2. School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
2. 首都师范大学数学科学学院, 北京 100048
Let φ be a strictly increasing convex continuous function on [0, ∞) with φ(0)=0, and let Λ{λk} be an increasing sequence of positive numbers such that
$\begin{gathered}V_{\varLambda_{\varphi}}(f):=\sup _{\mathcal{J}} \sum\limits_{k=1}^{\infty} \frac{\varphi\left(\left|f\left(I_k\right)\right|\right)}{\lambda_k} \\ :=\sup _{\mathcal{J}} \sum\limits_{k=1}^{\infty} \frac{\varphi\left(\left|f\left(b_k\right)-f\left(a_k\right)\right|\right)}{\lambda_k}<\infty, \end{gathered}$ |
where the supremum is taken over all sequences
$\|f\|_{\varLambda, \varphi}:=|f(0)|+\inf \left\{k>0: V_{\varLambda_{\varphi}}(f / k) \leqslant 1\right\}.$ |
We say that φ satisfies the condition Δ2 if there exist a>0 and δ>0 such that φ(2x)≤δφ(x) for all x∈(0, a]. Musielak and Orlicz[1] considered that ΛφBV={f|VΛφ(f)<∞} if and only if φ satisfies the condition Δ2.
The class ΛφBV was first introduced by Schramm and Waterman[2] in 1982. In the case φ(x)=xp(p≥1), f is said to be of bounded p-Λ-variation function. The corresponding class ΛBV(p) was introduced in 1980 by Shiba and called by the Waterman-Shiba class. If p=1, f is said to be of Λ-bounded variation, and we denote f∈ΛBV. The corresponding class is the well-known Waterman class ΛBV. In the case Λ={1}, we get the class BVφ of φ-bounded variation. More specifically, when φ(x)=xp(p≥1), we get the class BVp which is called the Wiener class. The class BV1 is the well known class of bounded variation BV.
It is easily seen from the definition that ΛφBV functions are bounded, and the discontinuities of a ΛφBV function are simple and, therefore, at most denumerable. From Refs. [3-8], we know the class ΛφBV had been studied mainly because of their applicability to the theory of Fourier series and some good approximative properties.
Kita and Yoneda[9] introduced a new function space which is a generalization of Wiener classes (see also Refs. [10-11]). The concept was further extended by Akhobadze[12] who studied many properties of the generalized Wiener classes BV(q, δ) thoroughly (see Ref. [13]).
Definition 1.1 Let
$\begin{gathered}V(f, q, \delta):=\sup\limits_{n \geqslant 1}\sup\limits_{{I_k}}\left\{\left(\sum\limits_{k=1}^s\left|f\left(I_k\right)\right|^{q(n)}\right)^{\frac{1}{q(n)}}:\right. \\ \left.\inf _k\left|I_k\right| \geqslant \frac{1}{\delta(n)}\right\}<\infty, \end{gathered}$ |
where
The following statement concerning inclusion of Waterman spaces into generalize Wiener classes has been presented in Ref. [14], if
$\limsup\limits_{n \rightarrow \infty}\left\{\max\limits_{1 \leqslant k \leqslant \delta(n)} \frac{k^{\frac{1}{q(n)}}}{\left(\sum\limits_{i=1}^k \frac{1}{\lambda_i}\right)}\right\}<\infty.$ |
The following result was obtained by Hormozi et al.[15]: for p∈[1, ∞), q and δ sequence satisfying the conditions in Definition 1.1, the inclusion ΛBV(p)⊂BV(q, δ) holds if and only if
$\limsup\limits_{n \rightarrow \infty}\left\{\max\limits_{1 \leqslant k \leqslant \delta(n)} \frac{k^{\frac{1}{q(n)}}}{\left(\sum\limits_{i=1}^k \frac{1}{\lambda_i}\right)^{\frac{1}{p}}}\right\}<\infty .$ |
In this paper, we extend the results above and obtain the corresponding inclusions of ΛφBV and BV(q, δ).Our main results can be formulated as follows.
