关于
定理A 常Gauss曲率Bonnet曲面Gauss曲率为0。
为方便讨论,本文涉及的Bonnet曲面均无脐点,且dH≠0。
1 预备知识设M为
$ \left\{\begin{array}{l} \mathrm{d} x=\omega_1 e_1+\omega_2 e_2 ,\\ \mathrm{~d} e_1=\omega_{12} e_2+\omega_{13} e_3, \\ \mathrm{~d} e_2=-\omega_{12} e_1+\omega_{23} e_3, \\ \mathrm{~d} e_3=-\omega_{13} e_1-\omega_{23} e_2. \end{array}\right. $ |
其中ω1, ω2为e1, e2的对偶1-形式,则ω13=aω1,ω23=cω2,ω12为曲面的联络形式,设ω12=hω1+kω2。上述1- 形式满足结构方程
$ \begin{cases}\mathrm{d} \omega_1=\omega_{12} \wedge \omega_2, & \\ \mathrm{~d} \omega_2=\omega_1 \wedge \omega_{12}, & \\ \mathrm{~d} \omega_{12}=-K \omega_1 \wedge \omega_2 & \text { (Gauss 方程), } \\ \mathrm{d} \omega_{13}=\omega_{12} \wedge \omega_{23} & \text { (Codazzi 方程) }, \\ \mathrm{d} \omega_{23}=\omega_{13} \wedge \omega_{12} & \text { (Codazzi 方程). }\end{cases} $ |
由Codazzi方程,
$ \begin{aligned} & {\left[\mathrm{d} a-(a-c) h \omega_2\right] \wedge \omega_1=0, } \\ & {\left[\mathrm{~d} a-(a-c) k \omega_1\right] \wedge \omega_2=0 .} \end{aligned} $ |
不妨设
$ 2 \mathrm{~d} H=\mathrm{d}(a+c)=(a-c)\left(u \omega_1+v \omega_2\right), $ | (1) |
则
$ \begin{aligned} & \frac{\mathrm{d} a}{a-c}=(u-k) \omega_1+h \omega_2, \\ & \frac{\mathrm{d} c}{a-c}=k \omega_1+(v-h) \omega_2 . \end{aligned} $ |
因此,
$ \operatorname{dlog}(a-c)=(u-2 k) \omega_1-(v-2 h) \omega_2, $ | (2) |
并且
定义1-形式
$ \begin{aligned} & \theta_1=u \omega_1+v \omega_2, \theta_2=-v \omega_1+u \omega_2, \\ & \alpha_1=u \omega_1-v \omega_2, \alpha_2=v \omega_1+u \omega_2 . \end{aligned} $ |
定义*算子
$ * \omega_1=\omega_2, * \omega_2=-\omega_1, $ |
则
$ \begin{aligned} & * \theta_1=\theta_2, * \theta_2=-\theta_1, \\ & * \alpha_1=\alpha_2, * \alpha_2=-\alpha_1. \end{aligned} $ |
于是式(1)和式(2)可以改写为
$ \begin{gathered} 2 \mathrm{~d} H=(a-c) \theta_1, \\ \mathrm{~d} \log (a-c)=\alpha_1+2 * \omega_{12} . \end{gathered} $ |
由于dH≠0,定义度量
$ \begin{aligned} \mathrm{d} s_{-1}^2=\theta_1^2+\theta_2^2= & \alpha_1^2+\alpha_2^2=\left(u^2+v^2\right)\left(\omega_1^2+\omega_2^2\right) \\ & =\frac{|\nabla H|^2}{H^2-K} \mathrm{~d} s^2, \end{aligned} $ |
其中ds2为M上的诱导度量。
Chern在文献[2]中证明曲面M为Bonnet曲面的充要条件为
$ \left\{\begin{array}{l} \mathrm{d} \alpha_1=0 , \\ \mathrm{~d} \alpha_2=\alpha_1 \wedge \alpha_2 . \end{array}\right. $ |
