Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
  中国科学院大学学报  2025, Vol. 42 Issue (1): 13-19   PDF    
A class of quasilinear equations with -1 powers
ZHANG Heng, SUN Yijing     
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: This paper deals with quasilinear elliptic equations of singular growth like -Δu-uΔ(u2)=a(x)u-1.We establish the existence of positive solutions for general a(x)∈Lp(Ω), p>2, where Ω is a bounded domain in RN with N≥1.
Keywords: quasilinear singular equation    -1 power    elliptic equation    
一类具有-1幂指数的拟线性奇异偏微分方程
张衡, 孙义静     
中国科学院大学数学科学学院, 北京 100049
摘要: 研究一类具有奇异增长的拟线性椭圆方程-Δu-uΔ(u2)=a(x)u-1。对于一般的a(x)∈Lp(Ω), p>2, 证明了该方程正解的存在性, 其中ΩRN中的有界区域且N≥1。
关键词: 拟线性奇异方程    -1幂指数    椭圆方程    

Let Ω be a smooth bounded domain of RN, N≥1 and let H01(Ω) be the standard Sobolev space consisting of functions which vanish on the boundary of Ω and whose gradient is in L2(Ω). We consider the following quasi-linear singular equation

{ΔuuΔ(u2)=a(x)1u in Ω,u>0 in Ω,u=0 on Ω, (1)

where a(x)>0 a.e. in Ω and aLp(Ω) with p>2. This type of equations is closely related to the standing wave solutions of the following quasilinear Schrodinger equation

itψ=Δψ+V(x)ψh(x,|ψ|2)ψκΔ[ρ(|ψ|2)]ρ(|ψ|2)ψ, (2)

which has wide applications to physical models, suchas the superfluid film equation in plasma physics when ρ(s)=s[1], the self-channelling of a high-power ultra short laser in matter when ρ(s)=1+s[2], fluid mechanics[3], dissipative quantum mechanics, and condensed-matter theory[4]. A lot of results have been obtained in, for example, Refs. [5-7] and references therein. Singular problems have been intensively studied since 1970s because of their wide applications: boundary layer phenomenon in fluid mechanics, chemical heterogenous catalysts, glacial advance, etc.; we refer the reader to the books by Agarwal and O'Regan[8], and Hernández and Mancebo[9] for an excellent introduction to the singular boundary theory.

For the quasilinear singular equation involving a singular function f

{ΔuuΔ(u2)=f(x,u) in Ω,u>0 in Ω,u=0 on Ω, (3)

there are only a few results available about the existence of solutions by now. In Ref. [10], Marcos do Ó and Moameni considered the existence of radially symmetric solutions when Ω is a ball centered at the origin and the nonlinearity f(u)=λu3-u-u-γ with -γ∈(-1, 0). In Ref. [11], Santos, Yang and Zhou studied the case f(x, u)=λa(x)u-γ+b(x)uβ with -γ∈(-1, 0), β∈(1, 2·2*-1) and obtained the existence and multiplicity of solutions. For strongly singular quasilinear equations, in Ref. [12] Alves and Reis used the techniques developed in Ref. [13] by the second author for pure strongly singular equations and established the sufficient and necessary condition for the existence of solutions in the case when f(x, u)=h(x)u-γ+g(x, u) with -γ < -1. When -γ=-1, Alves[14] and Liu et al.[15] established the existence results for all -γ < 0 and f(x, u)=a(x)u-γ+λup with coefficient function a(x) satisfying: for each -γ < 0 there exists 0≤φ0C(Ω) and p>N such that a(x)φ0-γLp(Ω), which is used to construct the upper-lower solutions to overcome the singularity. In this paper we study the case -γ=-1 and face it in the quasilinear singular problem (1) for general a(x)∈Lp(Ω) with p>2.

1 The main result

Theorem 1.1 Let ΩRN, N≥1, be a bounded domain with smooth boundary ∂Ω. If a(x)>0 a.e. in Ω and aLp(Ω) with p>2, then problem (1) admits a positive H01(Ω)-solution.

By solutions of (1) we mean here solutions in H01(Ω), i.e. uH01(Ω) satisfying u(x)>0 in Ω and for all ψH01(Ω),

Ωuψ+2u2uψ+2uψ|u|2a(x)1uψ dx=0.

We consider the following functional on H01(Ω):

J(u)=12Ω(1+2u2)|u|2 dxΩa(x)ln(u)dx.

In this situation, one must find the integrability of both Ω|u|2u2 dx and Ωa(x)lnu dx is obscure on the function space H01(Ω), and so the functional I is not well defined on the entire space H01(Ω). In addition, when one faces quasilinear terms, a change of functions relying upon a nonlinear ODE equation: h is the solution of the following problem

{h(t)=11+2h2(t),t0,h(t)=h(t),t0.

(c.f. Ref. [16]) and the change, defined by ω(x)=h-1(u(x)), ∀xΩ, make singular terms more delicate. We give a way to deal with the singular functional after the function transform and establish the existence of solutions for more general coefficient functions of singular nonlinearities.