Theorem 1.1 For q and δ satisfying the conditions in Definition 1.1, the inclusion ΛφBV⊂BV(q, δ) holds if and only if
$\limsup\limits_{n \rightarrow \infty}\left\{\max\limits_{1 \leqslant k \leqslant \delta(n)} k^{\frac{1}{q(n)}} \varphi^{-1}\left(\left(\sum\limits_{i=1}^k \frac{1}{\lambda_i}\right)^{-1}\right)\right\}<\infty.$ | (1) |
Theorem 1.2 Let
Proof of Theorem 1.1
Sufficiency Suppose that (1) holds. Let f∈ΛφBV. It suffice to show f∈BV(q, δ). We will prove the inequality
$\begin{aligned} & V(f, q, \delta) \\ & \leqslant 16\|f\|_{\Lambda, \varphi} \sup _{n \geqslant 1}\left\{\max _{1 \leqslant k \leqslant \delta(n)} k^{\frac{1}{q(n)}} \varphi^{-1}\left(\left(\sum\limits_{i=1}^k \frac{1}{\lambda_i}\right)^{-1}\right)\right\} \\ & =16\|f\|_{\varLambda, \varphi} \limsup _{n \rightarrow \infty}\left\{\max _{1 \leqslant k \leqslant \delta(n)} k^{\frac{1}{q(n)}} \varphi^{-1}\left(\left(\sum\limits_{i=1}^k \frac{1}{\lambda_i}\right)^{-1}\right)\right\} .\end{aligned}$ | (2) |
which combining with (1) implies f∈BV(q, δ). Without loss of generality, we assume that ||f||Λ, φ≠0. For any
$\sum\limits_{k=1}^s \frac{\varphi\left(x_k\right)}{\lambda_k}=\sum\limits_{k=1}^s \frac{\varphi\left(\left|f\left(I_k\right)\right| /\|f\|_{\varLambda, \varphi}\right)}{\lambda_k} \leqslant V_{\varLambda_{\varphi}}\left(\frac{f}{\|f\|_{\varLambda, \varphi}}\right) \leqslant 1.$ |
Let A be a positive constant,
$I_{s, q, A}:=\sup \left\{\left(\sum\limits_{k=1}^s\left|x_k\right|^q\right)^{1 / q}: \sum\limits_{k=1}^s \frac{\varphi\left(x_k\right)}{\lambda_k} \leqslant A\right\}.$ |
It follows from Wang[16] that
$I_{s, q, A} \leqslant 16 \max\limits_{1 \leqslant k \leqslant s} k^{1 / q} \varphi^{-1}\left(\left(\sum\limits_{i=1}^k 1 / \lambda_i\right)^{-1} A\right), $ |
where φ-1 is the inverse function of φ.We note that
$\begin{aligned} & \left(\sum\limits_{k=1}^s\left|f\left(I_k\right)\right|^{q(n)}\right)^{1 / q(n)}=\|f\|_{\varLambda, \varphi}\left(\sum\limits_{k=1}^s\left|x_k\right|^{q(n)}\right)^{1 / q(n)} \\ & \leqslant\|f\|_{\varLambda, \varphi} I_{s, q(n), 1} \\ & \leqslant 16\|f\|_{\varLambda, \varphi} \max _{1 \leqslant k \leqslant s} k^{1 / q(n)} \varphi^{-1}\left(\left(\sum\limits_{i=1}^k 1 / \lambda_i\right)^{-1}\right) .\end{aligned}$ |
Taking both supremums over all sequences {Ik}k=1s of non-overlapping intervals in [0, 1] with
Necessity Suppose (1) does not hold. Then there is an increasing sequence {nk} of positive integers such that for all indices k
$\delta\left(n_k\right) \geqslant 2^{k+2}, $ | (3) |
and
$\max\limits_{1 \leqslant m \leqslant \delta\left(n_k\right)} m^{\frac{1}{q\left(n_k\right)}} \varphi^{-1}\left(\left(\sum\limits_{i=1}^m \frac{1}{\lambda_i}\right)^{-1}\right)>2^{2 k+1+\frac{k+1}{q(1)}}.$ | (4) |
We will construct a function g such that g∈ΛφBV and g∉BV(q, δ). Let {mk} be a sequence of positive integers such that
$1 \leqslant m_k \leqslant \delta\left(n_k\right),$ | (5) |
and
$\begin{gathered}\max _{1 \leqslant m \leqslant \delta\left(n_k\right)} m^{\frac{1}{q\left(n_k\right)}} \varphi^{-1}\left(\left(\sum\limits_{i=1}^m \frac{1}{\lambda_i}\right)^{-1}\right) \\ =m^{\frac{1}{q\left(n_k\right)}} \varphi^{-1}\left(\left(\sum\limits_{i=1}^{m_k} \frac{1}{\lambda_i}\right)^{-1}\right) .\end{gathered}$ | (6) |