此时易知ds-12的Gauss曲率为-1,同时作者还指出Bonnet曲面必为W-曲面,即dH∧dK=0。Chen和Peng在文献[5]中进一步证明M为W-曲面等价于dθ1=0,并得到如下定理:
定理1.1[5] 若M为Bonnet曲面,则
1) 度量
$ \mathrm{d} s_0^2=\frac{\left(H^2-K\right)^2}{|\nabla H|^2} \mathrm{~d} s^2 $ |
的Gauss曲率为0,
2)
Chen和Peng在文献[5]中指出可选取M上的等温坐标(u, v),有
$ \mathrm{d} s_0^2=\mathrm{d} u^2+\mathrm{d} v^2, $ |
此时H仅为u的函数,即H=H(u)。这样就得到如下各式:
$ \left\{\begin{array}{l} \mathrm{d} s_{-1}^2=F^2 \mathrm{~d} s_0^2=F^2\left(\mathrm{~d} u^2+\mathrm{d} v^2\right), \\ \mathrm{d} s^2=\frac{|\nabla H|^2}{\left(H^2-K\right)^2} \mathrm{~d} s_0^2=\frac{|\nabla H|^2}{\left(H^2-K\right)^2}\left(\mathrm{~d} u^2+\mathrm{d} v^2\right). \end{array}\right. $ | (3) |
其中
$ \left|\nabla_0 H\right|^2=|\nabla H|^2 \frac{|\nabla H|^2}{\left(H^2-K\right)^2}, $ | (4) |
$ \Delta_0 \ln F=F^2. $ | (5) |
式(5)可改写为
$ (\ln F)^{\prime \prime}=F^2. $ | (6) |
由定理1.1及M为W-曲面, 可知
$ H^{\prime 2}=|\nabla H|^2 \frac{|\nabla H|^2}{\left(H^2-K\right)^2}=F^2\left(H^2-K\right) . $ |
这样就得到关于Bonnet曲面Gauss曲率满足的微分方程
$ K=H^2-\frac{H^{\prime 2}}{F^2}. $ |
在等温坐标下,曲面的第一基本型为
$ \mathrm{d} s^2=\mathrm{e}^{2 \varphi}\left(\mathrm{d} u^2+\mathrm{d} v^2\right), $ | (7) |
其中
$ \begin{gathered} {\left[\begin{array}{c} \widetilde{\omega}_1 \\ \widetilde{\omega}_2 \end{array}\right]=\left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right]\left[\begin{array}{l} \omega_1 \\ \omega_2 \end{array}\right], } \\ {\left[\begin{array}{c} \widetilde{e}_1 \\ \widetilde{e}_2 \end{array}\right]=\left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right]\left[\begin{array}{l} e_1 \\ e_2 \end{array}\right], } \\ \left\{\begin{array}{l} \widetilde{\omega}_{13}=-\left(\mathrm{d} e_3, \tilde{e}_1\right)=h_{11} \widetilde{\omega}_1+h_{12} \widetilde{\omega}_2, \\ \widetilde{\omega}_{23}=-\left(\mathrm{d} e_3, \tilde{e}_2\right)=h_{21} \widetilde{\omega}_1+h_{22} \widetilde{\omega}_2 . \end{array}\right. \end{gathered} $ |
经过简单计算可得
$ \left\{\begin{array}{l} h_{11}=H+G \cos 2 \theta, \\ h_{12}=h_{21}=G \sin 2 \theta, \\ h_{22}=H-G \cos 2 \theta . \end{array}\right. $ |
其中
$ \left\{\begin{array}{l} h_{112}=h_{121}, \\ h_{212}=h_{221}. \end{array}\right. $ | (8) |
其中协变导数hijk (i, j, k=1, 2)由
