[1] | |
[2] |
Ju Y W, Wang G Z, Li S Z, et al. Geodynamic mechanism and classification of basins in the Earth system[J]. Gondwana Research, 2022, 102: 200-228. Doi:10.1016/j.gr.2020.08.017 |
[3] | |
[4] | |
[5] | |
[6] | |
[7] | |
[8] | |
[9] | |
[10] | |
[11] | |
[12] |
Hu R Z, Fu S L, Huang Y, et al. The giant South China Mesozoic low-temperature metallogenic domain: reviews and a new geodynamic model[J]. Journal of Asian Earth Sciences, 2017, 137: 9-34. Doi:10.1016/j.jseaes.2016.10.016 |
[13] |
Zhu J J, Hu R Z, Richards J P, et al. No genetic link between Late Cretaceous felsic dikes and Carlin-type Au deposits in the Youjiang basin, Southwest China[J]. Ore Geology Reviews, 2017, 84: 328-337. Doi:10.1016/j.oregeorev.2017.01.014 |
[14] |
胡煜昭. 黔西南坳陷沉积盆地分析与锑、金成矿研究[D]. 昆明: 昆明理工大学, 2011.
|
[15] |
刘建中, 夏勇, 陶琰, 等. 贵州西南部SBT研究[M]. 武汉: 中国地质大学出版社, 2017.
|
[16] |
高伟. 桂西北卡林型金矿成矿年代学和动力学[D]. 北京: 中国科学院大学, 2018.
|
[17] |
Su W C, Dong W D, Zhang X C, et al. Carlin-type gold deposits in the Dian-Qian-Gui "golden triangle" of southwest China[M]//Diversity in Carlin-Style Gold Deposits. Littleton: Society of Economic Geologists, 2018, 20: 157-185. DOI: 10.5382/rev.20.05.
|
[18] | |
[19] | |
[20] | |
[21] | |
[22] |
Liu S, Su W C, Hu R Z, et al. Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from southwest Guizhou Province, SW China[J]. Lithos, 2010, 114(1/2): 253-264. Doi:10.1016/j.lithos.2009.08.012 |
[23] |
Wang X F, Metcalfe I, Jian P, et al. The Jinshajiang-Ailaoshan suture zone, China: tectonostratigraphy, age and evolution[J]. Journal of Asian Earth Sciences, 2000, 18(6): 675-690. Doi:10.1016/S1367-9120(00)00039-0 |
[24] |
Jian P, Liu D Y, Kröner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China(II): insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province[J]. Lithos, 2009, 113(3/4): 767-784. Doi:10.1016/j.lithos.2009.04.006 |
[25] |
乔龙. 右江盆地及其周缘地区构造演化及铝土矿成矿作用[D]. 北京: 中国地质大学(北京), 2016.
