1} are independent and identically distributed and independent of Zn. If
$\sum\limits_{j=n}^{\infty }{\frac{\delta _{j}^{2}}{\mu _{j}^{2}\prod\nolimits_{k=n}^{j-1}{{{\mu }_{k}}}}}<\infty ,\forall n\ge 0,$ | (1) |
then
$\text{E}\left( W_{n}^{\left( j \right)} \right)=1\text{ and }\sigma _{j}^{2}:=\text{Var}\left( W_{n}^{\left( j \right)} \right)=\sum\limits_{j=n}^{\infty }{\frac{\delta _{j}^{2}}{\mu _{j}^{2}{{m}_{n,j-n}}}}.$ |
Proof See Ref.[5].
Remark 1.2 W0(1)=W,σ02=σ2=Var(W)=
Now assume that there exist four constants α,β,τ,γ with β>α>1 and τ>γ>0 such that
$\alpha \le {{\mu }_{n}}\le \beta ,{{\gamma }^{2}}\le \delta _{n}^{2}\le {{\tau }^{2}},$ | (2) |
$\sum\limits_{n=0}^{\infty }{\int_{\left| y \right|>{{\zeta }^{n}}}{{{y}^{2}}\text{d}{{F}_{n}}\left( y \right)}}<\infty ,$ | (3) |
$\sum\limits_{n=0}^{\infty }{\int_{\left| y \right|>{{\zeta }^{n}}}{{{y}^{2}}\text{d}{{G}_{n}}\left( y \right)}}<\infty ,$ | (4) |
where 1<ζ<α1/4,and Fn is the distribution of Zn,r(j)-mn,r in Decomposition Lemma 1,and Gn is the distribution of Wn(j)-1 in Decomposition Lemma 2.
For any given r≥1,define
Yn,j:=Zn,r(j)-mn,r,
Y′n,j:=Yn,jI(|Yn,j|≤
Vn,j:=Wn(j)-1,
V′n,j:=Vn,jI(|Vn,j|≤
Theorem 1.1 Let {Zn,n≥0} be a GWVE. Suppose that pn(0)=0,
$\text{Var}(Y{{\prime }_{n,j}})/\text{Var}({{Y}_{n,j}})\to 1,\text{as }n\to \infty ,$ | (5) |
$\text{Var}(V{{\prime }_{n,j}})/\text{Var}({{V}_{n,j}})\to 1,\text{as }n\to \infty ,$ | (6) |
then for all r≥1,with probability one we have
$\underset{n\to \infty }{\mathop{\lim \sup }}\,(\underset{n\to \infty }{\mathop{\text{lim }\!\!~\!\!\text{ inf}}}\,)\frac{{{Z}_{n+r}}-{{m}_{n,r}}{{Z}_{n}}}{{{(2\sigma _{n,r}^{2}{{Z}_{n}}\text{log}n)}^{1/2}}}=1\left( -1 \right),$ | (7) |
$\underset{n\to \infty }{\mathop{\lim \sup }}\,(\underset{n\to \infty }{\mathop{\text{lim }\!\!~\!\!\text{ inf}}}\,)\frac{{{m}_{n}}W-{{Z}_{n}}}{{{(2\sigma _{n}^{2}{{Z}_{n}}\text{log}n)}^{1/2}}}=1\left( -1 \right).$ | (8) |
Remark 1.3 Since pn(0)>0,
Remark 1.4 We can obtain αn≤mn≤βn and Eq.(1) from the condition (2). According Remark 1.3,we know that log Zn-nlogm→log W a.s., which means loglog Zn/logn→1a.s., so logn can be substituted by log log Zn in Eq.(7) and Eq.(8).