Notation. In the paper we make use of the following notation:

c denotes (possibly different) constants;

We denote by the norm in H01(Ω) and for uH01(Ω), u+=max{u, 0}.

2 Reformulation of the problem (P)

First, we collect some properties of the function h(t) defined by the solution of the nonlinear equation:

\begin{cases}h^{\prime}(t)=\frac{1}{\sqrt{1+2 h^2(t)}}, & t \geqslant 0, \\ h(t)=-h(-t), & t \leqslant 0 .\end{cases}

Lemma 2.1 (c.f. Refs. [5, 16-18]) Let h be defined as above. Then h has the following properties:

1) h″(t)=-2h(t)(h′(t))4, t>0;

2) h is unique, invertible and C^{\infty}(\mathbb{R})-function;

3) 0≤h′(t)≤1, \forall t \in \mathbb{R};

4) |h(t)|≤|t| and |h(t)|^2 \leqslant \sqrt{2}|t|, \forall t \in \mathbb{R}

5) \frac{h(t)}{2} \leqslant t h^{\prime}(t) \leqslant h(t), t, t≥0;

6) |h(t)| \geqslant h(1)|t|, |t|≤1 and |h(t)| \geqslant h(1)|t|^{\frac{1}{2}}, |t|>1;

7) \lim \limits_{t \rightarrow 0} \frac{h(t)}{t}=1, \lim \limits_{t \rightarrow \infty} \frac{h(t)}{t}=0 \text { and } \lim \limits_{t \rightarrow \infty} \frac{h(t)}{\sqrt{t}}=2^{\frac{1}{4}};

8) |h(t)| h^{\prime}(t) \leqslant \frac{1}{\sqrt{2}}, \forall t \in \mathbb{R}, hδ(t)h′(t) is increasing, t>0 and δ>1;

9) h(t)h′(t)/t, t>0 is decreasing, \lim \limits_{t \rightarrow 0} \frac{h(t) h^{\prime}(t)}{t}=1and\lim \limits_{t \rightarrow \infty} \frac{h(t) h^{\prime}(t)}{t}=0;

10) h(t)-αh′(t)t is strictly decreasing on (0, +) with α≥2.

Proof  We prove the point 10) of this lemma. The properties 1)-9) have been proved in Refs. [5, 16-18]. It is easily checked, thanks to point 5) of this lemma, that

t \geqslant h\left(1+2 h^2\right)^{\frac{1}{2}} \frac{1}{\alpha} \geqslant h \frac{\left(1+2 h^2\right)^{\frac{3}{2}}}{\left(1+\left(2+\frac{2}{\alpha}\right) h^2\right)} \frac{1}{\alpha},

since α≥2. Then it follows that

\begin{gathered} \frac{\mathrm{d}}{\mathrm{~d} t}\left[h(t)^{-\alpha} h^{\prime}(t) t\right] \\ =\frac{h\left(1+2 h^2\right)^{\frac{3}{2}}-\left(\alpha+(2 \alpha+2) h^2\right) t}{h^{\alpha+1}\left(1+2 h^2\right)^2}<0 .□ \end{gathered}

By the change of function ω(x)=h-1(u(x)), we see that if ωH01(Ω) is a solution of

\left\{\begin{array}{l} -\Delta \omega=a(x) \frac{1}{h(\omega)} h^{\prime}(\omega) \text { in } \varOmega, \\ \omega>0 \text { in } \varOmega, \omega=0 \text { on } \partial \varOmega, \end{array}\right. (4)

namely,

\int_{\varOmega} \nabla \omega \nabla \psi-a(x) \frac{h^{\prime}(\omega)}{h(\omega)} \psi \mathrm{d} x=0, \quad \forall \psi \in H_0^1(\varOmega)

then h(ω)∈H01(Ω) is the solution of (1). Now we write that

I(\omega)=\frac{1}{2} \int_{\varOmega}|\nabla \omega|^2 \mathrm{~d} x-\int_{\varOmega} a(x) \ln h(\omega(x)) \mathrm{d} x .

Note that, after the transformation of u(x)∈H01(Ω) into h-1(u(x))=ω(x)∈H01(Ω), the difficulty for the integrability of \int_{\varOmega} u^2|\nabla u|^2 \mathrm{~d} x has transferred to how to control the singular term lnh(ω(x)), ∀xΩ, since h(0)=0, in which h(t) the solution of an nonlinear O.D.E. can not be expressed. We first restrict our attention to the well defined set of functions in H01(Ω) for the singular functional I(ω): X and \mathcal{N} as follows

\begin{aligned} & X=\left\{\omega \in H_0^1(\varOmega): \omega>0 \text { a. e. in } \varOmega, \right. \\ & \left.a(x) \ln \omega(x) \in L^1(\varOmega)\right\}, \\ & \mathcal{N}=\left\{\omega \in X:\|\omega\|^2-\int_{\varOmega} a(x) \frac{h^{\prime}(\omega)}{h(\omega)} \omega \mathrm{d} x=0\right\} . \end{aligned}