|
[26] | |
[27] |
Shellnutt J G, Pham T T, Denyszyn S W, et al. Magmatic duration of the Emeishan large igneous province: insight from northern Vietnam[J]. Geology, 2020, 48(5): 457-461. Doi:10.1130/g47076.1 |
[28] |
Zhong Y T, Mundil R, Chen J, et al. Geochemical, biostratigraphic, and high-resolution geochronological constraints on the waning stage of Emeishan Large Igneous Province[J]. GSA Bulletin, 2020, 132(9/10): 1969-1986. Doi:10.1130/b35464.1 |
[29] |
Zhu J, Zhang Z C, Reichow M K, et al. Weak vertical surface movement caused by the ascent of the Emeishan mantle anomaly[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 1018-1034. Doi:10.1002/2017JB015058 |
[30] |
Shang Z, Chen Y Q. Zircon U-Pb geochronology, ggeochemistry and geological significance of the Anisian alkaline basalts in Gejiu district, Yunnan Province[J]. Minerals, 2020, 10(11): 1030. Doi:10.3390/min10111030 |
[31] |
Deng J, Wang Q F, Li G J, et al. Geology and genesis of the giant Beiya porphyry-skarn gold deposit, northwestern Yangtze Block, China[J]. Ore Geology Reviews, 2015, 70: 457-485. Doi:10.1016/j.oregeorev.2015.02.015 |
[32] |
Wang C M, Bagas L, Lu Y J, et al. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen: insights from zircon Hf-isotopic mapping[J]. Earth-Science Reviews, 2016, 156: 39-65. Doi:10.1016/j.earscirev.2016.02.008 |
[33] |
Liu H C, Wang Y J, Fan W M, et al. Petrogenesis and tectonic implications of Late-Triassic high ε Nd(t)-ε Hf(t) granites in the Ailaoshan tectonic zone (SW China)[J]. Science China Earth Sciences, 2014, 57(9): 2181-2194. Doi:10.1007/s11430-014-4854-z |
[34] | |
[35] | |
[36] | |
[37] | |
[38] | |
[39] |
Liang J L, Li J, Liu X M, et al. Multiple element mapping and in-situ S isotopes of Au-carrying pyrite of Shuiyindong gold deposit, southwestern China using NanoSIMS: constraints on Au sources, ore fluids, and mineralization processes[J]. Ore Geology Reviews, 2020, 123: 103576. Doi:10.1016/j.oregeorev.2020.103576 |
[40] | |
[41] |
曾国平. 黔西南矿集区西段微细浸染型金矿构造控矿作用研究[D]. 武汉: 中国地质大学, 2018.
|
[42] |
范军. 黔西南戈塘大型金矿床地质地球化学及成因研究[D]. 昆明: 昆明理工大学, 2015.
|
[43] | |
[44] |
靳晓野. 黔西南泥堡、水银洞和丫他金矿床的成矿作用特征与矿床成因研究[D]. 武汉: 中国地质大学, 2017.
|
[45] |
Ge X, Selby D, Liu J J, et al. Genetic relationship between hydrocarbon system evolution and Carlin-type gold mineralization: insights from Re-Os pyrobitumen and pyrite geochronology in the Nanpanjiang Basin, South China[J]. Chemical Geology, 2021, 559: 119953. Doi:10.1016/j.chemgeo.2020.119953 |
[46] | |
[47] | |
[48] | |
[49] | |
[50] | |
[51] | |
[52] | |
[53] | |
[54] | |
[55] |
Chen M H, Bagas L, Liao X, et al. Hydrothermal apatite SIMS Th-Pb dating: constraints on the timing of low-temperature hydrothermal Au deposits in Nibao, SW China[J]. Lithos, 2019, 324-325: 418-428. Doi:10.1016/j.lithos.2018.11.018 |
[56] |
Su W C, Hu R Z, Xia B, et al. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China[J]. Chemical Geology, 2009, 258(3/4): 269-274. Doi:10.1016/j.chemgeo.2008.10.030 |
[57] |
Gu X X, Zhang Y M, Li B H, et al. Hydrocarbon-and ore-bearing basinal fluids: a possible link between gold mineralization and hydrocarbon accumulation in the Youjiang basin, South China[J]. Mineralium Deposita, 2012, 47(6): 663-682. Doi:10.1007/s00126-011-0388-x |
[58] |
Wang Z P, Xia Y, Song X Y, et al. Study on the evolution of ore-formation fluids for Au-Sb ore deposits and the mechanism of Au-Sb paragenesis and differentiation in the southwestern part of Guizhou Province, China[J]. Chinese Journal of Geochemistry, 2013, 32(1): 56-68. Doi:10.1007/s11631-013-0607-5 |
[59] | |
[60] |
Chen M H, Mao J W, Li C, et al. Re-Os isochron ages for arsenopyrite from Carlin-like gold deposits in the Yunnan-Guizhou-Guangxi "golden triangle", southwestern China[J]. Ore Geology Reviews, 2015, 64: 316-327. Doi:10.1016/j.oregeorev.2014.07.019 |
[61] |
董文斗. 右江盆地南缘辉绿岩容矿金矿床地球化学研究[D]. 北京: 中国科学院大学, 2017.