$\begin{align} & \int_{\left| y \right|>{{\zeta }^{n}}}{{{\left| y \right|}^{2}}\text{d}{{F}_{n}}\left( y \right)}\le \frac{1}{{{\left( \log {{\zeta }^{n}} \right)}^{1+\delta }}}\int_{\left| y \right|>{{\zeta }^{n}}}{{{\left| y \right|}^{2}}{{\left( \log \left| y \right| \right)}^{\text{1+}\delta }}\text{d}{{F}_{n}}\left( y \right)}, \\ & \int_{\left| y \right|>{{\zeta }^{n}}}{{{\left| y \right|}^{2}}\text{d}{{G}_{n}}\left( y \right)}\le \frac{1}{{{\left( \log {{\zeta }^{n}} \right)}^{1+\delta }}}\int_{\left| y \right|>{{\zeta }^{n}}}{{{\left| y \right|}^{2}}{{\left( \log \left| y \right| \right)}^{\text{1+}\delta }}\text{d}{{G}_{n}}\left( y \right)}, \\ \end{align}$ |
where 0<δ<1,we can get the conditions (3) and (4) under the following conditions (9) and (10) are satisfied:
$\underset{n\ge 0}{\mathop{\text{sup}}}\,\int_{y\in R}{{{\left| y \right|}^{2}}{{(log\left| y \right|)}^{1+\delta }}\text{d}{{F}_{n}}\left( y \right)<\infty },$ | (9) |
$\underset{n\ge 0}{\mathop{\text{sup}}}\,\int_{y\in R}{{{\left| y \right|}^{2}}{{(log\left| y \right|)}^{1+\delta }}\text{d}{{G}_{n}}\left( y \right)<\infty },$ | (10) |
However (9) and (10) are weaker than (1.14) in Ref.[5].
Remark 1.6 The condition (5) holds naturally for a classical super-critical Galton-Watson branching process {Zn,n≥0} with E(Z1log Z1)<∞. Moreover,if there exists a random variable Y∈L2(Ω,F , P) so that |Yn,1|≤Y,then Eq.(5) can be deduced. Since ∑nP(|Yn,1|>
$Y{{\prime }_{n,1}}-{{Y}_{n,1}}\to 0~\text{and}~{{(Y{{\prime }_{n,1}})}^{2}}-{{({{Y}_{n,1}})}^{2}}\to 0.$ |
By the dominated convergence theorem,we have
$\text{Var}(Y{{\prime }_{n,1}})-\text{Var}({{Y}_{n,1}})=\text{Var}(Y{{\prime }_{n,j}})-\text{Var}({{Y}_{n,j}})\to 0~\text{a}\text{.s}.$ |
hence the condition (5) holds. For Eq.(6) we have similar results.
2 Basic lemmasLemma 2.1 Let {Fn,n≥0} be an increasing sequence of σ-algebras and {Tn,n≥0} a (not necessarily adapted) random variable sequence such that
$\sum\limits_{n=0}^{\infty }{{{\Delta }_{n}}:=}\sum\limits_{n=0}^{\infty }{\underset{y\in R}{\mathop{\sup }}\,\left| \text{P}\left( {{T}_{n}}\le y|{{F}_{n}} \right)-\Phi \left( y \right) \right|}<\infty ,$ |
where Φ(y) is the distribution function of N(0,1). Then
$\underset{n\to \infty }{\mathop{\lim \sup }}\,\frac{{{T}_{n}}}{{{\left( 2\log n \right)}^{1/2}}}\le 1\text{a}\text{.s}.,$ |
with the inequality replaced by equality if Tn is measurable with respect to Fn+k for some 1≤k<∞.
Proof See Ref.[3].
Lemma 2.2 (Berry-Esseen Lemma)
Let{Xn,n≥1} be an independent and identically distributed random variable sequence such that E Xn=0,E Xn2=σ2>0 and E |Xn| 3<∞. Denote Sn:=∑k=1nXk. Then
$\underset{x\in \text{R}}{\mathop{\text{sup}}}\,\left| \text{P}\left( \frac{{{S}_{n}}}{\sigma \sqrt{n}}<x \right)-\Phi \left( x \right) \right|\le A\frac{\text{E}{{\left| {{X}_{1}} \right|}^{3}}}{{{\sigma }^{3}}\sqrt{n}},$ |
where Φ(x) is the standard normal distribution and A is a positive constant that is called the Berry-Esseen constant.
Proof See Ref.[7],P124.
Lemma 2.3 (Kronecker Lemma)
Let {bn} be an increasing sequence of positive real numbers with bn→∞,and let {xn} be a sequence of real numbers with ∑n=1∞xn=x(finite). Then
$\frac{1}{{{b}_{n}}}\sum\limits_{j=1}^{n}{{{b}_{j}}{{x}_{j}}}\to 0,\text{as }n\to \infty .$ |
Proof See Ref.[7],P63.