$ \sum\limits_k h_{i j k} \widetilde{\omega}_k=\mathrm{d} h_{i j}+\sum\limits_k h_{k i} \widetilde{\omega}_{k j}+\sum\limits_k h_{k j} \widetilde{\omega}_{k i} $ |
确定。直接计算h112, h121, h212, h221并代入式(8),得到
$ \left\{\begin{array}{l} 2 \theta_u^{\prime}=\mp F \sin 2 \theta, \\ 2 \theta_v^{\prime}=\pm F \sin 2 \theta-(\ln F)^{\prime} \end{array}\right. $ | (9) |
事实上可简单验证式(9)的可积性条件即为式(6)。解式(6),得到
$ F=\pm\left\{\begin{array}{l} \frac{1}{u+t}, \\ \frac{\lambda}{\sin \lambda(u+t)}' \\ \frac{\lambda}{\sinh \lambda(u+t)}. \end{array}\right. $ | (10) |
这里t, λ(λ≠0)为任意常数。将式(10)代入式(9)中,有
$ \tan \theta=\pm\left\{\begin{array}{l} \left(\frac{v+s}{u+t}\right)^{\pm 1}, \text { 当 } F=\pm \frac{1}{u+t}, \\ \tanh \frac{\lambda v+s}{2}\left(\cot \frac{\lambda(u+t)}{2}\right)^{\pm 1} \text { 或 } \\ \operatorname{coth} \frac{\lambda v+s}{2}\left(\cot \frac{\lambda(u+t)}{2}\right)^{\pm 1}, \\ \text { 当 } F=\pm \frac{\lambda}{\sin \lambda(u+t)}, \\ \pm \tan \frac{\lambda v+s}{2}\left(\operatorname{coth} \frac{\lambda(u+t)}{2}\right)^{\pm 1}, \\ \text { 当 } F=\pm \frac{\lambda}{\sinh \lambda(u+t)} . \end{array}\right. $ |
其中s为任意常数。再由式(7),K=-φ″e-2φ得到
$\left(\ln \frac{H^{\prime}}{F^2}\right){ }^{\prime \prime} \frac{H^{\prime}}{F^2}=2\left(H^2-\frac{H^2}{F^2}\right). $ | (11) |
这样就得到Bonnet曲面的平均曲率H所满足的微分方程。反之,由文献[7]也可以利用式(11)和式(9)的解构造满足条件的Bonnet曲面。这样就得到如下定理:
定理1.2[5-7] 若M为Bonnet曲面, 则存在等温坐标(u, v),使得M的平均曲率H仅为u的函数,且M的Gauss曲率K和平均曲率H满足方程组
$ \left\{\begin{array}{l} K=H^2-\frac{H^{\prime 2}}{F^2}, \\ \left.\left(\ln \frac{H^{\prime}}{F^2}\right)\right)^{\prime \prime} \frac{H^{\prime}}{F^2}=2\left(H^2-\frac{H^{\prime 2}}{F^2}\right) . \end{array}\right. $ | (12) |
其中
$ F=\pm\left\{\begin{array}{l} \frac{1}{u+t}, \\ \frac{\lambda}{\sin \lambda(u+t)}, \\ \frac{\lambda}{\sinh \lambda(u+t)} . \end{array}\right. $ |
λ, t为常数,且λ≠0。
2 定理A的证明本节将在Bonnet曲面M的Gauss曲率K为常值时,对定理1.2中的方程组进行求解,得到若K为常值且K不为0,式(12)无解。
首先设K>0,由
$ K=H^2-\frac{H^{\prime 2}}{F^2}, $ |
$ \left(\frac{\sqrt{K}}{H}\right)^2+\left(\frac{H^{\prime}}{F H}\right)^2=1. $ |
令
$ \left\{\begin{array}{l} \sin \beta=\frac{\sqrt{K}}{H}, \\ \cos \beta=\frac{H^{\prime}}{F H}. \end{array}\right. $ | (13) |
其中β为关于u的函数。由式(13),
$ H^{\prime}=\left(\frac{\sqrt{K}}{\sin \beta}\right)^{\prime}=-\frac{\sqrt{K} \cos \beta}{\sin ^2 \beta} \beta^{\prime}=F \sqrt{K} \cot \beta, $ | (14) |
