中国科学院大学学报  2023, Vol. 40 Issue (6): 721-725   PDF    
Relationships between ΛφBV and BV(q, δ)
GE Ajun1, WANG Heping2, YAN Dunyan1     
1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
2. School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
Abstract: In this note, we obtain the sufficient and necessary conditions for the inclusions ΛφBVBV(q, δ), and BV(q, δ)⊂ΛφBV is false when φ satisfies the Δ2 condition.
Keywords: Λφ-bounded variation    generalized Wiener class    embedding    
ΛφBVBV(q, δ)的关系
葛阿君1, 汪和平2, 燕敦验1     
1. 中国科学院大学数学科学学院, 北京 100049;
2. 首都师范大学数学科学学院, 北京 100048
摘要: 得到ΛφBV空间嵌入BVqδ)空间的充要条件,并给出严格证明过程,当φ满足Δ2条件时,BVqδ)⊂ΛφBV不成立。
关键词: Λφ-有界变差    广义维纳类    嵌入    

Let φ be a strictly increasing convex continuous function on [0, ∞) with φ(0)=0, and let Λ{λk} be an increasing sequence of positive numbers such that $\sum_{k=1}^{\infty} \frac{1}{\lambda_k}=+\infty$. We say that a real valued function f on [0, 1] is of Λφ-bounded variation if

$\begin{gathered}V_{\varLambda_{\varphi}}(f):=\sup _{\mathcal{J}} \sum\limits_{k=1}^{\infty} \frac{\varphi\left(\left|f\left(I_k\right)\right|\right)}{\lambda_k} \\ :=\sup _{\mathcal{J}} \sum\limits_{k=1}^{\infty} \frac{\varphi\left(\left|f\left(b_k\right)-f\left(a_k\right)\right|\right)}{\lambda_k}<\infty, \end{gathered}$

where the supremum is taken over all sequences $\mathcal{J}= \left\{I_k\right\}=\left\{\left[a_k, b_k\right]\right\} $ of non-overlapping intervals in [0, 1], f(Ik)=f(bk)-f(ak).We say fΛφBV if there exists a constant c>0 such that VΛφ(f/c)<∞.It is easy to see that ΛφBV is a linear space. The linear space ΛφBV is a Banach space, which endowed with the norm

$\|f\|_{\varLambda, \varphi}:=|f(0)|+\inf \left\{k>0: V_{\varLambda_{\varphi}}(f / k) \leqslant 1\right\}.$

We say that φ satisfies the condition Δ2 if there exist a>0 and δ>0 such that φ(2x)≤δφ(x) for all x∈(0, a]. Musielak and Orlicz[1] considered that ΛφBV={f|VΛφ(f)<∞} if and only if φ satisfies the condition Δ2.

The class ΛφBV was first introduced by Schramm and Waterman[2] in 1982. In the case φ(x)=xp(p≥1), f is said to be of bounded p-Λ-variation function. The corresponding class ΛBV(p) was introduced in 1980 by Shiba and called by the Waterman-Shiba class. If p=1, f is said to be of Λ-bounded variation, and we denote fΛBV. The corresponding class is the well-known Waterman class ΛBV. In the case Λ={1}, we get the class BVφ of φ-bounded variation. More specifically, when φ(x)=xp(p≥1), we get the class BVp which is called the Wiener class. The class BV1 is the well known class of bounded variation BV.

It is easily seen from the definition that ΛφBV functions are bounded, and the discontinuities of a ΛφBV function are simple and, therefore, at most denumerable. From Refs. [3-8], we know the class ΛφBV had been studied mainly because of their applicability to the theory of Fourier series and some good approximative properties.

Kita and Yoneda[9] introduced a new function space which is a generalization of Wiener classes (see also Refs. [10-11]). The concept was further extended by Akhobadze[12] who studied many properties of the generalized Wiener classes BV(q, δ) thoroughly (see Ref. [13]).

