Let ƒ be a complex-valued measurable function that is locally integrable, denoted by
$ M f(x)=\sup _{B_r \ni x} \frac{1}{\left|B_r\right|} \int_{B_r}|f(y)| \mathrm{d} y, $ |
and
$ M^{\mathrm{c}} f(x)=\sup _{r>0} \frac{1}{\left|B_r(x)\right|} \int_{B_r(x)}|f(y)| \mathrm{d} y . $ |
Here Br is a ball with radius r, and Br(x) is a ball with radius r and centered at the point x. For every subset
The Hardy-Littlewood maximal function was introduced by Hardy and Littlewood[1] for n=1, and by Wiener[2] for n≥2. It is well-known that the Hardy-Littlewood maximal function plays an important role in various fields of analysis.
The operator M:
For some real number γ∈
$ M_\gamma f(x)=\sup _{\substack{B_r \ni x \\ 0<r<\gamma}} \frac{1}{\left|B_r\right|} \int_{B_r}|f(y)| \mathrm{d} y, $ | (1) |
and
$ M_\gamma^{\mathrm{c}} f(x)=\sup _{0<r<\gamma} \frac{1}{\left|B_r(x)\right|} \int_{B_r(x)}|f(y)| \mathrm{d} y . $ |
Although both operators Mγ and
The regularity properties of Mƒ and Mcƒ are of significant interest due to their successful applications in the study of Sobolev functions and partial differential equations. A deal of work has been done since Kinnunen[6] proved that Mc is bounded in the Sobolev space W1, p(
In 2020, Wu and Yan[8] obtained a characterization of continuity of Mƒ and Mcƒ, and investigated the relationships between the continuity of Mƒ and the continuity or bounded variation of ƒ.
Theorem A Let ƒ∈
$ \tilde{f}(x)=f(x) $ |
for almost every x∈
$ \limsup _{x \rightarrow a}|\tilde{f}(x)| \leqslant M^{\mathrm{c}} f(a) . $ |
Theorem B Let ƒ∈
$ \tilde{f}(x)=f(x) $ |
for almost every x∈
$ \limsup _{x \rightarrow a}|\tilde{f}(x)| \leqslant M^{\mathrm{c}} f(a) . $ |
Noticing the same properties on norms of Mγ and M, it is natural to consider whether Mγƒ and
Theorem 1.1 Ifƒ∈
$ \tilde{f}(x)=f(x) $ | (2) |
for almost every x∈
$ \limsup _{x \rightarrow x_0}|\tilde{f}(x)| \leqslant M_\gamma f\left(x_0\right) . $ | (3) |
Theorem 1.1 characterizes an equivalent condition of continuity of Mγƒ. For
Theorem 1.2 If ƒ ∈
$ \tilde{f}(x)=f(x), $ |
for almost every x∈
$ \limsup _{x \rightarrow x_0}|\tilde{f}(x)| \leqslant M_γ^{\mathrm{c}} f\left(x_0\right) . $ |
In this section, we give two useful lemmas. In Lemma 2.1, we prove the lower semi-continuity of Mムand
It is well-known that Mƒ and Mcƒ are lower semi-continuous. So are Mγƒ and
Lemma 2.1 If ƒ∈
Proof For any ε>0, according to the definition of Mγƒ, there exists a ball
$ \frac{1}{\left|B_r\right|} \int_{B_r}|f(y)| \mathrm{d} y>M_\gamma f\left(x_0\right)-\frac{\varepsilon}{2} . $ |
Take δ∈(0, γ-r) such that
$ \frac{\left|B_{r+\delta}\right|}{\left|B_r\right|}<\frac{2 M_\gamma f\left(x_0\right)-\varepsilon}{2 M_\gamma f\left(x_0\right)-2 \varepsilon} . $ |
Let
$ \left|x-\hat{x}_0\right| \leqslant\left|x-x_0\right|+\left|x_0-\hat{x}_0\right|<r+\delta, $ |
thus
$ \begin{aligned} M_\gamma f(x) & \geqslant \frac{1}{\left|B_{r+\delta}\left(\hat{x}_0\right)\right|} \int_{B_{r+\delta\left(\hat{x}_0\right)}}|f(y)| \mathrm{d} y \\ & \geqslant \frac{\left|B_r\right|}{\left|B_{r+\delta}\right|} \cdot \frac{1}{\left|B_r\right|} \int_{B_{r\left(\hat{x}_0\right)}}|f(y)| \mathrm{d} y \\ & >\frac{2 M_\gamma f\left(x_0\right)-2 \varepsilon}{2 M_\gamma f\left(x_0\right)-\varepsilon} \cdot\left(M_\gamma f\left(x_0\right)-\frac{\varepsilon}{2}\right) \\ & =M_\gamma f\left(x_0\right)-\varepsilon . \end{aligned} $ | (4) |
The calculation (4) implies that Mムis lower semi-continuous at the point x0.