于是
$ \frac{\beta^{\prime}}{\sin \beta}=-F \text {. } $ | (15) |
对式(15)左边积分有
$ \left(\ln \tan ^2 \frac{\beta}{2}\right)^{\prime}=-2 F. $ | (16) |
设K < 0,由
$ K=H^2-\frac{H^{\prime 2}}{F^2}, $ |
有
此时令
$ \left\{\begin{array}{l} \sin \tilde{\beta}=\frac{\sqrt{-K} F}{H^{\prime}}, \\ \cos \tilde{\beta}=\frac{H F}{H^{\prime}} . \end{array}\right. $ | (17) |
其中
$ H^{\prime}=\frac{H F}{\cos \tilde{\beta}}=\frac{F \sqrt{-K}}{\sin \tilde{\beta}} \text {, } $ | (18) |
由式(18),
进一步,
$ H^{\prime}=\frac{-\sqrt{-K} \tilde{\beta}^{\prime}}{\sin ^2 \tilde{\beta}}, $ | (19) |
由式(18)和式(19),
$ \frac{\tilde{\beta}^{\prime}}{\sin \tilde{\beta}}=-F \text {, } $ |
进一步,
$ \left(\ln \tan ^2 \frac{\tilde{\beta}}{2}\right)^{\prime}=-2 F. $ | (20) |
现在将利用式(14)和式(16)以及式(18)和式(20)讨论Gauss曲率K的表达式。
1) 当
$ \tan \frac{\beta}{2}=\frac{m}{u+t} \text { 或 } \tan \frac{\tilde{\beta}}{2}=\frac{\tilde{m}}{u+t} \text {, } $ |
这里
$ \left\{\begin{array}{l} H^{\prime}=\frac{\sqrt{\pm K}\left[(u+t)^2 \mp m^2\right]}{2 m(u+t)^2}, \\ H^{\prime \prime}=\frac{\pm \sqrt{\pm K} m}{(u+t)^3}, \\ \frac{H^{\prime \prime}}{H^{\prime}}=\frac{2 m^2}{(u+t)\left[\pm(u+t)^2-m^2\right]}, \\ \frac{H^{\prime}}{F^2}=\frac{\sqrt{\pm K}\left[(u+t)^2 \mp m^2\right]}{2 m}, \\ \frac{F^{\prime}}{F}=\frac{-1}{u+t}. \end{array}\right. $ | (21) |
注意到式(12)中二式又可以写成
$ \left(\frac{H^{\prime \prime}}{H^{\prime}}-\frac{2 F^{\prime}}{F}\right)^{\prime} \frac{H^{\prime}}{F^2}=2 K . $ | (22) |
将式(21)中的结果代入到式(22)中得到
$ \frac{\sqrt{\pm K}\left[m^2 \pm(u+t)^2\right]}{m\left[m^2 \mp(u+t)^2\right]}=2 K . $ |
这样就得到了Gauss曲率K的表达式,这与假设K为常值矛盾。
2) 当
$ \tan \frac{\beta}{2}=m \cot \frac{\gamma}{2} \text { 或 } \tan \frac{\tilde{\beta}}{2}=\tilde{m} \cot \frac{\gamma}{2} \text {, } $ |
其中
$ \left\{\begin{array}{l} H^{\prime}=\frac{\lambda \sqrt{\pm K}\left(1 \mp m^2 \cot ^2 \frac{\gamma}{2}\right)}{4 m \cos ^2 \frac{\gamma}{2}}, \\ H^{\prime \prime}=\frac{\lambda^2 \sqrt{\pm K}}{4 m}\left(\frac{\sin \frac{\gamma}{2}}{\cos ^3 \frac{\gamma}{2}} \pm \frac{m^2 \cos \frac{\gamma}{2}}{\sin ^3 \frac{\gamma}{2}}\right), \\ \frac{H^{\prime \prime}}{H^{\prime}}=\frac{\lambda\left(\tan ^4 \frac{\gamma}{2} \pm m^2\right)}{\tan ^3 \frac{\gamma}{2} \mp m^2 \tan \frac{\gamma}{2}}, \\ \frac{H^{\prime}}{F^2}=\frac{\sqrt{\pm K}}{\lambda m}\left(\sin ^2 \frac{\gamma}{2} \mp m^2 \cos ^2 \frac{\gamma}{2}\right), \\ \frac{F^{\prime}}{F}=-\lambda \cot \gamma. \end{array}\right. $ | (23) |