Definition 1.1   Let $q=(q(n))_{n=1}^{\infty}$ be an increasing positive sequence and let $\delta=(\delta(n))_{n=1}^{\infty}$ be an increasing and unbounded positive integer sequence. We say that a function $f:[0, 1] \rightarrow \mathbb{R}$ belongs to the class BV(q, δ) if

$\begin{gathered}V(f, q, \delta):=\sup\limits_{n \geqslant 1}\sup\limits_{{I_k}}\left\{\left(\sum\limits_{k=1}^s\left|f\left(I_k\right)\right|^{q(n)}\right)^{\frac{1}{q(n)}}:\right. \\ \left.\inf _k\left|I_k\right| \geqslant \frac{1}{\delta(n)}\right\}<\infty, \end{gathered}$

where $\left\{I_k\right\}_{k=1}^s$ are non-overlapping subintervals of [0, 1].

The following statement concerning inclusion of Waterman spaces into generalize Wiener classes has been presented in Ref. [14], if $\lim\limits_{n \rightarrow \infty} q(n)=\infty$ and δ(n)=2n the inclusion ΛBVBV(q, δ) holds if and only if

$\limsup\limits_{n \rightarrow \infty}\left\{\max\limits_{1 \leqslant k \leqslant \delta(n)} \frac{k^{\frac{1}{q(n)}}}{\left(\sum\limits_{i=1}^k \frac{1}{\lambda_i}\right)}\right\}<\infty.$

The following result was obtained by Hormozi et al.[15]: for p∈[1, ∞), q and δ sequence satisfying the conditions in Definition 1.1, the inclusion ΛBV(p)BV(q, δ) holds if and only if

$\limsup\limits_{n \rightarrow \infty}\left\{\max\limits_{1 \leqslant k \leqslant \delta(n)} \frac{k^{\frac{1}{q(n)}}}{\left(\sum\limits_{i=1}^k \frac{1}{\lambda_i}\right)^{\frac{1}{p}}}\right\}<\infty .$

In this paper, we extend the results above and obtain the corresponding inclusions of ΛφBV and BV(q, δ).Our main results can be formulated as follows.

Theorem 1.1  For q and δ satisfying the conditions in Definition 1.1, the inclusion ΛφBVBV(q, δ) holds if and only if

$\limsup\limits_{n \rightarrow \infty}\left\{\max\limits_{1 \leqslant k \leqslant \delta(n)} k^{\frac{1}{q(n)}} \varphi^{-1}\left(\left(\sum\limits_{i=1}^k \frac{1}{\lambda_i}\right)^{-1}\right)\right\}<\infty.$ (1)

Theorem 1.2   Let $\sum_{n=1}^{\infty}\left(1 / \lambda_n\right)=\infty$ and φ satisfy the condition Δ2. Then there exists a function fBV(q, δ)∩C[0, 1] such that fΛφBV.It suffices to show BV(q, δ)⊂ΛφBV does not hold if φ satisfies the condition Δ2.

Proof of Theorem 1.1

Sufficiency  Suppose that (1) holds. Let fΛφBV. It suffice to show fBV(q, δ). We will prove the inequality

$\begin{aligned} & V(f, q, \delta) \\ & \leqslant 16\|f\|_{\Lambda, \varphi} \sup _{n \geqslant 1}\left\{\max _{1 \leqslant k \leqslant \delta(n)} k^{\frac{1}{q(n)}} \varphi^{-1}\left(\left(\sum\limits_{i=1}^k \frac{1}{\lambda_i}\right)^{-1}\right)\right\} \\ & =16\|f\|_{\varLambda, \varphi} \limsup _{n \rightarrow \infty}\left\{\max _{1 \leqslant k \leqslant \delta(n)} k^{\frac{1}{q(n)}} \varphi^{-1}\left(\left(\sum\limits_{i=1}^k \frac{1}{\lambda_i}\right)^{-1}\right)\right\} .\end{aligned}$ (2)