Indeed, since h(0)=0 and h(t) is strictly increasing on [0, +∞), thanks to properties 4) and 6) of Lemma 2.1, we get

\begin{aligned} \mid & \int_{A_{+}} a(x) \ln h(\omega(x)) \mathrm{d} x\left|\leqslant \int_{A_{+}} a(x)\right| \ln h(\omega(x)) \mid \mathrm{d} x \\ = & \int_{A_{+}} a(x) \ln h(\omega(x)) \mathrm{d} x \leqslant \int_{A_{+}} a(x) \ln \omega(x) \mathrm{d} x<+\infty \\ & \left|\int_{A_{-}} a(x) \ln h(\omega(x)) \mathrm{d} x\right| \leqslant \int_{A_{-}} a(x)|\ln h(\omega(x))| \mathrm{d} x \\ = & \int_{A_{-}} a(x) \ln \left(\frac{1}{h(\omega(x))}\right) \mathrm{d} x \leqslant \\ & \int_{A_{-} \cap[\omega<1]} a(x)\left[\ln \left(\frac{1}{h(1)}\right)+\ln \left(\frac{1}{\omega(x)}\right)\right] \mathrm{d} x+ \\ & \int_{A_{-} \cap[\omega \geqslant 1]} a(x)\left[\ln \left(\frac{1}{h(1)}\right)+\frac{1}{2} \ln \left(\frac{1}{\omega(x)}\right)\right] \mathrm{d} x \\ \leqslant & 2|\ln h(1)| \int_{\varOmega} a(x) \mathrm{d} x+\frac{3}{2} \int_{\varOmega} a(x)|\ln \omega(x)| \mathrm{d} x<+\infty \end{aligned}

where

\begin{aligned} & A_{+}=\{x \in \varOmega: \ln h(\omega(x))>0\}, \\ & A_{-}=\{x \in \varOmega: \ln h(\omega(x)) \leqslant 0\}, \end{aligned}

which clearly implies that the singular functional I is well defined on X. In addition, for any t>0 and ωX,

I(t \omega)=t^2 \frac{1}{2}\|\omega\|^2-\int_{\varOmega} a(x) \ln h(t \omega) \mathrm{d} x,

so that

\frac{\mathrm{d}}{\mathrm{~d} t} I(t \omega)=t\|\omega\|^2-\int_{\varOmega} a(x) \frac{h^{\prime}(t \omega)}{h(t \omega)} \omega \mathrm{d} x .

Note that, thanks to property 5) of Lemma 2.1, we get

\frac{h^{\prime}(t \omega(x))}{h(t \omega(x))} \omega(x) \leqslant(t \omega(x))^{-1} \omega(x)=t^{-1}, \forall x \in \varOmega .

Thus \int_{\varOmega} a(x) \frac{h^{\prime}(t \omega)}{h(t \omega)} \omega \mathrm{d} x makes sense.

Claim 2.1  The set X is not empty.

Proof of Claim 2.1  We let φ1 be the first positive eigenfunction of-Δ in Ω with Dirichlet boundary condition, that is, -Δφ1=λ1φ1, φ1| ∂Ω=0, with λ1 the first Dirichlet eigenvalue of-Δ. It is well known that

\int_{\varOmega} \varphi_1^{-\gamma}(x) \mathrm{d} x<\infty (5)

if and only if -γ>-1 (c.f. Ref. [19]). By the result of Ref. [19](Theorem 1 and 2), we also know that: for any -α∈(-3, -1), there exist two positive constants d0, d1 and ωα(x)∈C2(Ω)∩C(Ω)∩H01(Ω), ωα(x)>0 in Ω such that

d_0 \varphi_1^{\frac{2}{1+\alpha}}(x) \leqslant \omega_\alpha(x) \leqslant d_1 \varphi_1^{\frac{2}{1+\alpha}}(x), \forall x \in \Omega. (6)

We choose \alpha_0=\frac{2 p-1}{p-1} so that -α0∈(-3, -1) and -\frac{2 p^{\prime}}{1+\alpha_0}>-1 since p>2, where p^{\prime}=\frac{p}{p-1} . Then it is possible to find the corresponding function ωα0(x)∈H01(Ω), ωα0(x)>0, ∀xΩ verifying d_0 \varphi_1^{\frac{2}{1+\alpha_0}}(x) \leqslant \omega_{\alpha_0}(x) \leqslant d_1 \varphi_1^{\frac{2}{1+\alpha_0}}(x), \forall x \in \varOmega. For such a ωα0H01(Ω), ωα0(x)>0 ∀xΩ, we divide the domain Ω into three parts:

\begin{aligned} A_{\omega_{\alpha_0}} & =\left\{x \in \varOmega: \ln \omega_{\alpha_0}<-1\right\}, \\ B_{\omega_{\alpha_0}} & =\left\{x \in \varOmega:\left|\ln \omega_{\alpha_0}\right| \leqslant 1\right\}, \\ D_{\omega_{\alpha_0}} & =\left\{x \in \varOmega: \ln \omega_{\alpha_0}>1\right\}, \end{aligned}

