中国科学院大学学报  2023, Vol. 40 Issue (1): 1-5   PDF    
Limiting property of distribution function in Lorentz space
WU Di1, DENG Yangkendi2, YU Dandan2, YAN Dunyan2     
1. School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China;
2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: In this paper, we give a novel proof for the following equality $ \mathop {\lim }\limits_{\alpha \to {0^ + }} {\alpha ^P}{d_f}(\alpha ) = \mathop {\lim }\limits_{\alpha \to \infty } {\alpha ^P}{d_f}(\alpha ) = 0 $ for fLp, q(X, μ) with 0 < p < ∞, and 0 < q < ∞.We also prove that the function αp can not be improved for some sense. When q=∞, the above equality does not hold.
Keywords: limiting behavior    distribution functions    Lorentz spaces    
洛伦兹空间上的分布函数的极限性质
吴迪1, 邓杨肯迪2, 于丹丹2, 燕敦验2     
1. 浙江科技学院理学院, 杭州 310023;
2. 中国科学院大学数学科学学院, 北京 100049
摘要: 用一个新颖的方法证明以下等式: $ \mathop {\lim }\limits_{\alpha \to {0^ + }} {\alpha ^P}{d_f}(\alpha ) = \mathop {\lim }\limits_{\alpha \to \infty } {\alpha ^P}{d_f}(\alpha ) = 0 $ 其中fLp, q(X, μ),并且有0 < p < ∞和0 < q < ∞。也证明函数αp在某种意义下不能再提升。特别地,当q=∞时,以上等式是不一定成立的。
关键词: 极限行为    分布函数    洛伦兹空间    

Let f be a measurable function on a measure space (X, μ) and 0 < p < ∞, 0 < q≤∞. Define

$ \|f\|_{L^{p, q}}= \begin{cases}p^{\frac{1}{q}}\left(\int_0^{\infty}\left(d_f(\alpha)^{\frac{1}{p}} \alpha\right)^q \frac{\mathrm{d} \alpha}{\alpha}\right)^{\frac{1}{q}}, & \text { if } q <\infty , \\ \sup \limits_{\alpha>0} \alpha \; d_f(\alpha)^{\frac{1}{p}}, & \text { if } q=\infty ,\end{cases} $ (1)

where $d_f(\alpha)=\mu\{x:|f(x)|>\alpha\}$ is the distribution function of $f$. The set of all $f$ with $|f|_{L^{p, q}}<\infty$ is denoted by Lp, q(X, μ) and is called the Lorentz space with indices p and q.

There are many simple properties of Lorentz space. For 0 < p < ∞, we have that

$ L^{p, p}(X, \mu)=L^p(X, \mu), $

and

$ L^{p, \infty}(X, \mu)=W L^p(X, \mu) . $

For 0 < p < ∞ and 0 < q < r≤∞, there exists a constant cp, q, r such that

$ \|f\|_{L^{p, r}} \leqslant c_{p, q, r}\|f\|_{L^{p, q }}. $

More properties of Lorentz space can be found in Refs.[1-4].

The limiting property of distribution functions of Lp functions has been proved in Ref.[5] for 1≤p < ∞. That is, when $ f \in L^{p, p}\left(\mathbb{R}^n\right)$, we have that

$ \lim\limits _{\alpha \rightarrow 0^{+}} \alpha^p d_f(\alpha)=0. $ (2)

However, for $f \in L^1\left(\mathbb{R}^n\right)$, we know that $M f \in$ $L^{1, \infty}\left(\mathbb{R}^n\right)$, where $M$ is the maximal operator. In Ref. [6], P. Janakiraman has proved that

$ \lim\limits _{\alpha \rightarrow 0^{+}} \alpha d_{M f}(\alpha)=\|f\|_{L^1\left(\mathbb{R}^n\right)}. $

This means that the limiting equality of distribution functions does not hold for L1, ∞ function.

It is well-known that the following inclusion relation

$ L^{p, p}\left(\mathbb{R}^n\right) \varsubsetneqq L^{p, q}\left(\mathbb{R}^n\right) \varsubsetneqq L^{p, \infty}\left(\mathbb{R}^n\right) $

holds for 0 < p < q < ∞.

It is worth investigating the limiting property of distribution functions of fLp, q(X, μ).

1 Main results and proof

Now we formulate our main theorem.