|
[62] |
Pi Q H, Hu R Z, Xiong B, et al. In situ SIMS U-Pb dating of hydrothermal rutile: reliable age for the Zhesang Carlin-type gold deposit in the golden triangle region, SW China[J]. Mineralium Deposita, 2017, 52(8): 1179-1190. Doi:10.1007/s00126-017-0715-y |
[63] |
Zhu J, Zhang Z C, Santosh M, et al. Carlin-style gold Province linked to the extinct Emeishan plume[J]. Earth and Planetary Science Letters, 2020, 530(1): 115940. Doi:10.1016/j.epsl.2019.115940 |
[64] | |
[65] | |
[66] |
Hofstra A H, Snee L W, Rye R O, et al. Age constraints on Jerritt Canyon and other carlin-type gold deposits in the Western United States; relationship to mid-Tertiary extension and magmatism[J]. Economic Geology, 1999, 94(6): 769-802. Doi:10.2113/gsecongeo.94.6.769 |
[67] | |
[68] | |
[69] |
Zhou Q, Jiang Y H, Zhao P, et al. SHRIMP U-Pb dating on hydrothermal zircons: evidence for an Early Cretaceous epithermal event in the Middle Jurassic Dexing porphyry copper deposit, southeast China[J]. Economic Geology, 2012, 107(7): 1507-1514. Doi:10.2113/econgeo.107.7.1507 |
[70] |
Zhang X C, Spiro B, Halls C, et al. Sediment-hosted disseminated gold deposits in southwest Guizhou, PRC: their geological setting and origin in relation to mineralogical, fluid inclusion, and stable-isotope characteristics[J]. International Geology Review, 2003, 45(5): 407-470. Doi:10.2747/0020-6814.45.5.407 |
[71] |
Su W C, Heinrich C A, Pettke T, et al. Sediment-hosted gold deposits in Guizhou, China: products of wall-rock sulfidation by deep crustal fluids[J]. Economic Geology, 2009, 104(1): 73-93. Doi:10.2113/gsecongeo.104.1.73 |
[72] |
Tagami T, O'Sullivan P B. Fundamentals of fission-track thermochronology[J]. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 19-47. Doi:10.2138/rmg.2005.58.2 |
[73] |
Feng H Y, Ju Y W, Chen B, et al. Micro-nanoscale characteristics of pyrite and its implications for gold mineralization: two cases of gold deposits in the Youjiang basin and southwestern Tianshan mountains[J]. Journal of Nanoscience and Nanotechnology, 2021, 21(1): 246-261. Doi:10.1166/jnn.2021.18744 |
[74] |
Su W C, Zhang H T, Hu R Z, et al. Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for gold depositional processes[J]. Mineralium Deposita, 2012, 47(6): 653-662. Doi:10.1007/s00126-011-0328-9 |
[75] |
国家辉, 黄德保, 施立达, 等. 桂西北超微粒型金矿及其成矿和找矿模式[M]. 北京: 地震出版社, 1992.