and then we have

\begin{aligned} & \left|\int_{B_{\omega_{\alpha_0}}} a(x) \ln \omega_{\alpha_0} \mathrm{~d} x\right| \leqslant \int_{B_{\omega_{\alpha_0}}} a(x)\left|\ln \omega_{\alpha_0}\right| \mathrm{d} x \\ & \leqslant \int_{B_{\omega_{\alpha_0}}} a(x) \mathrm{d} x \leqslant \int_{\varOmega} a(x) \mathrm{d} x<+\infty, \\ & \left|\int_{D_{\omega_{\alpha_0}}} a(x) \ln \omega_{\alpha_0} \mathrm{~d} x\right|=\int_{D_{\omega_{\alpha_0}}} a(x) \ln \omega_{\alpha_0} \mathrm{~d} x \\ & \leqslant \int_{\varOmega} a(x) \omega_{\alpha_0} \mathrm{~d} x \leqslant c\left(\int_{\varOmega} a(x)^p \mathrm{~d} x\right)^{\frac{1}{p}}\left\|\omega_{\alpha_0}\right\|<+\infty, \\ & \left|\int_{A_{\omega_{\alpha_0}}} a(x) \ln \omega_{\alpha_0} \mathrm{~d} x\right| \leqslant \int_{A_{\omega_{\alpha_0}}} a(x)\left|\ln \omega_{\alpha_0}\right| \mathrm{d} x \\ & \leqslant \int_{A_{\omega_{\alpha_0}}} a(x) \frac{1}{\omega_{\alpha_0}} \mathrm{~d} x \leqslant \int_{\varOmega} a(x) \frac{1}{\omega_{\alpha_0}} \mathrm{~d} x<+\infty, \end{aligned}

where we have used the fact that

\begin{aligned} & \int_{\varOmega} a(x) \omega_{\alpha_0}^{-1} \mathrm{~d} x \leqslant d_0^{-1} \int_{\varOmega} a(x) \varphi_1^{\frac{2}{1+\alpha_0}}(x) \mathrm{d} x \\ & \leqslant d_0^{-1}\left(\int_{\varOmega} a^p(x) \mathrm{d} x\right)^{\frac{1}{p}}\left(\int_{\varOmega} \varphi_1^{-\frac{2 p^{\prime}}{1+\alpha_0}}(x) \mathrm{d} x\right)^{\frac{1}{p^{\prime}}}, \end{aligned}

so that a(x)lnωα0(x)∈L1(Ω) and the set X is non-empty. This ends the proof of Claim 2.1.□

Claim 2.2  For every ωX there exists some t(ω)>0 (which may be not unique) such that t(\omega) \omega \in \mathcal{N}and I(t(ω)ω)≤I(), ∀t>0.

Proof of Claim 2.2  Fix ωX. We set

f(t)=t\|\omega\|^2-\int_{\varOmega} a(x) \frac{1}{h(t \omega)} h^{\prime}(t \omega) \omega \mathrm{d} x, \forall t>0 .

Thanks to property 5) of Lemma 2.1, we have that

\frac{1}{2} \leqslant \frac{h^{\prime}(t \omega(x))}{h(t \omega(x))} t \omega(x) \leqslant 1, \quad \forall x \in \varOmega .

We set

g_{i, \omega}(t)=t\|\omega\|^2-\frac{1}{i t} \int_{\varOmega} a(x) \mathrm{d} x, \forall t>0, i=1, 2, (7)

so that f(t) verifies

g_{1, \omega}(t) \leqslant f(t) \leqslant g_{2, \omega}(t), \forall t>0 .

Clearly, gi, ω(t), i=1, 2, is strictly increasing for all t>0 and satisfies

g_{i, \omega}(t) \rightarrow+\infty \text { as } t \rightarrow+\infty, g_{i, \omega}(t) \rightarrow-\infty \text { as } t \rightarrow 0^{+},

then it follows that

f(t) \rightarrow+\infty \text { as } t \rightarrow+\infty, f(t) \rightarrow-\infty \text { as } t \rightarrow 0^{+} .

Moreover, since f(t)=\frac{\mathrm{d}}{\mathrm{~d} t} I(t \omega), ∀t>0, I() is decreasing on t>0 small and increasing on t>0 large, so that there must exists some t(ω)>0 (may be not unique) such that I()≥I(t(ω)ω), ∀t>0, which gives

f(t(\omega))=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=t(\omega)} I(t \omega)=0 . (8)

We thus obtain, thanks to ωX and (8), that

a(x) \ln (t(\omega) \omega(x)) \in L^1(\varOmega), t(\omega) \omega(x) \in \mathcal{N}.□