The proof of
In order to prove Theorem 1.1, we also need the following crucial lemma that proves the upper semi-continuity with respect to γ of the value Mγƒ(x0) for fixed x0.
Lemma 2.2 Let ƒ∈
$ \varphi(\gamma)=M_\chi f\left(x_0\right)=\sup _{\substack{B_r \ni x_0 \\ 0<r<\gamma}} \frac{1}{\left|B_r\right|} \int_{B_r}|f(y)| \mathrm{d} y . $ | (5) |
Then one of the following two cases is true:
(i) φ(γ)=∞ for any γ∈(0, ∞);
(ii) φ is upper semi-continuous on (0, ∞).
Proof Suppose that there exists γ0>0 such that φ(γ0)=∞. Now we prove that (i) is true.
Notice the observation that γ>γ0 implies
$ \begin{aligned} \varphi(\gamma) & =\sup _{\substack{B_r \ni x_0 \\ 0<r<\gamma}} \frac{1}{\left|B_r\right|} \int_{B_r}|f(y)| \mathrm{d} y \\ & \geqslant \sup _{\substack{B_r \ni x_0 \\ 0<r<\gamma}} \frac{1}{\left|B_k\right|} \int_{B_k}|f(y)| \mathrm{d} y \\ & =\varphi\left(\gamma_0\right) . \end{aligned} $ | (6) |
It immediately follows from (6) that φ(γ)=∞ for any γ>γ0.
Next we just need to prove that φ(γ)=∞ for any γ∈(0, γ0). By the definition of Mƒ, we can choose a sequence of balls
$ \frac{1}{\left|B_k\right|} \int_{B_k}|f(y)| \mathrm{d} y=\frac{1}{V_n r_{k B_k}^n}|f(y)| \mathrm{d} y \geqslant k, $ | (7) |
where Vn is the Lebesgue measure of the ndimensional unit ball.
Then we claim that
$ \lim _{k \rightarrow \infty} r_k=0 . $ | (8) |
Assume that the assertion (8) is true. Then for any γ∈(0, γ0), there exists an integer K>0 such that rk < γ for any k>K. It follows from (7) that
$ \begin{aligned} \varphi(\gamma) & =\sup _{\substack{B_r \ni x_0 \\ 0<r<\gamma}} \frac{1}{\left|B_r\right|} \int_{B_r}|f(y)| \mathrm{d} y \\ & \geqslant \sup _{k>K} \frac{1}{\left|B_r\right|} \int_{B_r}|f(y)| \mathrm{d} y \\ & =\infty . \end{aligned} $ |
Now let us prove the assertion (8) is true. Recalling that ƒ∈
$ \int\limits_{{B_k}} {f(y)|{\rm{d}}y} \int\limits_{{B_{2{\gamma _0}}}\left( {{x_0}} \right)} {|f(y)|{\rm{d}}y: = C < \infty } . $ | (9) |
It follows from (7) and (9) that
$ r_k \leqslant \frac{C}{V_n k} . $ | (10) |
The inequality (10) implies the assertion (8).