which combining with (1) implies fBV(q, δ). Without loss of generality, we assume that ||f||Λ, φ≠0. For any $n \in \mathbb{N}$, let $\left\{I_k\right\}_{k=1}^s$ be a sequence of non-overlapping intervals in [0, 1] and $\inf\limits_{1 \leqslant k \leqslant s}\left|I_k\right| \geqslant \frac{1}{\delta(n)}$. Then sδ(n). Let $x_k=\frac{\left|f\left(I_k\right)\right|}{\|f\|_{\varLambda, \varphi}}$, 1≤ks. We rearrange {Ik} such that 0≤xs≤…≤x2x1. It follows from the definition of ||·||Λ, φ that $V_{\varLambda_{\varphi}}\left(\frac{g}{\|g\|_{\varLambda, \varphi}}\right) \leqslant 1$ holds for any gΛφBV. Hence, we have

$\sum\limits_{k=1}^s \frac{\varphi\left(x_k\right)}{\lambda_k}=\sum\limits_{k=1}^s \frac{\varphi\left(\left|f\left(I_k\right)\right| /\|f\|_{\varLambda, \varphi}\right)}{\lambda_k} \leqslant V_{\varLambda_{\varphi}}\left(\frac{f}{\|f\|_{\varLambda, \varphi}}\right) \leqslant 1.$

Let A be a positive constant, $s \in \mathbb{N}$, 1≤q<∞, 0≤xs≤…≤x2x1, and

$I_{s, q, A}:=\sup \left\{\left(\sum\limits_{k=1}^s\left|x_k\right|^q\right)^{1 / q}: \sum\limits_{k=1}^s \frac{\varphi\left(x_k\right)}{\lambda_k} \leqslant A\right\}.$

It follows from Wang[16] that

$I_{s, q, A} \leqslant 16 \max\limits_{1 \leqslant k \leqslant s} k^{1 / q} \varphi^{-1}\left(\left(\sum\limits_{i=1}^k 1 / \lambda_i\right)^{-1} A\right), $

where φ-1 is the inverse function of φ.We note that

$\begin{aligned} & \left(\sum\limits_{k=1}^s\left|f\left(I_k\right)\right|^{q(n)}\right)^{1 / q(n)}=\|f\|_{\varLambda, \varphi}\left(\sum\limits_{k=1}^s\left|x_k\right|^{q(n)}\right)^{1 / q(n)} \\ & \leqslant\|f\|_{\varLambda, \varphi} I_{s, q(n), 1} \\ & \leqslant 16\|f\|_{\varLambda, \varphi} \max _{1 \leqslant k \leqslant s} k^{1 / q(n)} \varphi^{-1}\left(\left(\sum\limits_{i=1}^k 1 / \lambda_i\right)^{-1}\right) .\end{aligned}$

Taking both supremums over all sequences {Ik}k=1s of non-overlapping intervals in [0, 1] with $\inf\limits_{1 \leqslant k \leqslant s}\left|I_k\right| \geqslant \frac{1}{\delta(n)}$ and over all $n \in \mathbb{N}$, we obtain (2). The sufficiency is proved.

Necessity  Suppose (1) does not hold. Then there is an increasing sequence {nk} of positive integers such that for all indices k

$\delta\left(n_k\right) \geqslant 2^{k+2}, $ (3)

and

$\max\limits_{1 \leqslant m \leqslant \delta\left(n_k\right)} m^{\frac{1}{q\left(n_k\right)}} \varphi^{-1}\left(\left(\sum\limits_{i=1}^m \frac{1}{\lambda_i}\right)^{-1}\right)>2^{2 k+1+\frac{k+1}{q(1)}}.$ (4)

We will construct a function g such that gΛφBV and gBV(q, δ). Let {mk} be a sequence of positive integers such that