3 Proof of Theorem 1.1Proof Denote F0:=σ(Z0) and Fn:=σ{Xk,j;0≤k≤n-1,j≥1}. Then
$\underset{n\to \infty }{\mathop{\lim ~\sup }}\,\frac{\overline{{{Z}_{n+r}}}-{{m}_{n,r}}\overline{{{Z}_{n}}}}{{{(2{{\sigma }^{2}}_{n,r}{{Z}_{n}}logn)}^{1/2}}}=1~a.s..$ | (11) |
In fact,if Eq.(11) is true,let Zn=-Zn,n≥0,then we have
$\underset{n\to \infty }{\mathop{\lim ~\sup }}\,\frac{{{Z}_{n+r}}-{{m}_{n,r}}{{Z}_{n}}}{{{(2{{\sigma }^{2}}_{n,r}{{Z}_{n}}logn)}^{1/2}}}=1~a.s.,$ | (12) |
which in fact is
$\underset{n\to \infty }{\mathop{\lim \inf }}\,\frac{{{Z}_{n+r}}-{{m}_{n,r}}{{Z}_{n}}}{{{\left( 2\sigma _{n,r}^{2}{{Z}_{n}}\log n \right)}^{1/2}}}=-1\text{ a}\text{.s}..$ |
Define
$\begin{align} & \widetilde{{{Y}_{n,j}}}:=Y{{'}_{n,j}}-\text{E}Y{{'}_{n,j}}, \\ & \widetilde{{{S}_{n}}}:=\sum\limits_{j=1}^{{{Z}_{n}}}{\widetilde{{{Y}_{n,j}}}}, \\ & {{\widetilde{{{\omega }_{n}}}}^{2}}:\text{=Var}\left( \widetilde{{{S}_{n}}}|{{F}_{n}} \right)={{Z}_{n}}\text{Var}\left( \widetilde{{{Y}_{n,j}}} \right), \\ & {{T}_{n}}:=\widetilde{{{S}_{n}}}/\widetilde{{{\omega }_{n}}}. \\ \end{align}$ |
By a standard moment inequality,
$\begin{align} & \text{E}\left( {{\left| \text{ }\widetilde{{{Y}_{n,j}}^{\prime }} \right|}^{3}} \right)\le \\ & \text{E}\left( {{\left| {{Y}^{\prime }}_{n,j} \right|}^{3}} \right)+3\text{E}\left( \left| {{Y}^{\prime }}_{n,j} \right| \right){{\left( \text{E}\left| {{Y}^{\prime }}_{n,j} \right| \right)}^{2}}+ \\ & 3\text{E}\left( \left| {{Y}^{\prime }}_{n,j} \right| \right)\text{E}\left( {{Y}^{'}}_{n,j}^{2} \right)+\text{E}\left( {{\left| {{Y}^{\prime }}_{n,j} \right|}^{3}} \right) \\ & \le 8\text{E}\left( {{\left| {{Y}^{\prime }}_{n,j} \right|}^{3}} \right)=8\int_{\left| y \right|\le \sqrt{{{m}_{n}}}}{{{\left| y \right|}^{\text{3}}}\text{d}{{F}_{n}}\left( y \right)}. \\ \end{align}$ |
Letting A be the Berry-Essen constant,by the Berry-Esseen Lemma we have
$\begin{align} & {{\Delta }_{n}}:=\underset{y\in \mathbb{R}}{\mathop{\text{sup}}}\,\left| \mathbb{P}({{T}_{n}}\le y \right|{{F}_{n}})-\Phi \left( y \right)| \\ & \le 8A\frac{{{Z}_{n}}}{\widetilde{{{\omega }_{n}}^{3}}}\int_{\left| y \right|\le {{m}_{n}}}{{{\left| y \right|}^{3}}}d{{F}_{n}}\left( y \right). \\ \end{align}$ | (13) |