Next we investigate the other case. If φ(γ) < ∞ for any γ∈(0, ∞), we can prove case (ii) by contradiction. Assume that case (ii) is false. Then there exists a point γ0 such that φ is not upper semi-continuous at the point. Furthermore, there exists α>0 such that
$ \limsup _{\gamma \rightarrow\gamma_0} \varphi(\gamma)>\varphi\left(\gamma_0\right)+\alpha $ | (11) |
Recalling the observation (6), the statement (11) implies that there exists a sequence
$ \lim _{k \rightarrow \infty} \gamma_k=\gamma_0, $ | (12) |
and
$ \varphi\left(\gamma_k\right)>\varphi\left(\gamma_0\right)+\frac{\alpha}{2} $ |
holds for any k≥1. By the definition (5) of φ, there exists a sequence of balls
$ \frac{1}{{\left| {{B_k}} \right|}}\int\limits_{{B_k}} {f(y)|{\rm{d}}y > \varphi \left( {{\gamma _0}} \right) + \frac{\alpha }{4}, } $ | (13) |
and 0 < rk < γk, where rk denotes the radius of Bk. The statements (12) and (13) imply that γ0 < rk < γk and rk→γ0 as k→∞. We denote the center of Bk by
$ \begin{aligned} \hat{x}_k^{\prime} & =\left(1-\frac{r_k^{\prime}}{r_k}\right) x_0+\frac{r_k^{\prime}}{r_k} \hat{x}_k \\ & =2\left(1-\frac{\gamma_0}{r_k}\right) x_0+\left(\frac{2 \gamma_0}{r_k}-1\right) \hat{x}_k \end{aligned} $ |
Then we can deduce that x0∈
$ \begin{aligned} \frac{1}{\left|B_k\right|} \int_{B_k}|f(y)| \mathrm{d} y & >\varphi\left(\gamma_0\right)+\frac{\alpha}{4} \\ & >\frac{1}{\left|B_k^{\prime}\right|} \int_{B_k^{\prime}}|f(y)| \mathrm{d} y+\frac{\alpha}{4} . \end{aligned} $ |
Then we have that
$ \begin{aligned} \limsup _{k \rightarrow \infty} & \left(\frac{1}{\left|B_k\right|} \int_{B_k}|f(y)| \mathrm{d} y-\right. \\ & \left.\frac{1}{\left|B_k^{\prime}\right|} \int_{B_k^{\prime}}|f(y)| \mathrm{d} y\right) \geqslant \frac{\alpha}{4} . \end{aligned} $ | (14) |
On the other hand, denote the characteristic function of
$ \begin{aligned} g(x) & =|f(x)| \chi_{B_{4 \gamma_0}\left(x_0\right)}(x) \\ & =\left\{\begin{array}{cc} |f(x)|, & x \in B_{B_{4 \gamma_0}}\left(x_0\right), \\ 0, & x \notin B_{4 \gamma_0}\left(x_0\right) . \end{array}\right. \end{aligned} $ |
Then we obtain that g∈L1(
$ f_k(x)=|f(x)| \chi_{B_k \backslash B_k^{\prime}}(x), \quad x \in \mathbb{R}^n . $ |
Due to 0 < r′k < γ0 < rk < 2γ0 and the choice of B′k, we have
$ \begin{aligned} & \lim _{k \rightarrow \infty}\left(\frac{1}{\left|B_k\right|} \int_{B_k}|f(y)| \mathrm{d} y-\frac{1}{\left|B_k^{\prime}\right|} \int_{B_k^{\prime}}|f(y)| \mathrm{d} y\right) \\ & \leqslant \lim _{k \rightarrow \infty} \frac{1}{\left|B_k\right|}\left(\int_{B_k}|f(y)| \mathrm{d} y-\int_{B_k^{\prime}}|f(y)| \mathrm{d} y\right) \\ &= \lim _{k \rightarrow \infty} \frac{1}{\left|B_k\right|} \int_{B_k \backslash B_k^{\prime}}|f(y)| \mathrm{d} y \\ &= \lim _{k \rightarrow \infty} \frac{1}{\left|B_k\right|} \int_{\mathbf{R}^n}|f(y)| \chi_{B_k \backslash B_k^{\prime}}(y) \mathrm{d} y \\ &= \lim _{k \rightarrow \infty} \frac{1}{\left|B_k\right|} \int_{\mathbf{R}^n} f_k(y) \mathrm{d} y \\ &= \frac{1}{\left|B_k\right|} \int_{\mathbf{R}^n } \lim _{k\rightarrow \infty} f_k(y) \mathrm{d} y=0, \text { thus } \\ & \limsup _{k \rightarrow \infty}\left(\frac{1}{\left|B_k\right|} \int_{B_k}|f(y)| \mathrm{d} y-\frac{1}{\left|B_k^{\prime}\right|} \int_{B_k^{\prime}}|f(y)| \mathrm{d} y\right) \leqslant 0, \end{aligned} $ |
which contradicts with (14).