Theorem 1.1   Let μ be a σ-finite positive measure on some σ-algebra in set X. For fLp, q(X, μ) with 0 < p, q < ∞, denote the distribution functions of f as

$ d_f(\alpha):=\mu(\{x \in X:|f(x)|>\alpha\}). $

Then we have

$ \lim\limits _{\alpha \rightarrow 0^{+}} \alpha^p d_f(\alpha)=\lim\limits _{\alpha \rightarrow \infty} \alpha^p d_f(\alpha)=0 $ (3)

Proof  First, we prove that

$ \limsup\limits _{\alpha \rightarrow 0^{+}} \alpha^p d_f(\alpha)=0. $

If the conclusion does not hold, then we conclude that

$ \limsup\limits _{\alpha \rightarrow 0^{+}} \alpha^p d_f(\alpha)=C_0>0, $

or

$ \limsup\limits _{\alpha \rightarrow 0^{+}} \alpha^p d_f(\alpha)=\infty . $

Thus there exist a positive sequence {xn}n=1 and a positive number C such that

$ \lim\limits _{n \rightarrow \infty} x_n=0, $

and

$ x_n^p d_f\left(x_n\right) \geqslant C $

for $ n \in \mathbb{N}$. Obviously, there exists a strictly decreasing subsequence, still denoted as {xn}.

Since df is a decreasing function, it follows that

$ \begin{aligned} \|f\|_{L^{p, q}}^q & =p \int_0^{\infty}\left(\alpha d_f(\alpha)^{\frac{1}{p}}\right)^q \frac{\mathrm{d} \alpha}{\alpha} \\ & =p \int_0^{\infty} \alpha^{q-1} d_f(\alpha)^{\frac{q}{p}} \mathrm{~d} \alpha \\ & =p \int_0^{x_1} \alpha^{q-1} d_f(\alpha)^{\frac{q}{p}} \mathrm{~d} \alpha+p \int_{x_1}^{\infty} \alpha^{q-1} d_f(\alpha)^{\frac{q}{p}} \mathrm{~d} \alpha \\ & \geqslant p \sum\limits_{n=1}^{\infty} \int_{x_{n+1}}^{x_n} \alpha^{q-1} d_f(\alpha)^{\frac{q}{p}} \mathrm{~d} \alpha \\ & \geqslant p \sum\limits_{n=1}^{\infty} \int_{x_{n+1}}^{x_n} \alpha^{q-1} d_f\left(x_n\right)^{\frac{q}{p}} \mathrm{~d} \alpha \\ & =\frac{p}{q} \sum\limits_{n=1}^{\infty}\left(x_n^q-x_{n+1}^q\right) d_f\left(x_n\right)^{\frac{q}{p}} \\ & \geqslant \frac{p C^{\frac{q}{p}}}{q} \sum\limits_{n=1}^{\infty}\left(1-\left(\frac{x_{n+1}}{x_n}\right)^q\right) . \end{aligned} $ (4)

Setting λn=(xn+1/xn)q∈(0, 1), the basic principle of mathematics analysis tells us that the infinite product ∏λn converges to a nonzero number if and only if ∑(1-λn) converges. However we deduce that

$ \begin{aligned} \prod\limits_{n=1}^{\infty} \lambda_n & =\lim _{N \rightarrow \infty} \prod\limits_{n=1}^N \lambda_n=\lim _{N \rightarrow \infty} \prod\limits_{n=1}^N\left(\frac{x_{n+1}}{x_n}\right)^q \\ & =\lim _{N \rightarrow \infty}\left(\frac{x_{N+1}}{x_1}\right)^q=0 . \end{aligned} $

It implies from (4) that

$ \|f\|_{L^{p, q}}=\infty . $

This leads to contradiction.

Next, we prove

$ \limsup\limits _{\alpha \rightarrow \infty} \alpha^p d_f(\alpha)=0. $

Similarly, if the upper limit is a positive number or ∞, there exist a positive number C and a strictly increasing sequence {xn}n=1