By the condition (2) we can deduce that there exist a uniform upper and a uniform lower bound only dependent on r for σn,r2. So there exist positive and finite constants C1 and C2 which are only dependent on r such that
${{C}_{1}}\le \underset{n\to \infty }{\mathop{\lim ~ \text{inf}}}\,\frac{{{Z}_{n}}}{\widetilde{{{\omega }_{n}}^{2}}}\le \underset{n\to \infty }{\mathop{\lim ~\sup }}\,\frac{{{Z}_{n}}}{\widetilde{{{\omega }_{n}}^{2}}}\le {{C}_{2}}.$ | (14) |
From Remark 1.3 we know that Zn=O(mn)a.s.,hence
$\begin{align} & \sum\limits_{n=0}^{\infty }{\frac{1}{\sqrt{{{m}_{n}}}}}{{\int }_{\left| y \right|\le \sqrt{{{m}_{n}}}}}{{\left| y \right|}^{3}}d{{F}_{n}}\left( y \right) \\ & =\sum\limits_{n=0}^{\infty }{\frac{1}{\sqrt{{{m}_{n}}}}}\left( \sum\limits_{j=1}^{{{\xi }^{n}}}{{{\int }_{j-1 <\left| y \right|\le j}}}{{\left| y \right|}^{3}}d{{F}_{n}}{{\left( y \right)}^{n}} \right)+ \\ & \sum\limits_{n=0}^{\infty }{\frac{1}{\sqrt{{{m}_{n}}}}}\left( \sum\limits_{j={{\zeta }^{n}}+1}^{\sqrt{{{m}_{n}}}}{{{\int }_{j-1<\left| y \right|\le j}}}{{\left| y \right|}^{3}}d{{F}_{n}}\left( y \right) \right) \\ & \le \sum\limits_{n=0}^{\infty }{\sum\limits_{j=1}^{{{\xi }^{n}}}{{{\int }_{j-1<\left| y \right|\le j}}}}{{\left| y \right|}^{2}}d{{F}_{n}}\left( y \right)+ \\ & \sum\limits_{n=0}^{\infty }{\sum\limits_{j={{\zeta }^{n}}+1}^{\sqrt{{{m}_{n}}}}{{{\int }_{j-1<\left| y \right|\le j}}}}{{\left| y \right|}^{2}}d{{F}_{n}}\left( y \right)) \\ & \le \sum\limits_{n=0}^{\infty }{{{C}_{3}}}{{({{\zeta }^{2}}/\sqrt{\alpha })}^{n}}+\sum\limits_{n=0}^{\infty }{{{C}_{3}}}{{\int }_{\left| y \right|>{{\zeta }^{n}}}}{{\left| y \right|}^{2}}d{{F}_{n}}\left( y \right), \\ \end{align}$ | (15) |
where C3>0 is a constant. By using the condition (3),Eq.(13) and Eq.(15) we have ∑△n<∞ a.s.. Again applying Lemma 2.1 one eventually has
$\underset{n\to \infty }{\mathop{\lim \sup }}\,\frac{{{T}_{n}}}{{{\left( 2\log n \right)}^{1/2}}}\le 1,\text{a}\text{.s}..$ |
In addition,since Tn is measurable with respect to Fn+r,the above inequality should be replaced by equality.