$1 \leqslant m_k \leqslant \delta\left(n_k\right),$ (5)

and

$\begin{gathered}\max _{1 \leqslant m \leqslant \delta\left(n_k\right)} m^{\frac{1}{q\left(n_k\right)}} \varphi^{-1}\left(\left(\sum\limits_{i=1}^m \frac{1}{\lambda_i}\right)^{-1}\right) \\ =m^{\frac{1}{q\left(n_k\right)}} \varphi^{-1}\left(\left(\sum\limits_{i=1}^{m_k} \frac{1}{\lambda_i}\right)^{-1}\right) .\end{gathered}$ (6)

Set

$\varPhi_k:=\left(\sum\limits_{i=1}^{m_k} \frac{1}{\lambda_i}\right)^{-1}.$

Consider

$\begin{array}{c} g_k(y)\\ :=\left\{\begin{array}{l}2^{-k-1} \varphi^{-1}\left(\varPhi_k\right), y \in\left[\frac{1}{2^k}+\frac{2 j-2}{\delta\left(n_k\right)}, \frac{1}{2^k}+\frac{2 j-1}{\delta\left(n_k\right)}\right) , \\ \qquad 1 \leqslant j \leqslant N_k , \\ 0, \quad \text { otherwise , }\end{array}\right.\end{array}$

where

$\begin{gathered}N_k=\min \left\{m_k, s_k\right\}, \\ s_k=\max \left\{j \in \mathbb{N}: 2 j<\frac{\delta\left(n_k\right)}{2^k}+1\right\} .\end{gathered}$

It follows from the definition of sk that

$2\left(s_k+1\right) \geqslant \frac{\delta\left(n_k\right)}{2^k}+1.$ (7)

By (7) and (3), we have

$\frac{2 s_k-1}{\delta\left(n_k\right)} \geqslant 2^{-k-1}.$ (8)

If Nk=mk, then

$2 N_k-1 \geqslant m_k \geqslant \frac{m_k}{2^{k+1}},$

and if Nk=sk, then by (8) and (5) we have

$2 N_k-1 \geqslant \frac{\delta\left(n_k\right)}{2^{k+1}} \geqslant \frac{m_k}{2^{k+1}}.$

Hence, for all k,

$2 N_k-1 \geqslant \frac{m_k}{2^{k+1}}.$ (9)

Let us estimate ||gk||Λ, φ, k=1, 2, …. Since φ is convex and φ(0)=0, we get φ(t/2)≤φ(t)/2. It follows that

$\begin{aligned} V_{\varLambda_{\varphi}}\left(\frac{g_k}{2^{-k}}\right) & =\sum\limits_{j=1}^{2 N_k} \frac{\varphi\left(2^k 2^{-k-1} \varphi^{-1}\left(\varPhi_k\right)\right)}{\lambda_j} \\ \leqslant \frac{1}{2} \sum\limits_{j=1}^{2 N_k} \frac{\varPhi_k}{\lambda_j} & \leqslant \frac{1}{2}\left(\sum\limits_{j=1}^{2 N_k} \frac{1}{\lambda_j}\right)\left(\sum\limits_{i=1}^{N_k} \frac{1}{\lambda_i}\right)^{-1} \leqslant 1 .\end{aligned}$

By the definition of the norm ||·||Λ, φ, we have

$\left\|g_k\right\|_{\varLambda, \varphi} \leqslant\left|g_k(0)\right|+2^{-k}=2^{-k}.$

The functions gk have disjoint supports, and the series $\sum _{k=1}^{\infty} g_k(x)$ converges uniformly to a function g with g(0)=0 since 2-k-1φ-1(Φk)→0 as k→∞. Thus,

$\|g\|_{\varLambda, \varphi} \leqslant \sum\limits_{k=1}^{\infty}\left\|g_k\right\|_{\varLambda, \varphi} \leqslant \sum\limits_{k=1}^{\infty} 2^{-k}=1 , $

which implies gΛφBV.