将式(23)中的结果代入到式(22)中有
$ \frac{\lambda \sqrt{\pm K}\left(1 \pm m^2\right)\left(\tan ^2 \frac{\gamma}{2} \pm m^2\right)}{-2 m\left(\tan ^2 \frac{\gamma}{2} \mp m^2\right)}=2 K. $ |
这与假设K为常值矛盾。
3) 当
$ \tan \frac{\beta}{2}=m \operatorname{coth} \frac{\gamma}{2} \text { 或 } \tan \frac{\tilde{\beta}}{2}=\tilde{m} \operatorname{coth} \frac{\gamma}{2} \text {, } $ |
其中
$ \left\{\begin{array}{l} H^{\prime}=\frac{\lambda \sqrt{\pm K}\left[\left(1 \mp m^2\right) \cosh \gamma-\left(1 \pm m^2\right)\right]}{2 m \sinh ^2 \gamma}, \\ H^{\prime \prime}= \\ \frac{\lambda^2 \sqrt{\pm K}\left[\left(1 \mp m^2\right)\left(1+\cosh ^2 \gamma\right)-2\left(1 \pm m^2\right) \cosh \gamma\right]}{-2 m \sinh ^3 \gamma}, \\ \frac{H^{\prime}}{H^{\prime}}=\frac{\lambda\left[\left(1 \mp m^2\right)\left(1+\cosh ^2 \gamma\right)-2\left(1 \pm m^2\right) \cosh \gamma\right]}{-\sinh \gamma\left[\left(1 \mp m^2\right) \cosh \gamma-\left(1 \pm m^2\right)\right]}, \\ \frac{H^{\prime}}{F^2}=\frac{\sqrt{\pm K}\left[\left(1 \mp m^2\right) \cosh \gamma-\left(1 \pm m^2\right)\right]}{2 \lambda m}, \\ \frac{F^{\prime}}{F}=-\lambda \operatorname{coth} \gamma . \end{array}\right. $ | (24) |
将式(24)中的结果代入到式(22)中得
$ \frac{\lambda \sqrt{\pm K}\left(1 \mp m^2\right)\left[\left(1 \mp m^2\right)-\left(1 \pm m^2\right) \cosh \gamma\right]}{2 m\left[\left(1 \mp m^2\right) \cosh \gamma-\left(1 \pm m^2\right)\right]}=2 K . $ |
这与K为常值矛盾。
4) 当
$ \tan \frac{\beta}{2}=m(u+t) \text { 或 } \tan \frac{\tilde{\beta}}{2}=\tilde{m}(u+t) \text {, } $ |
其中
$ \left\{\begin{array}{l} H^{\prime}=\frac{\sqrt{\pm K}\left[\pm m^2(u+t)^2-1\right]}{2 m(u+t)^2}, \\ H^{\prime \prime}=\frac{\sqrt{\pm K}}{m(u+t)^3}, \\ \frac{H^{\prime \prime}}{H^{\prime}}=\frac{2}{(u+t)\left[\pm m^2(u+t)^2-1\right]}, \\ \frac{H^{\prime}}{F^2}=\frac{\sqrt{\pm K}\left[\pm m^2(u+t)^2-1\right]}{2 m}, \\ \frac{F^{\prime}}{F}=\frac{-1}{u+t} . \end{array}\right. $ | (25) |
将式(25)中的结果代入到式(22)中有