${{S}_{n}}=\sum\limits_{j=1}^{{{Z}_{n}}}{{{Y}_{n,j}}}=\sum\limits_{j=1}^{{{Z}_{n}}}{\left\{ \widetilde{{{Y}_{n,j}}}+{{Y}_{n,j}}-Y{{'}_{n,j}}+\text{E}Y{{'}_{n,j}} \right\}}.$ |
Thus it suffices to verify
$\underset{n\to \infty }{\mathop{\lim \sup }}\,\frac{{{S}_{n}}}{{{\left( 2\sigma _{n,r}^{2}{{Z}_{n}}\log n \right)}^{1/2}}}=\underset{n\to \infty }{\mathop{\lim \sup }}\,\frac{{{T}_{n}}}{{{\left( 2\log n \right)}^{1/2}}}.$ |
Noting that
$\begin{align} & \frac{{{S}_{n}}}{{{\left( 2\sigma _{n,r}^{2}{{Z}_{n}}\log n \right)}^{1/2}}}=\frac{{{T}_{n}}}{{{\left( 2\log n \right)}^{1/2}}}{{\left( \frac{\text{Var}(Y{{\prime }_{n,j}})}{\sigma _{n,r}^{2}} \right)}^{1/2}}+ \\ & \frac{\sum\nolimits_{j=1}^{{{Z}_{n}}}{\left\{ {{Y}_{n,j}}-Y{{\prime }_{n,j}} \right\}}}{{{\left( 2\sigma _{n,r}^{2}{{Z}_{n}}\log n \right)}^{1/2}}}+\frac{\sum\nolimits_{j=1}^{{{Z}_{n}}}{\text{E}Y{{\prime }_{n,j}}}}{{{\left( 2\sigma _{n,r}^{2}{{Z}_{n}}\log n \right)}^{1/2}}}, \\ \end{align}$ |
it suffices to verify that
$Var(Y{{\prime }_{n,j}})/{{\sigma }^{2}}_{n,r}\to 1,$ | (16) |
$\frac{\sum _{j=1}^{{{Z}_{n}}}\{{{Y}_{n,j}}-Y{{\prime }_{n,j}}\}}{{{({{Z}_{n}}logn)}^{1/2}}}\to 0,$ | (17) |
$\frac{\sum _{j=1}^{{{Z}_{n}}}\mathbb{E}Y{{\prime }_{n,j}}}{{{({{Z}_{n}}logn)}^{1/2}}}\to 0.$ | (18) |
By the condition (5) we know that Eq.(16) holds. For Eq.(17) and Eq.(18),by Kronecer Lemma it only needs to prove that
$\sum\limits_{n=0}^{\infty }{\frac{1}{\sqrt{{{m}_{n}}logn}}}\sum\limits_{j=1}^{{{Z}_{n}}}{\left| {{Y}_{n,j}}-Y{{\prime }_{n,j}} \right|}<\infty ,$ | (19) |
$\sum\limits_{n=0}^{\infty }{\frac{1}{\sqrt{{{m}_{n}}logn}}}\sum\limits_{j=1}^{{{Z}_{n}}}{\left| \mathbb{E}Y{{\prime }_{n,j}} \right|}<\infty .$ | (20) |
Since
$\begin{align} & \left| \text{E}Y{{'}_{n,j}} \right|=\left| \text{E}\left( Y{{'}_{n,j}}-{{Y}_{n,j}} \right) \right|\le \text{E}\left| Y{{'}_{n,j}}-{{Y}_{n,j}} \right| \\ & =\text{E}\left| {{Y}_{n,j}} \right|I\left( \left| {{Y}_{n,j}} \right| \right)>\sqrt{{{m}_{n}}}=\int_{\left| y \right|\sqrt{{{m}_{n}}}}{\left| y \right|}\text{d}{{F}_{n}}\left( y \right), \\ \end{align}$ |
and noting that Zn=O(mn)a.s., it suffices for Eq.(19) and Eq.(20) that
$\sum\limits_{n=0}^{\infty }{\frac{{{m}_{n}}}{\sqrt{{{m}_{n}}logn}}}{{\int }_{\left| y \right|>\sqrt{{{m}_{n}}}}}\left| y \right|d{{F}_{n}}\left( y \right)<\infty ,$ | (21) |
(for the first,taking the mean). And Eq.(21) certainly holds since even
$\begin{align} & \sum\limits_{n=0}^{\infty }{\sqrt{{{m}_{n}}}}\int_{\left| y \right|\sqrt{{{m}_{n}}}}{\left| y \right|}\text{d}{{F}_{n}}\left( y \right)\le \sum\limits_{n=0}^{\infty }{\int_{\left| y \right|\sqrt{{{m}_{n}}}}{{{y}^{2}}}\text{d}{{F}_{n}}\left( y \right)} \\ & \le \sum\limits_{n=0}^{\infty }{\int_{\left| y \right|>{{\xi }^{2n}}}{{{\left| y \right|}^{2}}}\text{d}{{F}_{n}}\left( y \right)}<\infty . \\ \end{align}$ |
Therefore,Eq.(17) and Eq.(18) hold.