Set
$\varPhi_k:=\left(\sum\limits_{i=1}^{m_k} \frac{1}{\lambda_i}\right)^{-1}.$ |
Consider
$\begin{array}{c} g_k(y)\\ :=\left\{\begin{array}{l}2^{-k-1} \varphi^{-1}\left(\varPhi_k\right), y \in\left[\frac{1}{2^k}+\frac{2 j-2}{\delta\left(n_k\right)}, \frac{1}{2^k}+\frac{2 j-1}{\delta\left(n_k\right)}\right) , \\ \qquad 1 \leqslant j \leqslant N_k , \\ 0, \quad \text { otherwise , }\end{array}\right.\end{array}$ |
where
$\begin{gathered}N_k=\min \left\{m_k, s_k\right\}, \\ s_k=\max \left\{j \in \mathbb{N}: 2 j<\frac{\delta\left(n_k\right)}{2^k}+1\right\} .\end{gathered}$ |
It follows from the definition of sk that
$2\left(s_k+1\right) \geqslant \frac{\delta\left(n_k\right)}{2^k}+1.$ | (7) |
By (7) and (3), we have
$\frac{2 s_k-1}{\delta\left(n_k\right)} \geqslant 2^{-k-1}.$ | (8) |
If Nk=mk, then
$2 N_k-1 \geqslant m_k \geqslant \frac{m_k}{2^{k+1}},$ |
and if Nk=sk, then by (8) and (5) we have
$2 N_k-1 \geqslant \frac{\delta\left(n_k\right)}{2^{k+1}} \geqslant \frac{m_k}{2^{k+1}}.$ |
Hence, for all k,
$2 N_k-1 \geqslant \frac{m_k}{2^{k+1}}.$ | (9) |
Let us estimate ||gk||Λ, φ, k=1, 2, …. Since φ is convex and φ(0)=0, we get φ(t/2)≤φ(t)/2. It follows that
$\begin{aligned} V_{\varLambda_{\varphi}}\left(\frac{g_k}{2^{-k}}\right) & =\sum\limits_{j=1}^{2 N_k} \frac{\varphi\left(2^k 2^{-k-1} \varphi^{-1}\left(\varPhi_k\right)\right)}{\lambda_j} \\ \leqslant \frac{1}{2} \sum\limits_{j=1}^{2 N_k} \frac{\varPhi_k}{\lambda_j} & \leqslant \frac{1}{2}\left(\sum\limits_{j=1}^{2 N_k} \frac{1}{\lambda_j}\right)\left(\sum\limits_{i=1}^{N_k} \frac{1}{\lambda_i}\right)^{-1} \leqslant 1 .\end{aligned}$ |
By the definition of the norm ||·||Λ, φ, we have
$\left\|g_k\right\|_{\varLambda, \varphi} \leqslant\left|g_k(0)\right|+2^{-k}=2^{-k}.$ |
The functions gk have disjoint supports, and the series
$\|g\|_{\varLambda, \varphi} \leqslant \sum\limits_{k=1}^{\infty}\left\|g_k\right\|_{\varLambda, \varphi} \leqslant \sum\limits_{k=1}^{\infty} 2^{-k}=1 , $ |
which implies g∈ΛφBV.
Now, given any positive integer k, all intervals
$\begin{aligned} & V(g, q, \delta) \geqslant\left(\sum\limits_{j=1}^{2 N_k-1} \mid g\left(\frac{1}{2^k}+\frac{j-1}{\delta\left(n_k\right)}\right)-\right. \\ & \left.\left.g\left(\frac{1}{2^k}+\frac{j}{\delta\left(n_k\right)}\right)\right|^{q\left(n_k\right)}\right)^{\frac{1}{q\left(n_k\right)}} \\ = & \left(\left(2 N_k-1\right)\left(2^{-k-1} \varphi^{-1}\left(\varPhi_k\right)\right)^{q\left(n_k\right)}\right)^{\frac{1}{q\left(n_k\right)}} \\ = & 2^{-k-1} \varphi^{-1}\left(\varPhi_k\right)\left(2 N_k-1\right)^{\frac{1}{q\left(n_k\right)}} \\ \geqslant & 2^{-k-1} \varphi^{-1}\left(\left(\sum\limits_{i=1}^{m_k} \frac{1}{\lambda_i}\right)^{-1}\right)\left(\frac{m_k}{2^{k+1}}\right)^{\frac{1}{q\left(n_k\right)}} \\ \geqslant & \frac{2^{k+(k+1) / q(1)}}{2^{(k+1) / q\left(n_k\right)}} \geqslant 2^k, \end{aligned}$ |
where in the second inequality, we used (9), in the third inequality we used (4) and (6). Since k was arbitrary, V(g, q, δ)=∞ which shows that g∉BV(q, δ). This completes the proof of the necessity.