Proof of Theorem 1.1  We know from the property 4) of Lemma 2.1 that there exists c_X \in \mathbb{R} such that for any function ωX,

\begin{aligned} & I(\omega)=\frac{1}{2} \int_{\varOmega}|\nabla \omega|^2 \mathrm{~d} x-\int_{\varOmega} a(x) \ln h(\omega(x)) \mathrm{d} x \\ \geqslant & \frac{1}{2}\|\omega\|^2-\int_{\varOmega} a(x) h(\omega(x)) \mathrm{d} x\\ & \geqslant \frac{1}{2}\|\omega\|^2-\int_{\Omega} a(x) \omega(x) \mathrm{d} x \geqslant \frac{1}{2}\|\omega\|^2- \\ & \quad\left(\int_{\varOmega} a(x)^p \mathrm{~d} x\right)^{\frac{1}{p}}\left(\int_{\varOmega} \omega^{p^{\prime}}(x) \mathrm{d} x\right)^{\frac{1}{p^{\prime}}} \\ & \geqslant \frac{1}{2}\|\omega\|^2-c\|\omega\| \geqslant c_X, \quad \forall \omega \in X, \end{aligned} (9)

where we have used the fact that lnss, ∀s>0. This, with Claim 2.1 implies \inf \limits_{\forall \omega \in X} I(\omega) is a finite number. Claim 2.2 independently gives that

\inf \limits_{\forall \omega \in X} I(\omega) \leqslant \inf \limits_{\forall \omega \in \mathcal{N}} I(\omega) \leqslant I(t(\omega) \omega) \leqslant I(\omega), \forall \omega \in X .

Thus, we have obtained

\inf _X I=\inf _N I \in \mathbb{R} .

We let {ωn} ⊂X be the sequence such that I\left(\omega_n\right) \rightarrow \inf \limits_X I, which gives with \inf \limits_X I a finite number and (8), that {ωn} ⊂X is bounded in H01(Ω). Then there exist ω0H01(Ω), gL2(Ω) and a subsequence, still denoted by ωn, such that

\left\{\begin{array}{l} \omega \rightarrow \omega_0 \text { in } H_0^1(\varOmega), \\ \omega_n \rightarrow \omega_0 \text { a.e. in } \varOmega, \\ \omega_n \rightarrow \omega_0 \text { in } L^2(\varOmega), \\ \left|\omega_n(x)\right| \leqslant g(x), \left|\omega_0(x)\right| \leqslant g(x) \text { a. e. in } \varOmega . \end{array}\right. (10)

Since {ωn} ⊂X and ωn(x)>0 a.e. xΩ, we know ω0(x)≥0, a.e. xΩ. We prove now ω0(x)>0 a.e. xΩ and a(x)lnω0(x)∈L1(Ω) i.e. ω0X. Since {ωn} ⊂X, using (9), we write that

\begin{aligned} & \frac{1}{2}\left\|\omega_n\right\|^2-c_X \geqslant \int_{\varOmega} a(x) \omega_n(x) \mathrm{d} x \\ \geqslant & \int_{\varOmega} a(x) \ln \omega_n(x) \mathrm{d} x \geqslant \int_{\varOmega} a(x) \ln h\left(\omega_n(x)\right) \mathrm{d} x \\ = & \frac{1}{2}\left\|\omega_n\right\|^2-I\left(\omega_n\right), \end{aligned}

where we have used property 4) of Lemma 2.1 for h. By the boundedness of {ωn} in H01(Ω) and I\left(\omega_n\right) \rightarrow \inf \limits_X I which is a finite number, we write

\begin{aligned} & \int_{\varOmega} a(x) \ln h\left(\omega_n(x)\right) \mathrm{d} x=O(1), \\ & \int_{\varOmega} a(x) \ln \omega_n(x) \mathrm{d} x=O(1), \\ & \int_{\varOmega} a(x) \omega_n(x) \mathrm{d} x=O(1) . \end{aligned} (11)

Taking advantage of a(x)(lnωn(x)-ωn(x))≤0 a.e. in Ω and using Fatou's Lemma, one also gets a(x) \limsup _{n \rightarrow+\infty}\left(\ln \omega_n(x)-\omega_n(x)\right) is integrable on Ω, and

\begin{aligned} & \limsup _{n \rightarrow+\infty} \int_{\varOmega} a(x)\left(\ln \omega_n(x)-\omega_n(x)\right) \mathrm{d} x \\ \leqslant & \int_{\varOmega} a(x) \limsup _{n \rightarrow+\infty}\left(\ln \omega_n(x)-\omega_n(x)\right) \mathrm{d} x, \end{aligned} (12)

so that, since

\begin{aligned} & a(x) \limsup _{n \rightarrow+\infty}\left(\ln \omega_n(x)-\omega_n(x)\right) \\ = & \begin{cases}-\infty, & \omega_0(x)=0, \\ a(x)\left[\ln \omega_0(x)-\omega_0(x)\right], & \omega_0(x)>0, \end{cases} \end{aligned}

we thus obtain, thanks to (11) and (12) and a(x)[lnω0(x)-ω0(x)]≤0, ∀xΩ, that

\omega_0(x)>0 \text { a. e. } x \in \varOmega .