Now, given any positive integer k, all intervals $\left[\frac{1}{2^k}+\frac{j-1}{\delta\left(n_k\right)}, \frac{1}{2^k}+\frac{j}{\delta\left(n_k\right)}\right]$, j=1, 2, …2Nk-1 are non-overlapping in [0, 1], and have length $\frac{1}{\delta\left(n_k\right)}$. Thus,

$\begin{aligned} & V(g, q, \delta) \geqslant\left(\sum\limits_{j=1}^{2 N_k-1} \mid g\left(\frac{1}{2^k}+\frac{j-1}{\delta\left(n_k\right)}\right)-\right. \\ & \left.\left.g\left(\frac{1}{2^k}+\frac{j}{\delta\left(n_k\right)}\right)\right|^{q\left(n_k\right)}\right)^{\frac{1}{q\left(n_k\right)}} \\ = & \left(\left(2 N_k-1\right)\left(2^{-k-1} \varphi^{-1}\left(\varPhi_k\right)\right)^{q\left(n_k\right)}\right)^{\frac{1}{q\left(n_k\right)}} \\ = & 2^{-k-1} \varphi^{-1}\left(\varPhi_k\right)\left(2 N_k-1\right)^{\frac{1}{q\left(n_k\right)}} \\ \geqslant & 2^{-k-1} \varphi^{-1}\left(\left(\sum\limits_{i=1}^{m_k} \frac{1}{\lambda_i}\right)^{-1}\right)\left(\frac{m_k}{2^{k+1}}\right)^{\frac{1}{q\left(n_k\right)}} \\ \geqslant & \frac{2^{k+(k+1) / q(1)}}{2^{(k+1) / q\left(n_k\right)}} \geqslant 2^k, \end{aligned}$

where in the second inequality, we used (9), in the third inequality we used (4) and (6). Since k was arbitrary, V(g, q, δ)=∞ which shows that gBV(q, δ). This completes the proof of the necessity.

Theorem 1.1 is proved.

Proof of Theorem 1.2

We choose a strictly increasing sequence {lk: k≥1} of positive integers such that l1=1 and

$q\left(l_k\right) \geqslant \ln (k+1)\; {\rm{for\; all}}\; k \geqslant 2.$

Set

$\begin{aligned} & f(x) \\ & =\left\{\begin{array}{l}2 A_{k-1} \frac{\delta\left(l_k\right) \delta\left(l_k-1\right)}{\delta\left(l_k\right)-\delta\left(l_k-1\right)}\left(x-\frac{1}{\delta\left(l_k\right)}\right), \\ \text { if } \frac{1}{\delta\left(l_k\right)} \leqslant x \leqslant \frac{1}{2 \delta\left(l_k\right)}+\frac{1}{2 \delta\left(l_k-1\right)}, \\ \quad k=2, 3, \cdots, \\ 2 A_{k-1} \frac{\delta\left(l_k\right) \delta\left(l_k-1\right)}{\delta\left(l_k\right)-\delta\left(l_k-1\right)}\left(\frac{1}{\delta\left(l_k-1\right)}-x\right), \\ \text { if } \frac{1}{2 \delta\left(l_k\right)}+\frac{1}{2 \delta\left(l_k-1\right)} \leqslant x \leqslant \frac{1}{\delta\left(l_k-1\right)} , \\ \quad k=2, 3, \cdots, \\ 0, \text { otherwise, }\end{array}\right.\end{aligned}$

where

$A_k=\varphi^{-1}\left(\left(\sum\limits_{j=1}^k \frac{1}{\lambda_j}\right)^{-1 / 2}\right), k=1, 2 \cdots.$

In other words, the function f(x) is defined to be a continuous function with f(0)=0 such that f(x)=0 on the intervals $\left[\frac{1}{\delta\left(l_2-1\right)}, 1\right]$ and $\left[\frac{1}{\delta\left(l_{k+1}-1\right)}, \frac{1}{\delta\left(l_k\right)}\right]$, k=2, 3…, $f\left(\frac{1}{\delta\left(l_k\right)}\right)=f\left(\frac{1}{\delta\left(l_k-1\right)}\right)=0$, $f\left(\frac{1}{2 \delta\left(l_k\right)}+\frac{1}{2 \delta\left(l_k-1\right)}\right)=A_{k-1}$, and f is linear on the intervals $\left[\frac{1}{\delta\left(l_k\right)}, \frac{1}{2 \delta\left(l_k\right)}+\frac{1}{2 \delta\left(l_k-1\right)}\right]$, $\left[\frac{1}{2 \delta\left(l_k\right)}+\frac{1}{2 \delta\left(l_k-1\right)}, \frac{1}{\delta\left(l_k-1\right)}\right], k=2, 3 \cdots$.