Theorem 1.1 is proved.
Proof of Theorem 1.2
We choose a strictly increasing sequence {lk: k≥1} of positive integers such that l1=1 and
$q\left(l_k\right) \geqslant \ln (k+1)\; {\rm{for\; all}}\; k \geqslant 2.$ |
Set
$\begin{aligned} & f(x) \\ & =\left\{\begin{array}{l}2 A_{k-1} \frac{\delta\left(l_k\right) \delta\left(l_k-1\right)}{\delta\left(l_k\right)-\delta\left(l_k-1\right)}\left(x-\frac{1}{\delta\left(l_k\right)}\right), \\ \text { if } \frac{1}{\delta\left(l_k\right)} \leqslant x \leqslant \frac{1}{2 \delta\left(l_k\right)}+\frac{1}{2 \delta\left(l_k-1\right)}, \\ \quad k=2, 3, \cdots, \\ 2 A_{k-1} \frac{\delta\left(l_k\right) \delta\left(l_k-1\right)}{\delta\left(l_k\right)-\delta\left(l_k-1\right)}\left(\frac{1}{\delta\left(l_k-1\right)}-x\right), \\ \text { if } \frac{1}{2 \delta\left(l_k\right)}+\frac{1}{2 \delta\left(l_k-1\right)} \leqslant x \leqslant \frac{1}{\delta\left(l_k-1\right)} , \\ \quad k=2, 3, \cdots, \\ 0, \text { otherwise, }\end{array}\right.\end{aligned}$ |
where
$A_k=\varphi^{-1}\left(\left(\sum\limits_{j=1}^k \frac{1}{\lambda_j}\right)^{-1 / 2}\right), k=1, 2 \cdots.$ |
In other words, the function f(x) is defined to be a continuous function with f(0)=0 such that f(x)=0 on the intervals
First we show that f∈BV(q, δ).For any l∈
$0 \leqslant a_1<b_1 \leqslant a_2<b_2 \leqslant \cdots \leqslant a_s<b_s \leqslant 1.$ |
For this fixed l, we can choose integers lk-1 and lk for which lk-1<l<lk holds. Then it follows that q(lk-1)≤q(l)≤q(lk) and
Then
$a_2 \geqslant b_1 \geqslant b_1-a_1 \geqslant \frac{1}{\delta(l)} \geqslant \frac{1}{\delta\left(l_k\right)}.$ |
Let k0 be the integer such that
$\left|f\left(b_1\right)-f\left(a_1\right)\right| \leqslant A_{k_0}.$ |
We also note that {Ak} is non-increasing and
$\begin{aligned} & \sum\limits_{j=2}^s\left|f\left(b_j\right)-f\left(a_j\right)\right|^{q(l)} \\ & \leqslant \sup\limits_{\frac{1}{\delta\left(l_{k_0}\right)}=t_0<t_1<\cdots<t_{m-1}<t_m=1} \sum\limits_{j=1}^m\left|f\left(t_j\right)-f\left(t_{j-1}\right)\right|^{q(l)} \\ & =2 \sum\limits_{j=1}^{k_0-1} A_j^{q(l)}.\end{aligned}$ |
It then follows that
$\begin{aligned} & \left(\sum\limits_{j=1}^s\left|f\left(b_j\right)-f\left(a_j\right)\right|^{q(l)}\right)^{1 / q(l)} \\ & \leqslant\left(2 \sum\limits_{j=1}^{k_0} A_j^{q(l)}\right)^{1 / q(l)} \leqslant 2^{1 / q(l)} A_1 k_0^{1 / q(l)} \\ & \leqslant 2 A_1 k^{1 / q\left(l_{k-1}\right)} \leqslant 2 A_1 k^{\frac{1}{\ln k}}=2 \mathrm{e} A_1 .\end{aligned}$ |
This implies f∈BV(q, δ).