Since p>2 (so p′ < 2) and ωnω0 in L2(Ω), using Hölder's inequality, we get

\lim \limits_{n \rightarrow+\infty} \int_{\varOmega} a(x) \omega_n(x) \mathrm{d} x=\int_{\varOmega} a(x) \omega_0(x) \mathrm{d} x . (13)

We write now, with ω0(x)>0 a.e. in Ω, lnωn(x)-ωn(x)≤0 a.e. in Ω, and using Fatou's lemma, that

\begin{aligned} & \limsup _{n \rightarrow+\infty} \int_{\varOmega} a(x) \ln \omega_n(x) \mathrm{d} x-\int_{\varOmega} a(x) \omega_0(x) \mathrm{d} x \\ & =\limsup _{n \rightarrow+\infty} \int_{\varOmega} a(x) \ln \omega_n(x) \mathrm{d} x-\limsup _{n \rightarrow+\infty} \int_{\varOmega} a(x) \omega_n(x) \mathrm{d} x \\ & \leqslant \limsup _{n \rightarrow+\infty} \int_{\varOmega} a(x)\left(\ln \omega_n(x)-\omega_n(x)\right) \mathrm{d} x \\ & \leqslant \int_{\varOmega} a(x) \limsup _{n \rightarrow+\infty}\left(\ln \omega_n(x)-\omega_n(x)\right) \mathrm{d} x \\ & =\int_{\varOmega} a(x)\left(\ln \omega_0(x)-\omega_0(x)\right) \mathrm{d} x \\ & =\int_{\varOmega} a(x) \ln \omega_0(x) \mathrm{d} x-\int_{\varOmega} a(x) \omega_0(x) \mathrm{d} x . \end{aligned}

Since \int_{\varOmega} a(x) \omega_0(x) \mathrm{d} x is finite, using (11), we have that

\begin{aligned} & -\infty<\limsup _{n \rightarrow+\infty} \int_{\varOmega} a(x) \ln \omega_n(x) \mathrm{d} x \\ \leqslant & \int_{\varOmega} a(x) \ln \omega_0(x) \mathrm{d} x \leqslant \int_{\varOmega} a(x) \omega_0(x) \mathrm{d} x<+\infty, \end{aligned}

so that we obtain a(x)lnω0(x)∈L1(Ω). It is worthy remarking here that the main difference between dealing with the singularities u-1 and u-ν(ν≠1) lies in the energy controlling: \int_{\varOmega} \ln u(x) \mathrm{d} x should be controlled from both sides since lns < 0, ∀s∈(0, 1), lns→-∞ as s→0+ and lns>0, ∀s>1, and \int_{\varOmega} u^{1-\nu} \mathrm{d} x just need to be controlled form one side since s1-ν>0, ∀s>0.

Then we prove that I\left(\omega_0\right)=\inf _X I. Moreover, \omega_0 \in \mathcal{N}. Indeed, since

\begin{aligned} & a(x) \ln h\left(\omega_n(x)\right) \leqslant a(x) \ln \left(\omega_n(x)\right) \\ \leqslant & a(x) \omega_n(x) \leqslant a(x) g(x) \end{aligned}

and a(x)g(x)∈L1(Ω), using Fatou's lemma and ωn(x)→ω0 a.e. in Ω, we get

\begin{gathered} \limsup _{n \rightarrow+\infty} \int_{\varOmega} a(x) \ln h\left(\omega_n(x)\right) \mathrm{d} x \leqslant \\ \int_{\varOmega} a(x) \ln h\left(\omega_0(x)\right) \mathrm{d} x, \end{gathered} (14)

so that

\begin{aligned} & \inf _X I=\lim _{n \rightarrow+\infty} I\left(\omega_n\right)=\liminf _{n \rightarrow+\infty} \int_{\varOmega} \frac{1}{2}\left|\nabla \omega_n\right|^2- \\ & a(x) \ln h\left(\omega_n(x)\right) \mathrm{d} x \geqslant \liminf _{n \rightarrow+\infty} \frac{1}{2} \int_{\Omega}\left|\nabla \omega_n\right|^2 \mathrm{~d} x+ \\ & \liminf _{n \rightarrow+\infty} \int_{\varOmega}-a(x) \ln h\left(\omega_n(x)\right) \mathrm{d} x \\ & \geqslant \frac{1}{2}\left\|\omega_0\right\|^2+\int_{\varOmega}-a(x) \ln h\left(\omega_0(x)\right) \mathrm{d} x=I\left(\omega_0\right) \\ & \geqslant I\left(t\left(\omega_0\right) \omega_0\right) \geqslant \inf _N I=\inf _X I, \end{aligned}

where we have used the weak lower semicontinuity of norm, (14), and

\begin{aligned} & \liminf _{n \rightarrow+\infty} \int_{\varOmega}-a(x) \ln h\left(\omega_n(x)\right) \mathrm{d} x \\ = & -\limsup _{n \rightarrow+\infty} \int_{\varOmega} a(x) \ln h\left(\omega_n(x)\right) \mathrm{d} x . \end{aligned}

This proves that

I\left(\omega_0\right)=\inf _X I (15)

This leads to

\frac{{\rm{d}}}{{{\rm{d}}t}}\left| {_{t = 1}I\left( {t{\omega _0}} \right)} \right. = 0,

that is, \omega_0 \in \mathcal{N}.