Therefore case (ii) is true.
For the centered version, we have a similar result, and the proof can be repeated almost word for word. We just need an additional condition that the center of the ball is at the point x0 every time we take balls.
Lemma 2.3 Let
$ \varphi_{\mathrm{c}}(\gamma)=M_{\gamma}^{\mathrm{c}} f\left(x_0\right)=\sup _{0<r<\gamma} \frac{1}{\left|B_r\left(x_0\right)\right|} \int_{B_r\left(x_0\right)}|f(y)| \mathrm{d} y . $ |
Then one of the following two cases is true:
(i) φc(γ)=∞ for any γ∈(0, ∞);
(ii) φc is upper semi-continuous on (0, ∞).
3 Proof of main theorems and discussionsNow we present the proof of Theorem 1.1.
Proof of Theorem 1.1 First we consider the necessity. Define
$ \tilde{f}(x)= \begin{cases}M_γ f(x), & |f(x)|>M_\gamma f(x), \\ f(x), & |f(x)| \leqslant M_\gamma f(x) .\end{cases} $ | (15) |
If x is one of the Lebesgue points of ƒ, then we have that
$ |f(x)| \leqslant M_\gamma^{\mathrm{c}} f(x) \leqslant M_\gamma f(x) . $ | (16) |
Due to ƒ∈
On the other hand, (15) implies that
$ \limsup _{x \rightarrow x_0}|\tilde{f}(x)| \leqslant \limsup _{x \rightarrow x_0} M_\gamma f(x)=M_\gamma f\left(x_0\right) . $ |
Next we prove the sufficiency by contradiction. Suppose that Mγƒ is not continuous at the point x0. Then Mγƒ is not upper semi-continuous at x0, since Mγƒ is lower semi-continuous at the point x0. Thus there exists a positive real number α>0 such that
$ \limsup _{x \rightarrow x_0} M_γ f(x)>M_γ f\left(x_0\right)+\alpha . $ | (17) |
The statement (17) implies that there exists a sequence of balls
$ M_γ f\left(x_k\right)>M_\gamma f\left(x_0\right)+\alpha $ |
holds for any k≥1. By the definition (1) of Mγƒ, for any xk, there exists a ball
$ \begin{aligned} \frac{1}{\left|B_k\right|} \int_{B_k}|f(y)| \mathrm{d} y & >M_\gamma f\left(x_k\right)-\frac{\alpha}{2} \\ & >M_\gamma f\left(x_0\right)+\frac{\alpha}{2} . \end{aligned} $ | (18) |
We claim that
$ \lim _{k \rightarrow \infty} r_k=0 . $ | (19) |
Assume that the assertion (19) is true. It follows from (2) and (18) that
$ \begin{aligned} M_\gamma f\left(x_0\right)+\frac{\alpha}{2} & <\frac{1}{\left|B_k\right|} \int_{B_k}|f(y)| \mathrm{d} y \\ & =\frac{1}{\left|B_k\right|} \int_{B_k}|\tilde{f}(y)| \mathrm{d} y . \end{aligned} $ | (20) |
For any Bk, there exists xk∈Bk such that
$ \left|\tilde{f}\left(\bar{x}_k\right)\right| \geqslant \frac{1}{\left|B_k\right|} \int_{B_k}|\tilde{f}(y)| \mathrm{d} y>M_\gamma f\left(x_0\right)+\frac{\alpha}{2} . $ |
We can deduce that xk→x0 as k→∞ from (19) since xk→x0 as k→∞. It follows that
$ \limsup _{x \rightarrow x_0}|\tilde{f}(x)| \geqslant \limsup _{k \rightarrow \infty}\left|\tilde{f}\left(\bar{x}_k\right)\right| \geqslant M_\gamma f\left(x_0\right)+\frac{\alpha}{2}, $ |
which contradicts with (3). Therefore Mムis continuous at the point x0.