|
[76] | |
[77] | |
[78] | |
[79] |
Hu X L, Gong Y J, Zeng G P, et al. Multistage pyrite in the Getang sediment-hosted disseminated gold deposit, southwestern Guizhou Province, China: insights from textures and in situ chemical and sulfur isotopic analyses[J]. Ore Geology Reviews, 2018, 99: 1-16. Doi:10.1016/j.oregeorev.2018.05.020 |
[80] | |
[81] |
Zhao J, Liang J L, Long X P, et al. Genesis and evolution of framboidal pyrite and its implications for the ore-forming process of Carlin-style gold deposits, southwestern China[J]. Ore Geology Reviews, 2018, 102: 426-436. Doi:10.1016/j.oregeorev.2018.09.022 |
[82] |
Hou L, Peng H J, Ding J, et al. Textures and in situ chemical and isotopic analyses of pyrite, Huijiabao trend, Youjiang basin, China: implications for paragenesis and source of sulfur[J]. Economic Geology, 2016, 111(2): 331-353. Doi:10.2113/econgeo.111.2.331 |
[83] | |
[84] |
Peng Y W, Gu X X, Zhang Y M, et al. Ore-forming process of the Huijiabao gold district, southwestern Guizhou Province, China: evidence from fluid inclusions and stable isotopes[J]. Journal of Asian Earth Sciences, 2014, 93: 89-101. Doi:10.1016/j.jseaes.2014.06.022 |
[85] | |
[86] |
Xie Z J, Xia Y, Cline J S, et al. Magmatic origin for sediment-hosted Au deposits, Guizhou Province, China: in situ chemistry and sulfur isotope composition of pyrites, Shuiyindong and Jinfeng deposits[J]. Economic Geology, 2018, 113(7): 1627-1652. Doi:10.5382/econgeo.2018.4607 |
[87] |
Machel H G. Bacterial and thermochemical sulfate reduction in diagenetic settings: old and new insights[J]. Sedimentary Geology, 2001, 140(1/2): 143-175. Doi:10.1016/S0037-0738(00)00176-7 |
[88] |
Shen Y N, Buick R, Canfield D E. Isotopic evidence for microbial sulphate reduction in the early Archaean era[J]. Nature, 2001, 410: 77-81. Doi:10.1038/35065071 |
[89] |
Ripley E M, Ohmoto H. A FORTRAN program for plotting mineral stabilities in the Fe-Cu-S-O system in terms of log(∑SO 4/∑H 2S) or logfO 2 vs pH or T[J]. Computers & Geosciences, 1979, 5(3/4): 289-300. Doi:10.1016/0098-3004(79)90025-6 |
[90] |
Huston D L, Sie S H, Suter G F, et al. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part Ⅰ, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part Ⅱ, Selenium levels in pyrite; comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems[J]. Economic Geology, 1995, 90(5): 1167-1196. Doi:10.2113/gsecongeo.90.5.1167 |
[91] | |
[92] | |
[93] |
王国芝, 胡瑞忠, 苏文超, 等. Fluid flow and mineralization of Youjiang basin in the Yunnan-Guizhou-Guangxi area, China[J]. Science in China(Series D: Earth Sciences), 2003(S1): 99-109. Doi:10.3969/j.issn.1674-7313.2003.z1.009 |
[94] |
Qi L, Zhou M F. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China[J]. Chemical Geology, 2008, 248(1/2): 83-103. Doi:10.1016/j.chemgeo.2007.11.004 |
[95] |
Tao Y, Li C S, Hu R Z, et al. Petrogenesis of the Pt-Pd mineralized Jinbaoshan ultramafic intrusion in the Permian Emeishan Large Igneous Province, SW China[J]. Contributions to Mineralogy and Petrology, 2007, 153(3): 321-337. Doi:10.1007/s00410-006-0149-5 |
[96] |
Zhang Z C, Mao J W, Wang F S, et al. Native gold and native copper grains enclosed by olivine phenocrysts in a picrite lava of the Emeishan large igneous province, SW China[J]. American Mineralogist, 2006, 91(7): 1178-1183. Doi:10.2138/am.2006.1888 |
[97] |
Tassara S, González-Jiménez J M, Reich M, et al. Plume-subduction interaction forms large auriferous provinces[J]. Nature Communications, 2017, 8: 843. Doi:10.1038/s41467-017-00821-z |
[98] |
Wang X Q, Zhang B M, Lin X, et al. Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China[J]. Ore Geology Reviews, 2016, 73: 417-431. Doi:10.1016/j.oregeorev.2015.08.015 |
[99] | |