Next, we show that f∉ΛφBV.Since φ satisfies the condition Δ2, it suffices to prove that
$V_{\varLambda_{\varphi}}(f)=\infty.$ |
We have
$\begin{aligned} & V_{\varLambda_{\varphi}}(f) \\ & \geqslant \sum\limits_{j=1}^k \frac{\varphi\left(\left|f\left(\frac{1}{\delta\left(l_{j+1}\right)}\right)-f\left(\frac{1}{2 \delta\left(l_{j+1}\right)}+\frac{1}{2 \delta\left(l_{j+1}-1\right)}\right)\right|\right)}{\lambda_j} \\ & =\sum\limits_{j=1}^k \frac{\varphi\left(\left|A_j\right|\right)}{\lambda_j} \geqslant \varphi\left(A_k\right) \sum\limits_{j=1}^k \frac{1}{\lambda_j}=\left(\sum\limits_{j=1}^k \frac{1}{\lambda_j}\right)^{1 / 2} \rightarrow \infty \\ & {\rm{as}}\; k \rightarrow \infty,\end{aligned}$ |
which implies f∉ΛφBV. The proof of Theorem 1.2 is complete.
[1] |
Musielak J, Orlicz W. On generalized variations (I)[J]. Studia Mathematica, 1959, 18(1): 11-41. DOI:10.4064/sm-18-1-11-41 |
[2] |
Schramm M, Waterman D. Absolute convergence of Fourier series of functions of λBV(p) and ϕλBV[J]. Acta Mathematica Academiae Scientiarum Hungarica, 1982, 40(3/4): 273-276. DOI:10.1007/BF01903586 |
[3] |
Perlman S, Waterman D. Some remarks on functions of Λ-bounded variation[J]. Proceedings of the American Mathematical Society, 1979, 74(1): 113. DOI:10.2307/2042115 |
[4] |
Waterman D. On convergence of Fourier series of functions of generalized bounded variation[J]. Studia Mathematica, 1972, 44(2): 107-117. DOI:10.4064/sm-44-2-107-117 |
[5] |
Waterman D. On the summability of Fourier series of functions of Λ-bounded variation[J]. Studia Mathematica, 1976, 55(1): 87-95. DOI:10.4064/sm-55-1-87-95 |
[6] |
Waterman D. On Λ-bounded variation[J]. Studia Mathematica, 1976, 57(1): 33-45. DOI:10.4064/sm-57-1-33-45 |
[7] |
Wang H P. Embedding of Lipschitz classes into classes of functions of Λ-bounded variation[J]. Journal of Mathematical Analysis and Applications, 2009, 354(2): 698-703. DOI:10.1016/j.jmaa.2009.01.033 |
[8] |
Wiener N. The quadratic variation of a function and its Fourier coefficients[J]. Journal of Mathematics and Physics, 1924, 3(2): 72-94. DOI:10.1002/sapm19243272 |
[9] |
Kita H, Yoneda K. A generalization of bounded variation[J]. Acta Mathematica Hungarica, 1990, 56(3/4): 229-238. DOI:10.1007/BF01903837 |
[10] |
Kita H. Convergence of Fourier series of a function on generalized Wiener's class BV(p(n↑∞)[J]. Acta Mathe-matica Hungarica, 1991, 57(3/4): 233-243. DOI:10.1007/BF01903673 |
[11] |
Akhobadze T. On Fourier coefficients of functions of generalized Wiener class[J]. Georgian Mathematical Journal, 2000, 7(1): 1-10. DOI:10.1515/gmj.2000.1 |
[12] |
Akhobadze T. Functions of generalized Wiener classes BV(p(n)↑∞, ϕ) and their Fourier coefficients[J]. Georgian Mathematical Journal, 2000, 7(3): 401-416. DOI:10.1515/gmj.2000.401 |
[13] |
Akhobadze T. A generalization of bounded variation[J]. Acta Mathematica Hungarica, 2002, 97(3): 223-256. DOI:10.1023/A:1020807128736 |
[14] |
Goginava U. On the imbedding of the Waterman class in the class hpω[J]. Ukrainian Mathematical Journal, 2005, 57(11): 1818-1824. DOI:10.1007/s11253-006-0031-7 |
[15] |
Hormozi M, Prus-Wis' niowski F, Rosengren H. Inclusions of Waterman-Shiba spaces into generalized Wiener classes[J]. Journal of Mathematical Analysis and Applications, 2014, 419(1): 428-432. DOI:10.1016/j.jmaa.2014.03.096 |
[16] |
Wang H P. Embedding of generalized Lipschitz classes into classes of functions with Λ-bounded variation[J]. Journal of Mathematical Analysis and Applications, 2016, 438(2): 657-667. DOI:10.1016/j.jmaa.2016.02.003 |