Now we prove the assertion (19) by contradiction again. Suppose that the assertion (19) is false, then we have
$ 0<c:=\limsup _{k \rightarrow \infty} r_k \leqslant \gamma . $ |
Take a subsequence of
$ \lim _{k \rightarrow \infty} r_k=c>0 . $ |
Lemma 2.2 implies that Mγƒ(x0) is upper semi-continuous with respect to γ. Thus there exists γ′> γ such that
$ M_{\gamma^{\prime}} f\left(x_0\right) \leqslant M_\gamma f\left(x_0\right)+\frac{\alpha}{4} . $ | (21) |
Take ε=γ′-γ. Then there exists K>0 such that |xk-a| < ε for any k>K. Recalling that 0 < rk < γ, we have
$ \rho_k:=r_k+\left|x_k-x_0\right|<\gamma^{\prime} . $ | (22) |
Denote the center of Bk by
$ \begin{aligned} \left|\hat{x}_k-x_0\right| & \leqslant\left|\hat{x}_k-x_k\right|+\left|x_k-x_0\right| \\ & <r_k+\left|x_k-x_0\right|=\rho_k \end{aligned} $ |
which implies that x0∈Bρk(
$ \begin{aligned} M_\gamma f\left(x_0\right)+\frac{\alpha}{4} & \geqslant M_\gamma f\left(x_0\right) \\ & \geqslant \frac{1}{\left|B_{\rho_k}\left(\hat{x}_k\right)\right|} \int_{B_{\rho_k}\left(\hat{x}_k\right)}|f(y)| \mathrm{d} y \\ & \geqslant \frac{\left|B_k\right|}{\left|B_{\rho_k}\left(\hat{x}_k\right)\right|} \cdot \frac{1}{\left|B_k\right|} \int_{R_k}|f(y)| \mathrm{d} y \\ & >\frac{r_k^n}{\left(r_k+\left|x_k-x_0\right|\right)^n} \cdot\left(M_\gamma f\left(x_0\right)+\frac{\alpha}{2}\right) . \end{aligned} $ |
Let k→∞, then we deduce that
$ M_\gamma f\left(x_0\right)+\frac{\alpha}{4} \geqslant M_\gamma f\left(x_0\right)+\frac{\alpha}{2}, $ |
which is a contradiction. Therefore the assertion (19) is true.
The proof of Theorem 1.2 is quite similar to the proof of Theorem 1.1. In fact, we just need an additional condition that the center of the ball is at the point x0 every time we take balls. So we omit the proof of Theorem 1.2.
The applications and discussions of the classical Hardy-Littlewood maximal functions presented by Wu and Yan[8] make sense for the truncated version as well, and the proof just need to be adjusted as we did in Theorem 1.1. Now we give the results without proof.
Theorem 3.1 Let ƒ∈
Theorem 3.2 Let ƒ∈
Remark 3.1 The same as the classical version, Theorem 3.2 is not true on
Define a set
E: ={(x, y)∈
For k=1, 2, …, define Bk,
$ \begin{aligned} & B_k:=\left\{x \in \mathbb{R} \left\lvert\, \frac{1}{2^k} \leqslant x<\frac{1}{2^k}+\frac{1}{2^{k+2}}\right.\right\}, \\ & C_k:=\left\{x \in \mathbb{R} \left\lvert\, -\frac{1}{2^{k+1}} \leqslant <\frac{1}{2^{k+1}}\right.\right\}, \end{aligned} $ |
and let
Ak=Bk×Ck.
Then
Furthermore, define ƒ:
$ f(x, y):=\sum\limits_{k=1}^{\infty} \chi_{A_k}(x, y), $ |
where χAk is the characteristic function of Ak. Then ƒ is of locally bounded variation at the coordinate origin (0, 0). Take γ=2, and consider the point sequence
Mγƒ(pk)=1,
and
$ M_\gamma f(0, 0) \geqslant \frac{1}{2} . $ |
Therefore, Mムis not continuous at (0, 0).