such that

$ \lim\limits _{n \rightarrow \infty} x_n=\infty $

and

$ x_n^p d_f\left(x_n\right) \geqslant C. $

Therefore, we conclude that

$ \begin{aligned} \|f\|_{L^{p, q}}^q & =p \int_0^{\infty}\left(\alpha d_f(\alpha)^{\frac{1}{p}}\right)^q \frac{\mathrm{d} \alpha}{\alpha} \\ & =p \int_0^{\infty} \alpha^{q-1} d_f(\alpha)^{\frac{q}{p}} \mathrm{~d} \alpha \\ & =p \int_0^{x_1} \alpha^{q-1} d_f(\alpha)^{\frac{q}{p}} \mathrm{~d} \alpha+p \int_{x_1}^{\infty} \alpha^{q-1} d_f(\alpha)^{\frac{q}{p}} \mathrm{~d} \alpha \\ & \geqslant p \sum\limits_{n=1}^{\infty} \int_{x_n}^{x_{n+1}} \alpha^{q-1} d_f(\alpha)^{\frac{q}{p}} \mathrm{~d} \alpha \\ & \geqslant p \sum\limits_{n=1}^{\infty} \int_{x_n}^{x_{n+1}} \alpha^{q-1} d_f\left(x_{n+1}\right)^{\frac{q}{p}} \mathrm{~d} \alpha \\ & =\frac{p}{q} \sum\limits_{n=1}^{\infty}\left(x_{n+1}^q-x_n^q\right) d_f\left(x_{n+1}\right)^{\frac{q}{p}} \\ & \geqslant \frac{p C^{q / p}}{q} \sum\limits_{n=1}^{\infty}\left(1-\left(\frac{x_n}{x_{n+1}}\right)^q\right) .\end{aligned} $ (5)

Note that the infinite product ∏(xn/xn+1)q diverges to 0. For α>0, αpdf(α)≥0 implies

$ \liminf\limits _{\alpha \rightarrow \infty} \alpha^p d_f(\alpha) \geqslant 0. $

That leads to (3).

Now, we begin to prove that the function αp in (2) can not be improved. For this purpose, we first give the following lemma which characterize the special property of some function.

Lemma 1.1   Let g: (0, +∞)→[0, +∞) be a right-continuous non-increasing function. Then there exists a function f: $\mathbb{R}^n $→[0, +∞] such that df(α)=g(α) for any α∈(0, +∞).

Proof   Let

$ f(x)=\int_0^{\infty} \chi{ }_{B\left(0, \left(\frac{g(u)}{v_n}\right)^{\frac{1}{n}}\right)}(x) \mathrm{d} u, $ (6)

where vn=m(B(0, 1)) and B(x, r) denotes a ball with the center at x and the radius r.

Then we merely need to prove that

$ \{x: f(x)>\alpha\}=\left\{x:|x|<\left(\frac{g(\alpha)}{v_n}\right)^{\frac{1}{n}}\right\} $ (7)

holds, for any α∈(0, +∞).

Assume

$ |x| \geqslant\left(\frac{g(\alpha)}{v_n}\right)^{\frac{1}{n}}. $

Note that g is a non-increasing function. We conclude from definition of f in (6) that

$ \begin{aligned} & f(x)=\int_0^\alpha \chi{ }_{B\left(0, \left(\frac{g(u)}{v_n}\right)^{\frac{1}{n}}\right)}(x) \mathrm{d} u+\int_\alpha^{\infty} \chi{ }_{B\left(0, \left(\frac{g(u)}{v_n}\right)^{\frac{1}{n}}\right)}(x) \mathrm{d} u \\ & \;\;\;\;=\int_0^\alpha \chi{ }_{B\left(0, \left(\frac{g(u)}{v_n}\right)^{\frac{1}{n}}\right)}(x) \mathrm{d} u \\ & \;\;\;\;\leqslant \alpha .\\ \end{aligned} $ (8)

Thus the inequality (8) implies that the set of the left hand of (7) is contained in the right hand.

Assume

$ |x|<\left(\frac{g(\alpha)}{v_n}\right)^{\frac{1}{n}}. $

Note that g is a right-continuous function. Then there exists α′>α such that

$ |x|<\left(\frac{g\left(\alpha^{\prime}\right)}{v_n}\right)^{\frac{1}{n}}. $

Then we conclude that

$ \begin{aligned} f(x) & =\int_0^{\alpha^{\prime}} \chi{ }_{B\left(0, \left(\frac{g(u)}{v_n}\right)^{\frac{1}{n}}\right)}(x) \mathrm{d} u+\int_{\alpha^{\prime}}^{\infty} \chi{ }_{B\left(0, \left(\frac{g(u)}{v_n}\right)^{\frac{1}{n}}\right)}(x) \mathrm{d} u \\ & \geqslant \int_0^{\alpha^{\prime}} \chi{ }_{B\left(0, \left(\frac{g(u)}{v_n}\right)^{\frac{1}{n}}\right)}(x) \mathrm{d} u \\ & =\alpha^{\prime}>\alpha . \end{aligned} $

This means that

$ \{x: f(x)>\alpha\} \supseteqq\left\{x:|x|<\left(\frac{g(\alpha)}{v_n}\right)^{\frac{1}{n}}\right\} . $

In a word, (7) holds.