$ \frac{\pm \sqrt{\pm K} m\left[\mp m^2(u+t)^2-1\right]}{\pm m^2(u+t)^2-1}=2 K . $ |
这与K为常数矛盾。
5) 当
$ \tan \frac{\beta}{2}=m \tan \frac{\gamma}{2} \text { 或 } \tan \frac{\tilde{\beta}}{2}=\tilde{m} \tan \frac{\gamma}{2} \text {, } $ |
$ \left\{\begin{array}{l} H^{\prime}=\frac{-\lambda \sqrt{\pm K}\left(1 \mp m^2 \tan ^2 \frac{\gamma}{2}\right)}{4 m \sin ^2 \frac{\gamma}{2}}, \\ H^{\prime \prime}=\frac{\lambda^2 \sqrt{\pm K}}{4 m}\left(\frac{\cos \frac{\gamma}{2}}{\sin ^3 \frac{\gamma}{2}} \pm \frac{m^2 \sin \frac{\gamma}{2}}{\cos ^3 \frac{\gamma}{2}}\right), \\ \frac{H^{\prime \prime}}{H^{\prime}}=\frac{-\lambda\left(1 \pm m^2 \tan ^4 \frac{\gamma}{2}\right)}{\tan \frac{\gamma}{2} \mp m^2 \tan ^3 \frac{\gamma}{2}}, \\ \frac{H^{\prime}}{F^2}=\frac{-\sqrt{\pm K}}{\lambda m}\left(\cos ^2 \frac{\gamma}{2} \mp m^2 \sin ^2 \frac{\gamma}{2}\right), \\ \frac{F^{\prime}}{F}=-\lambda \cot \gamma . \end{array}\right. $ | (26) |
将式(26)中的结果代入到式(22)中有
$ \frac{\lambda \sqrt{\pm K}\left(1 \pm m^2\right)\left(1 \pm m^2 \tan ^2 \frac{\gamma}{2}\right)}{2 m\left(1 \mp m^2 \tan ^2 \frac{\gamma}{2}\right)}=2 K. $ |
这与K为常值矛盾。
6) 当
$ \tan \frac{\beta}{2}=m \tanh \frac{\gamma}{2} \text { 或 } \tan \frac{\tilde{\beta}}{2}=\tilde{m} \tanh \frac{\gamma}{2} \text {, } $ |
$ \left\{\begin{array}{l} H^{\prime}=\frac{-\lambda \sqrt{\pm K}\left[\left(1 \mp m^2\right) \cosh \gamma+\left(1 \pm m^2\right)\right]}{2 m \sinh ^2 \gamma}, \\ H^{\prime \prime}=\frac{\lambda^2 \sqrt{\pm K}\left[\left(1 \mp m^2\right)\left(1+\cosh ^2 \gamma\right)+2\left(1 \pm m^2\right) \cosh \gamma\right]}{2 m \sinh ^3 \gamma}, \\ \frac{H^{\prime \prime}}{H^{\prime}}=\frac{\lambda\left[\left(1 \mp m^2\right)\left(1+\cosh ^2 \gamma\right)+2\left(1 \pm m^2\right) \cosh \gamma\right]}{-\sinh \gamma\left[\left(1 \mp m^2\right) \cosh \gamma+\left(1 \pm m^2\right)\right]}, \\ \frac{H^{\prime}}{F^2}=\frac{\sqrt{\pm K}\left[\left(1 \mp m^2\right) \cosh \gamma+\left(1 \pm m^2\right)\right]}{-2 m \lambda} , \\ \frac{F^{\prime}}{F}=-\lambda \operatorname{coth} \gamma. \end{array}\right. $ | (27) |
将式(27)中的结果代入到式(22)中有
$ \frac{\lambda \sqrt{\pm K}\left(1 \mp m^2\right)\left[\left(1 \mp m^2\right)+\left(1 \pm m^2\right) \cosh \gamma\right]}{-2 m\left[\left(1 \mp m^2\right) \cosh \gamma+\left(1 \pm m^2\right)\right]}=2 K . $ |