First we show that fBV(q, δ).For any l$\mathbb{N}$, let $\left\{I_k\right\}_{k=1}^s=\left\{\left[a_k, b_k\right]\right\}_{k=1}^s$ be an arbitrary sequence of non-overlapping intervals in [0, 1] such that $\inf\limits_{1 \leqslant k \leqslant s}\left|I_k\right| \geqslant \frac{1}{\delta(l)}$. Without loss of generality we assume that

$0 \leqslant a_1<b_1 \leqslant a_2<b_2 \leqslant \cdots \leqslant a_s<b_s \leqslant 1.$

For this fixed l, we can choose integers lk-1 and lk for which lk-1<l<lk holds. Then it follows that q(lk-1)≤q(l)≤q(lk) and $\frac{1}{\delta\left(l_k\right)} \leqslant \frac{1}{\delta(l)} \leqslant \frac{1}{\delta\left(l_{k-1}\right)}$.

Then

$a_2 \geqslant b_1 \geqslant b_1-a_1 \geqslant \frac{1}{\delta(l)} \geqslant \frac{1}{\delta\left(l_k\right)}.$

Let k0 be the integer such that $\frac{1}{\delta\left(l_{k_0}\right)} \leqslant a_2 < \frac{1}{\delta\left(l_{k_0-1}\right)}$. Then k0k and

$\left|f\left(b_1\right)-f\left(a_1\right)\right| \leqslant A_{k_0}.$

We also note that {Ak} is non-increasing and

$\begin{aligned} & \sum\limits_{j=2}^s\left|f\left(b_j\right)-f\left(a_j\right)\right|^{q(l)} \\ & \leqslant \sup\limits_{\frac{1}{\delta\left(l_{k_0}\right)}=t_0<t_1<\cdots<t_{m-1}<t_m=1} \sum\limits_{j=1}^m\left|f\left(t_j\right)-f\left(t_{j-1}\right)\right|^{q(l)} \\ & =2 \sum\limits_{j=1}^{k_0-1} A_j^{q(l)}.\end{aligned}$

It then follows that

$\begin{aligned} & \left(\sum\limits_{j=1}^s\left|f\left(b_j\right)-f\left(a_j\right)\right|^{q(l)}\right)^{1 / q(l)} \\ & \leqslant\left(2 \sum\limits_{j=1}^{k_0} A_j^{q(l)}\right)^{1 / q(l)} \leqslant 2^{1 / q(l)} A_1 k_0^{1 / q(l)} \\ & \leqslant 2 A_1 k^{1 / q\left(l_{k-1}\right)} \leqslant 2 A_1 k^{\frac{1}{\ln k}}=2 \mathrm{e} A_1 .\end{aligned}$

This implies fBV(q, δ).

Next, we show that fΛφBV.Since φ satisfies the condition Δ2, it suffices to prove that

$V_{\varLambda_{\varphi}}(f)=\infty.$

We have

$\begin{aligned} & V_{\varLambda_{\varphi}}(f) \\ & \geqslant \sum\limits_{j=1}^k \frac{\varphi\left(\left|f\left(\frac{1}{\delta\left(l_{j+1}\right)}\right)-f\left(\frac{1}{2 \delta\left(l_{j+1}\right)}+\frac{1}{2 \delta\left(l_{j+1}-1\right)}\right)\right|\right)}{\lambda_j} \\ & =\sum\limits_{j=1}^k \frac{\varphi\left(\left|A_j\right|\right)}{\lambda_j} \geqslant \varphi\left(A_k\right) \sum\limits_{j=1}^k \frac{1}{\lambda_j}=\left(\sum\limits_{j=1}^k \frac{1}{\lambda_j}\right)^{1 / 2} \rightarrow \infty \\ & {\rm{as}}\; k \rightarrow \infty,\end{aligned}$

which implies fΛφBV. The proof of Theorem 1.2 is complete.