In order to prove Eq.(8),recall Vn,j:=Wn(j)-1. Repeating the proof of Eq.(11) and noting that there doesn’t exist 1≤r<∞ so that Tn is measurable with respect to Fn+r,we have
$\underset{n\to \infty }{\mathop{\lim ~\sup }}\,$ | (22) |
Note that
$\begin{align} & \frac{{{m}_{n}}\left( W-{{W}_{n}} \right)}{{{\left( 2\sigma _{n}^{2}{{Z}_{n}}\log n \right)}^{1/2}}}=\frac{{{m}_{n+k}}\left( W-{{W}_{n+k}} \right)}{2\sigma _{n+k}^{2}{{Z}_{n+k}}\log \left( n+k \right)}\cdot \\ & {{\left( \frac{\sigma _{n+k}^{2}{{Z}_{n+k}}\log \left( n+k \right)}{\sigma _{n}^{2}{{Z}_{n}}\log n} \right)}^{1/2}}\frac{1}{{{m}_{n+k}}}+ \\ & \frac{{{m}_{n+k}}\left( {{W}_{n+k}}-{{W}_{n}} \right)}{{{\left( 2\sigma _{n,k}^{2}{{Z}_{n}}\log n \right)}^{1/2}}}{{\left( \frac{\sigma _{n,k}^{2}}{\sigma _{n}^{2}} \right)}^{1/2}}\frac{1}{{{m}_{n+k}}}. \\ \end{align}$ |
So the lim sup part is at least
$\begin{align} & -\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \frac{\sigma _{n+k}^{2}{{Z}_{n+k}}\log \left( n+k \right)}{\sigma _{n}^{2}{{Z}_{n}}\log n} \right)}^{1/2}}\frac{1}{{{m}_{n+k}}}+ \\ & \underset{n\to \infty }{\mathop{\lim }}\,{{\left( \frac{\sigma _{n+k}^{2}}{\sigma _{n}^{2}} \right)}^{1/2}}\frac{1}{{{m}_{n,k}}}. \\ \end{align}$ |
Again since the first item of the above expression is smaller than Cα-k/2 and the second item
$\frac{\sigma _{n+k}^{2}}{\sigma _{n}^{2}}\frac{1}{{{\left( {{m}_{n,k}} \right)}^{2}}}=\left( \sum\limits_{j=n}^{n+k-1}{\frac{\delta _{j}^{2}}{\mu _{j}^{2}{{m}_{n,j-n}}}} \right)/\left( \sum\limits_{j=n}^{\infty }{\frac{\delta _{j}^{2}}{\mu _{j}^{2}{{m}_{n,j-n}}}} \right)=\frac{1}{1+{{b}_{n,k}}},$ |
where bn,k<Cα-k and C>0 is a constant,the lim sup part of Eq.(8) is at least 1 as k→∞. The lim inf part of Eq.(8) can be proved in the same way as for Eq.(12).□
I am very grateful to my supervisor Prof. HU for intensive discussion with me and also benefit much from the communications with Gao Zhenlong,Liang Longyue,Zhang Zhiyang,and Zhao Rongjie.
[1] | Heyde C C. Some almost sure convergence theorems for branching processes[J]. Z Wahrscheinlichkeitstheorie verw Geb , 1971, 20 :189–192. DOI:10.1007/BF00534900 |
[2] | Heyde C C, Leslie J R. Improved classical limit analogues for Galton-Watson processes with or without immigration[J]. Bull Austral Math Soc , 1971, 5 :145–155. DOI:10.1017/S0004972700047018 |
[3] | Asmussen S. Almost sure behavior of linear functionals of supercritical branching processes[J]. Transactions of The American Mathematical Society , 1977, 231 (1) :233–248. DOI:10.1090/S0002-9947-1977-0440719-1 |
[4] | Huggins R M. Laws of the iterated logarithm for time changed brownian motion with an application to branching processes[J]. Ann Probability , 1985, 13 (4) :1148–1156. DOI:10.1214/aop/1176992801 |
[5] | Gao Z L. Limit theorems for Galton-Watson processes in random environments[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2011(in Chinese). |
[6] | Fearn D H. Galton-Watson processes with generation dependence[J]. Proc Sixth Berkeley Symp Math Statist Probab , 1971, 2 :159–172. |
[7] | Durrett R. Probability:theory and examples[M].3rd ed. Beijing: World Book Inc, 2011 . |