We now show that h(ω0) is a solution of problem (1). Suppose φH01(Ω), φ(x)≥0, ∀xΩ and ε>0. Set v=ω0+εφ, we divide the domain Ω into three parts:

\begin{gathered} A_v=\{x \in \varOmega: \ln v<-1\}, \\ B_v=\{x \in \varOmega:|\ln v| \leqslant 1\}, \\ D_v=\{x \in \varOmega: \ln v>1\}, \end{gathered}

and then we have

\begin{aligned} & \left|\int_{R_v} a(x) \ln \left(\omega_0+\varepsilon \varphi\right) \mathrm{d} x\right| \\ & \leqslant \int_{B_v} a(x)\left|\ln \left(\omega_0+\varepsilon \varphi\right)\right| \mathrm{d} x \\ & \leqslant \int_{B_v} a(x) \mathrm{d} x \leqslant \int_{\Omega} a(x) \mathrm{d} x<+\infty, \\ & \left|\int_{D_v} a(x) \ln \left(\omega_0+\varepsilon \varphi\right) \mathrm{d} x\right|=\int_{D_v} a(x) \ln \left(\omega_0+\varepsilon \varphi\right) \mathrm{d} x \\ & \leqslant \int_{\varOmega} a(x)\left(\omega_0+\varepsilon \varphi\right) \mathrm{d} x \\ & \leqslant c\left(\int_{\varOmega} a(x)^p \mathrm{~d} x\right)^{\frac{1}{p}}\left\|\omega_0+\varepsilon \varphi\right\|<+\infty, \\ & \left|\int_{A_v} a(x) \ln \left(\omega_0+\varepsilon \varphi\right) \mathrm{d} x\right| \\ & \leqslant \int_{A_v} a(x)\left|\ln \left(\omega_0+\varepsilon \varphi\right)\right| \mathrm{d} x \\ & =\int_{A_v} a(x) \ln \frac{1}{\left(\omega_0+\varepsilon \varphi\right)} \mathrm{d} x \leqslant \int_{A_v} a(x) \ln \frac{1}{\omega_0} \mathrm{~d} x \\ & \leqslant \int_{A_v} a(x)\left|\ln \omega_0\right| \mathrm{d} x \\ & \leqslant \int_{\varOmega} a(x)\left|\ln \omega_0\right| \mathrm{d} x<+\infty \end{aligned}

so ω0+εφX. By Claim 2.2 and (15) we can conclude that

\begin{aligned} I\left(\omega_0+\varepsilon \varphi\right) & \geqslant I\left(t\left(\omega_0+\varepsilon \varphi\right)\left(\omega_0+\varepsilon \varphi\right)\right) \\ & \geqslant \inf _N I=I\left(\omega_0\right), \end{aligned}

and then we have

\begin{aligned} & \frac{\left\|\omega_0+\varepsilon \varphi\right\|^2-\left\|\omega_0\right\|^2}{2} \\ \geqslant & \int_{\varOmega} a(x) \ln h\left(\omega_0+\varepsilon \varphi\right) \mathrm{d} x-\int_{\varOmega} a(x) \ln h\left(\omega_0\right) \mathrm{d} x \end{aligned} (16)

Dividing (16) by ε>0 and letting ε→0+ we conclude with Fatou's Lemma that

\begin{aligned} & \int_{\varOmega} \nabla \omega_0 \nabla \varphi \mathrm{~d} x \\ \geqslant & \liminf _{\varepsilon \rightarrow 0^{+}} \frac{\int_{\varOmega} a(x)\left[\ln h\left(\omega_0+\varepsilon \varphi\right)-\ln h\left(\omega_0\right)\right] \mathrm{d} x}{\varepsilon} \\ \geqslant & \int_{\varOmega} \liminf _{\varepsilon \rightarrow 0^{+}} \frac{a(x)\left[\ln h\left(\omega_0+\varepsilon \varphi\right)-\ln h\left(\omega_0\right)\right]}{\varepsilon} \mathrm{d} x \\ = & \int_{\varOmega} a(x) \frac{h^{\prime}\left(\omega_0\right)}{h\left(\omega_0\right)} \varphi \mathrm{d} x . \end{aligned} (17)

Suppose ψH01(Ω) and t>0. Inserting φ=(ω0+)+ into (17), we get

\begin{aligned} & 0 \leqslant \frac{1}{t} \int_{\varOmega} \nabla \omega_0 \nabla\left(\omega_0+t \psi\right)^{+}- \\ & a(x) \frac{h^{\prime}\left(\omega_0\right)}{h\left(\omega_0\right)}\left(\omega_0+t \psi\right)^{+} \mathrm{d} x=\frac{1}{t}\left(\int_{\varOmega}-\int_{\varOmega \cap\left[\omega_{0}+t \psi<0\right]}\right) \\ & \left(\nabla \omega_0 \nabla\left(\omega_0+t \psi\right)-a(x) \frac{h^{\prime}\left(\omega_0\right)}{h\left(\omega_0\right)}\left(\omega_0+t \psi\right)\right) \mathrm{d} x \\ & \leqslant \int_{\varOmega} \nabla \omega_0 \nabla \psi-a(x) \frac{h^{\prime}\left(\omega_0\right)}{h\left(\omega_0\right)} \psi \mathrm{d} x- \\ & \int_{\varOmega \cap\left[\omega_0+t \psi<0\right]} \nabla \omega_0 \nabla \psi \mathrm{~d} x . \end{aligned} (18)

Since meas[ω0+]→0 as t→0+, by passing to the limit as t→0+ we can conclude that

0 \leqslant \int_{\varOmega} \nabla \omega_0 \nabla \psi-a(x) \frac{h^{\prime}\left(\omega_0\right)}{h\left(\omega_0\right)} \psi \mathrm{d} x .