Remark 3.2 The converse of the Theorem 3.2 is false as well. It is equivalent to that there exists a function ƒ∈
$ f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right), & 0<x<1 \\ 0, & x \leqslant 0 \text { or } x \geqslant 1 .\end{cases} $ |
Notice that ƒ is continuous. By the Theorem 3.1, Mγƒ is continuous at the point 0. On the other hand, the continuity of ƒ implies that if g=ƒ almost everywhere, then g=ƒ everywhere. Thus we just need to show that ƒ is not of locally bounded variation at 0. For x≠0 and x≠1, calculate the derivative of ƒ, and we have
$ f^{\prime}(x)= \begin{cases}\sin \left(\frac{1}{x}\right)-\frac{1}{x} \cos \left(\frac{1}{x}\right), & 0<x<1, \\ 0, & x<0 \text { or } x>1 .\end{cases} $ |
Then for any δ>0, there exists an integer K≥1 such that
$ \frac{1}{2 K \pi+2 \pi / 3}<\delta . $ |
Then we have
$ \begin{aligned} & \int_{-\delta}^\delta\left|f^{\prime}(x)\right| \mathrm{d} x \\ \geqslant & \sum\limits_{k=K}^{\infty} \int_{\frac{1}{2 k\mathsf{π}++\mathsf{π}}}^{ \frac{1}{2 k\mathsf{π}+2 \mathsf{π} / 3}}\left|\sin \left(\frac{1}{x}\right)-\frac{1}{x} \cos \left(\frac{1}{x}\right)\right| \mathrm{d} x \\ \geqslant & \sum\limits_{k=K}^{\infty} \int_{\frac{1}{2 k \mathsf{π}+\mathsf{π}}}^{\frac{1}{2 k \mathsf{π}+\frac{2 \mathsf{π}}{3}}} k \mathsf{π} \mathrm{~d} x=\sum\limits_{k=K}^{\infty} \frac{k}{2(2 k+1)(3 k+1)} \\ \geqslant & \sum\limits_{k=K}^{\infty} \frac{1}{12(k+1)}=\infty . \end{aligned} $ |
Thus ƒ is not of locally bounded variation at 0.
Remark 3.3 Observe that the codomain of Mγƒ is [0, ∞]. We can consider taking ∞ as a valid value when investigating the pointwise continuity of Mγƒ. If we generalize the definition of pointwise continuity in the following way: Mγƒ is continuous at the point x0∈
$ \lim _{x \rightarrow x_0} M_γ f(x)=M_γ f\left(x_0\right) . $ |
This would not cause confusions. Then Mγƒ is continuous at the point x0 if Mγƒ(x0)=∞, since Mγƒ is lower continuous. Thus in this sense, the condition Mγƒ(x0) < ∞ can be removed from theorems or lemmas.
[1] |
Hardy G H, Littlewood J E. A maximal theorem with function-theoretic applications[J]. Acta Mathematica, 1930, 54(1): 81-116. DOI:10.1007/BF02547518 |
[2] |
Wiener N. The ergodic theorem[J]. Duke Mathematical Journal, 1939, 5(1): 1-18. DOI:10.1215/s0012-7094-39-00501-6 |
[3] |
Grafakos L. Classical Fourier analysis[M]. Graduate texts in mathematics: vol 249. 3rd ed. New York, NY: Springer New York, 2014.
|
[4] |
Rudin W. Real and complex analysis[M]. 3rd ed. New York, NY: McGraw-Hill, 1987.
|
[5] |
Wei M Q, Nie X D, Wu D, et al. A note on Hardy-Littlewood maximal operators[J]. Journal of Inequalities and Applications, 2016, 2016(1): 21. DOI:10.1186/s13660-016-0963-x |
[6] |
Kinnunen J. The Hardy-Littlewood maximal function of a Sobolev function[J]. Israel Journal of Mathematics, 1997, 100(1): 117-124. DOI:10.1007/BF02773636 |
[7] |
Aldaz J M, Pérez Lázaro J. Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities[J]. Transactions of the American Mathematical Society, 2007, 359(5): 2443-2461. DOI:10.1090/s0002-9947-06-04347-9 |
[8] |
Wu D, Yan D Y. Continuity of Hardy-Littlewood maximal function[J]. Acta Mathematicae Applicatae Sinica, English Series, 2020, 36(4): 982-990. DOI:10.1007/s10255-020-0983-z |