As an application of Lemma 1.2, we prove that the function αp can not be improved for some sense.

Theorem 1.2   Suppose 0 < p, q < ∞. For any nonnegative function h satisfying

$ \lim\limits _{\alpha \rightarrow 0^{+}} h(\alpha)=\infty, $ (9)

there exists a function fLp, q($ \mathbb{R}^n$) such that

$ \limsup\limits _{\alpha \rightarrow 0^{+}} \alpha^p h(\alpha) d_f(\alpha)=\infty. $

Proof   If xk>0 and xk→0, by (9), then there exists a strictly decreasing positive subsequence, still denoted by {xk}k=1, such that

$ h\left(\alpha_k\right) \geqslant 4^k $

and

$ x_{k+1}<\min \left\{2^{-1 / p}, 2^{-1}\right\} x_k, $

for $ k \in \mathbb{N}$ and αk∈[2-1xk, xk).

Define a function g: (0, +∞)→[0, +∞) as

$ g(\alpha)= \begin{cases}\frac{1}{2^k x_k^p}, & \text { if } x_{k+1} \leqslant \alpha <x_k, \\ 0, & \text { if } \alpha \geqslant x_1.\end{cases} $ (10)

By Lemma 1.1, there exists a function f: $ \mathbb{R}^n$→[0, +∞] such that df(α)=g(α) for any α∈(0, +∞). And we have from the definition of g in (10) that

$ \begin{aligned} \|f\|_{L^{p, q}}^q & =p \int_0^{\infty} \alpha^{q-1} d_f(\alpha)^{q / p} \mathrm{~d} \alpha \\ & =p \sum\limits_{k=1}^{\infty} \int_{x_{k+1}}^{x_k} \alpha^{q-1} d_f(\alpha)^{q / p} \mathrm{~d} \alpha \\ & =\frac{p}{q} \sum\limits_{k=1}^{\infty}\left(1-\left(\frac{x_{k+1}}{x_k}\right)^q\right) 2^{-\frac{q k}{p}} \\ & \leqslant \frac{p}{q} \sum\limits_{k=1}^{\infty} 2^{-\frac{q k}{p}}<\infty . \end{aligned} $

This implies fLp, q($ \mathbb{R}^n$).

On the other hand, it follows that

$ \alpha_k^p h\left(\alpha_k\right) d_f\left(\alpha_k\right) \geqslant\left(\frac{x_k}{2}\right)^p 4^k \frac{1}{2^k x_k^p}=2^{k-p} . $

Consequently, we obtain

$ \limsup\limits _{\alpha \rightarrow 0^{+}} \alpha^p h(\alpha) d_f(\alpha)=\infty. $

Remark    In the fact, we can also prove that, for any h satisfying

$ \lim\limits _{\alpha \rightarrow \infty} h(\alpha)=\infty, $

there exists a function fLp, q($\mathbb{R}^n $) such that

$ \limsup\limits _{\alpha \rightarrow \infty} \alpha^p h(\alpha) d_f(\alpha)=\infty \text {, } $

where 0 < p, q < ∞. The case can be proved similarly so we omit the details.

Theorem 1.2 tells us that the function αp in (3) can not be improved. For h(α)=| logα|s where s>0, we have some more explicit conclusions.

Corollary 1.1    Suppose s is a positive constant and 0 < p, q < ∞. If s>p/q, then there exists a function fLp, q($\mathbb{R}^n $) such that

$ \lim\limits _{\alpha \rightarrow 0^{+}} \alpha^p|\log \alpha|^s d_f(\alpha)=\infty ; $

if 0 < sp/q, then for any fLp, q($ \mathbb{R}^n$), we have

$ \liminf\limits _{\alpha \rightarrow 0^{+}} \alpha^p|\log \alpha|^s d_f(\alpha)=0 $ (11)

Proof   First, we assume that s>p/q. Let g: (0, +∞)→[0, +∞) be defined by

$ g(\alpha)=\chi_{(0, a)}(\alpha) \frac{1}{\alpha^p|\log \alpha|^{\frac{1}{2}(s+p / q)}}, $

where a is a sufficiently small positive constant such that g(α) is non-increasing.