The same conclusion can be drawn for -ψ in place of ψ, thus it follows that h(ω0) is indeed a H01(Ω)-solution of (1).□

References
[1]
Kurihara S. Large-amplitude quasi-solitons in superfluid films[J]. Journal of the Physical Society of Japan, 1981, 50(10): 3262-3267. DOI:10.1143/jpsj.50.3262
[2]
Hartmann B, Zakrzewski W J. Electrons on hexagonal lattices and applications to nanotubes[J]. Physical Review B, 2003, 68(18): 184302. DOI:10.1103/physrevb.68.184302
[3]
Kosevich A M, Ivanov B A, Kovalev A S. Magnetic solitons[J]. Physics Reports, 1990, 194(3/4): 117-238. DOI:10.1016/0370-1573(90)90130-T
[4]
Makhankov V G, Fedyanin V K. Non-linear effects in quasi-one-dimensional models of condensed matter theory[J]. Physics Reports, 1984, 104(1): 1-86. DOI:10.1016/0370-1573(84)90106-6
[5]
Liu J Q, Wang Y Q, Wang Z Q. Soliton solutions for quasilinear Schrödinger equations, Ⅱ[J]. Journal of Differential Equations, 2003, 187(2): 473-493. DOI:10.1016/s0022-0396(02)00064-5
[6]
Fang X D, Szulkin A. Multiple solutions for a quasilinear Schrödinger equation[J]. Physics Reports, 2013, 254(4): 2015-2032. DOI:10.1016/j.jde.2012.11.017
[7]
Liu X Q, Liu J Q, Wang Z Q. Quasilinear elliptic equations via perturbation method[J]. Proceedings of the American Mathematical Society, 2013, 141(1): 253-263. DOI:10.1090/s0002-9939-2012-11293-6
[8]
Agarwal R P, O'Regan D. Singular differential and integral equations with applications[M]. Dordretht, Netherlands: Springer Science & Business Media, 2003. DOI:10.1007/978-94-017-3004-4
[9]
Hernández J, Mancebo F J. Singular elliptic and parabolic equations[M]//Handbook of differential equations: stationary partial differential equations, Amsterdam; Boston: Elsevier/North Holland. 2006, 3: 317-400. DOI: 10.1016/s1874-5733(06)80008-2.
[10]
Marcos do Ó J, Moameni A. Solutions for singular quasilinear Schrödinger equations with one parameter[J]. Communications on Pure & Applied Analysis, 2010, 9(4): 1011-1023. DOI:10.3934/cpaa.2010.9.1011
[11]
Santos C A, Yang M B, Zhou J Z. Global multiplicity of solutions for a modified elliptic problem with singular terms[J]. Nonlinearity, 2021, 34(11): 7842-7871. DOI:10.1088/1361-6544/ac2a50
[12]
Alves R L, Reis M. About existence and regularity of positive solutions for a quasilinear Schr ödinger equation with singular nonlinearity[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2020, 60: 1-23. DOI:10.14232/ejqtde.2020.1.60
[13]
Sun Y J. Compatibility phenomena in singular problems[J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2013, 143(6): 1321-1330. DOI:10.1017/s030821051100117x
[14]
Alves R L. Existence, nonexistence and multiplicity of positive solutions for singular quasilinear problems[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2022, 13: 1-29. DOI:10.14232/ejqtde.2022.1.13
[15]
Liu J Y, Liu D C, Zhao P H. Soliton solutions for a singular Schr ödinger equation with any growth exponents[J]. Acta Applicandae Mathematicae, 2017, 148(1): 179-199. DOI:10.1007/s10440-016-0084-z
[16]
do Ó J M B, Miyagaki O H, Soares S H M. Soliton solutions for quasilinear Schrödinger equations: the critical exponential case[J]. Nonlinear Analysis: Theory, Methods & Applications, 2007, 67(12): 3357-3372. DOI:10.1016/j.na.2006.10.018
[17]
do Ó J M B, Miyagaki O H, Soares S H M. Soliton solutions for quasilinear Schrödinger equations with critical growth[J]. Journal of Differential Equations, 2010, 248(4): 722-744. DOI:10.1016/j.jde.2009.11.030
[18]
Colin M, Jeanjean L. Solutions for a quasilinear Schr ödinger equation: a dual approach[J]. Nonlinear Analysis: Theory, Methods & Applications, 2004, 56(2): 213-226. DOI:10.1016/j.na.2003.09.008
[19]
Lazer A C, McKenna P J. On a singular nonlinear elliptic boundary-value problem[J]. Proceedings of the American Mathematical Society, 1991, 111(3): 721. DOI:10.1090/s0002-9939-1991-1037213-9
A class of quasilinear equations with -1 powers
ZHANG Heng, SUN Yijing