与K为常值矛盾。
综上可知,若Bonnet曲面Gauss曲率K为常值,则只能为0。这样就完成了定理A的证明。
现在考虑零Gauss曲率Bonnet曲面的平均曲率,此时式(12) 为
$ H^2-\frac{H^{\prime 2}}{F^2}=0, $ | (28) |
$ \left(\ln \frac{H^{\prime}}{F^2}\right){ }^{\prime \prime} \frac{H^{\prime}}{F^2}=0 . $ | (29) |
由式(28)有
$ \left(\ln H^2\right)^{\prime}=2 F. $ | (30) |
当
$ H=m(u+t)^{\pm 1}. $ |
m≠0为常数。考虑到式(29)成立,则有H=
当
$ H=m \tan ^{\pm 1} \frac{\gamma}{2}. $ |
m≠0为常数,H不能使式(29)式成立。
当
$ H=m \tanh ^{\pm 1} \frac{\gamma}{2}. $ |
m≠0为常数,H不能使式(29)式成立。
综上所述,得到如下结论:
M为Bonnet曲面,则存在等温坐标(u, v)使M的Gauss曲率K和平均曲率H均为u的函数,M上的度量有如下形式:
$ \begin{aligned} \mathrm{d} s^2 & =\frac{\left(H^2-K\right)^2}{|\nabla H|^2} \mathrm{~d} s_0^2, \\ \mathrm{~d} s_0^2 & =\mathrm{d} u^2+\mathrm{d} v^2 . \end{aligned} $ |
并且K, H满足方程
$ \left\{\begin{array}{l} K=H^2-\frac{H^{\prime 2}}{F^2}, \\ \left(\ln \frac{H^{\prime}}{F^2}\right){ }^{\prime \prime} \frac{H^{\prime}}{F^2}=2\left(H^2-\frac{H^{\prime 2}}{F^2}\right). \end{array}\right. $ |
其中
$ F=\pm\left\{\begin{array}{l} \frac{1}{u+t}, \\ \frac{\lambda}{\sin \lambda(u+t)}, \\ \frac{\lambda}{\sinh \lambda(u+t)}. \end{array}\right. $ |
λ, t为常数,λ≠0。若M的Gauss曲率K为常值,则K=0,且平均曲率
[1] |
Bonnet O. Memoire sur la theorie des surfaces applicables[J]. Ec Polyt, 1867, 42: 79-92. |
[2] |
Chern S S. Deformation of surfaces preserving principal curvatures[C]//Chavel I. Differential Geometry and Complex Analysis. New York: Springer, 1985: 155-163.
|
[3] |
Roussos I M. Principal curvature preserving isometries of surfaces in ordinary space[J]. Boletim da Sociedade Brasileira de Matematica, 1987, 18(2): 95-105. Doi:10.1007/BF02590026 |
[4] |
Colares A G, Kenmotsu K. Isometric deformation of surfaces in |
[5] |
Chen X X, Peng C K. Deformation of surfaces preserving principal curvatures[C]//Jiang B J, Peng C K. Differential geometry and topology. New York: Springer, 1989: 63-70. DOI: 10.1007/BFb0087527.
|
[6] |
Peng C K, Lu S N. On the classification of the Bonnet surfaces[J]. Journal of Graduate School Academia Sinica, 1992, 9(2): 107-116. |
[7] |
王珂, 吴英毅. 非零Gauss曲率Bonnet曲面的存在性及其相关性质[J]. 中国科学院大学学报, 2020, 37(1): 6-12. Doi:10.7523/j.issn.2095-6134.2020.01.002 |