References
[1]
Musielak J, Orlicz W. On generalized variations (I)[J]. Studia Mathematica, 1959, 18(1): 11-41. DOI:10.4064/sm-18-1-11-41
[2]
Schramm M, Waterman D. Absolute convergence of Fourier series of functions of λBV(p) and ϕλBV[J]. Acta Mathematica Academiae Scientiarum Hungarica, 1982, 40(3/4): 273-276. DOI:10.1007/BF01903586
[3]
Perlman S, Waterman D. Some remarks on functions of Λ-bounded variation[J]. Proceedings of the American Mathematical Society, 1979, 74(1): 113. DOI:10.2307/2042115
[4]
Waterman D. On convergence of Fourier series of functions of generalized bounded variation[J]. Studia Mathematica, 1972, 44(2): 107-117. DOI:10.4064/sm-44-2-107-117
[5]
Waterman D. On the summability of Fourier series of functions of Λ-bounded variation[J]. Studia Mathematica, 1976, 55(1): 87-95. DOI:10.4064/sm-55-1-87-95
[6]
Waterman D. On Λ-bounded variation[J]. Studia Mathematica, 1976, 57(1): 33-45. DOI:10.4064/sm-57-1-33-45
[7]
Wang H P. Embedding of Lipschitz classes into classes of functions of Λ-bounded variation[J]. Journal of Mathematical Analysis and Applications, 2009, 354(2): 698-703. DOI:10.1016/j.jmaa.2009.01.033
[8]
Wiener N. The quadratic variation of a function and its Fourier coefficients[J]. Journal of Mathematics and Physics, 1924, 3(2): 72-94. DOI:10.1002/sapm19243272
[9]
Kita H, Yoneda K. A generalization of bounded variation[J]. Acta Mathematica Hungarica, 1990, 56(3/4): 229-238. DOI:10.1007/BF01903837
[10]
Kita H. Convergence of Fourier series of a function on generalized Wiener's class BV(p(n↑∞)[J]. Acta Mathe-matica Hungarica, 1991, 57(3/4): 233-243. DOI:10.1007/BF01903673
[11]
Akhobadze T. On Fourier coefficients of functions of generalized Wiener class[J]. Georgian Mathematical Journal, 2000, 7(1): 1-10. DOI:10.1515/gmj.2000.1
[12]
Akhobadze T. Functions of generalized Wiener classes BV(p(n)↑∞, ϕ) and their Fourier coefficients[J]. Georgian Mathematical Journal, 2000, 7(3): 401-416. DOI:10.1515/gmj.2000.401
[13]
Akhobadze T. A generalization of bounded variation[J]. Acta Mathematica Hungarica, 2002, 97(3): 223-256. DOI:10.1023/A:1020807128736
[14]
Goginava U. On the imbedding of the Waterman class in the class hpω[J]. Ukrainian Mathematical Journal, 2005, 57(11): 1818-1824. DOI:10.1007/s11253-006-0031-7
[15]
Hormozi M, Prus-Wis' niowski F, Rosengren H. Inclusions of Waterman-Shiba spaces into generalized Wiener classes[J]. Journal of Mathematical Analysis and Applications, 2014, 419(1): 428-432. DOI:10.1016/j.jmaa.2014.03.096
[16]
Wang H P. Embedding of generalized Lipschitz classes into classes of functions with Λ-bounded variation[J]. Journal of Mathematical Analysis and Applications, 2016, 438(2): 657-667. DOI:10.1016/j.jmaa.2016.02.003