By Lemma 1.1, there exists a function f: $ \mathbb{R}^n$→[0, +∞] such that df(α)=g(α) for any α∈(0, +∞).

In fact, we can choose the function f as in (6). It implies from simple calculation that

$ f \in L^{p, q}\left(\mathbb{R}^n\right) $

and

$ \lim\limits _{\alpha \rightarrow 0^{+}} \alpha^p|\log \alpha|^s d_f(\alpha)=\infty . $

Next, we assume that 0 < sp/q. If the limit in (11) does not hold, then there exists a function fLp, q($\mathbb{R}^n $) satisfying

$ \liminf\limits _{\alpha \rightarrow 0^{+}} \alpha^p|\log \alpha|^s d_f(\alpha)=C_0>0, $

or

$ \liminf\limits _{\alpha \rightarrow 0^{+}} \alpha^p|\log \alpha|^s d_f(\alpha)=\infty. $

Thus there exists constants C>0 and 0 < a < 1, such that for α < a,

$ \alpha^p|\log \alpha|^s d_f(\alpha) \geqslant C \text {. } $

Observe that 0 < sp/q. We have that

$ \begin{aligned} \|f\|_{L^{p, q}}^q & =p \int_0^{\infty}\left(\alpha d_f(\alpha)^{\frac{1}{p}}\right)^q \frac{\mathrm{d} \alpha}{\alpha} \\ & \geqslant p \int_0^a\left(\alpha d_f(\alpha)^{\frac{1}{p}}\right)^q \frac{\mathrm{d} \alpha}{\alpha} \\ & \geqslant p \int_0^a\left(\alpha\left(\frac{C}{\alpha^p|\log \alpha|^s}\right)^{\frac{1}{p}}\right)^q \frac{\mathrm{d} \alpha}{\alpha} \\ & =p C^{q / p} \int_0^a \frac{1}{\alpha|\log \alpha|^{s q / p}} \mathrm{~d} \alpha \\ & =\infty . \end{aligned} $

This leads to a contradiction with fLp, q($ \mathbb{R}^n$).

Remark    By Corollary 1.1, we know that upper limit can not be replaced into limit in Theorem 1.2.

The following corollary tells us the limiting property does not hold for Lp, ∞ function.

Corollary 1.2   Let 0 < p < ∞. For a fixed constant C>0, there exists a function fLp, ∞($ \mathbb{R}^n$) such that

$ \lim\limits _{\alpha \rightarrow 0^{+}} \alpha^p d_f(\alpha)=\lim\limits _{\alpha \rightarrow \infty} \alpha^p d_f(\alpha)=C . $

Proof   Let g: (0, +∞)→[0, +∞) be defined by

$ g(\alpha)=\frac{C}{\alpha^p}. $

By Lemma 1.1, there exists a function f: $ \mathbb{R}^n$→ [0, +∞] such that df(α)=g(α) for any α∈(0, +∞).

We can easily obtain that

$ f \in L^{p, \infty}\left(\mathbb{R}^n\right) $

and

$ \lim\limits _{\alpha \rightarrow 0^{+}} \alpha^p d_f(\alpha)=\lim\limits _{\alpha \rightarrow \infty} \alpha^p d_f(\alpha)=C . $
References
[1]
Grafakos L. Classical and modern Fourier analysis[M]. Upper Saddle River, NJ: Pearson/Prentice Hall, 2004.
[2]
Lu S Z, Ding Y, Yan D Y. Singular integral and related topics[M]. Singapore: World Scientific, 2007.
[3]
Wiener N. The ergodic theorem[J]. Duke Mathematical Journal, 1939, 5(1): 1-18. DOI:10.1215/S0012-7094-39-00501-6
[4]
Wheeden R L, Zygmund A. Measure and integral[M]. 2nd ed. Boca Raton, Florida: CRC Press, 2015.
[5]
Xu S Z, Yan D Y. Limiting property of the distribution function of Lp function at endpoints[J]. Journal of Mathematical Research with Applications, 2016, 36(2): 177-182.
[6]
Janakiraman P. Limiting weak-type behavior for singular integral and maximal operators[J]. Transactions of the American Mathematical Society, 2006, 358(5): 1937-1952. DOI:10.1090/s0002-9947-05-04097-3