2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
2. 中国科学院大学数学科学学院, 北京 100049
Let f be a measurable function on a measure space (X, μ) and 0 < p < ∞, 0 < q≤∞. Define
$ \|f\|_{L^{p, q}}= \begin{cases}p^{\frac{1}{q}}\left(\int_0^{\infty}\left(d_f(\alpha)^{\frac{1}{p}} \alpha\right)^q \frac{\mathrm{d} \alpha}{\alpha}\right)^{\frac{1}{q}}, & \text { if } q <\infty , \\ \sup \limits_{\alpha>0} \alpha \; d_f(\alpha)^{\frac{1}{p}}, & \text { if } q=\infty ,\end{cases} $ | (1) |
where
There are many simple properties of Lorentz space. For 0 < p < ∞, we have that
$ L^{p, p}(X, \mu)=L^p(X, \mu), $ |
and
$ L^{p, \infty}(X, \mu)=W L^p(X, \mu) . $ |
For 0 < p < ∞ and 0 < q < r≤∞, there exists a constant cp, q, r such that
$ \|f\|_{L^{p, r}} \leqslant c_{p, q, r}\|f\|_{L^{p, q }}. $ |
More properties of Lorentz space can be found in Refs.[1-4].
The limiting property of distribution functions of Lp functions has been proved in Ref.[5] for 1≤p < ∞. That is, when
$ \lim\limits _{\alpha \rightarrow 0^{+}} \alpha^p d_f(\alpha)=0. $ | (2) |
However, for
$ \lim\limits _{\alpha \rightarrow 0^{+}} \alpha d_{M f}(\alpha)=\|f\|_{L^1\left(\mathbb{R}^n\right)}. $ |
This means that the limiting equality of distribution functions does not hold for L1, ∞ function.
It is well-known that the following inclusion relation
$ L^{p, p}\left(\mathbb{R}^n\right) \varsubsetneqq L^{p, q}\left(\mathbb{R}^n\right) \varsubsetneqq L^{p, \infty}\left(\mathbb{R}^n\right) $ |
holds for 0 < p < q < ∞.
It is worth investigating the limiting property of distribution functions of f∈Lp, q(X, μ).
1 Main results and proofNow we formulate our main theorem.
Theorem 1.1 Let μ be a σ-finite positive measure on some σ-algebra in set X. For f∈Lp, q(X, μ) with 0 < p, q < ∞, denote the distribution functions of f as
$ d_f(\alpha):=\mu(\{x \in X:|f(x)|>\alpha\}). $ |
Then we have
$ \lim\limits _{\alpha \rightarrow 0^{+}} \alpha^p d_f(\alpha)=\lim\limits _{\alpha \rightarrow \infty} \alpha^p d_f(\alpha)=0 $ | (3) |
Proof First, we prove that
$ \limsup\limits _{\alpha \rightarrow 0^{+}} \alpha^p d_f(\alpha)=0. $ |
If the conclusion does not hold, then we conclude that
$ \limsup\limits _{\alpha \rightarrow 0^{+}} \alpha^p d_f(\alpha)=C_0>0, $ |
or
$ \limsup\limits _{\alpha \rightarrow 0^{+}} \alpha^p d_f(\alpha)=\infty . $ |
Thus there exist a positive sequence {xn}n=1∞ and a positive number C such that
$ \lim\limits _{n \rightarrow \infty} x_n=0, $ |
and
$ x_n^p d_f\left(x_n\right) \geqslant C $ |
for
Since df is a decreasing function, it follows that
$ \begin{aligned} \|f\|_{L^{p, q}}^q & =p \int_0^{\infty}\left(\alpha d_f(\alpha)^{\frac{1}{p}}\right)^q \frac{\mathrm{d} \alpha}{\alpha} \\ & =p \int_0^{\infty} \alpha^{q-1} d_f(\alpha)^{\frac{q}{p}} \mathrm{~d} \alpha \\ & =p \int_0^{x_1} \alpha^{q-1} d_f(\alpha)^{\frac{q}{p}} \mathrm{~d} \alpha+p \int_{x_1}^{\infty} \alpha^{q-1} d_f(\alpha)^{\frac{q}{p}} \mathrm{~d} \alpha \\ & \geqslant p \sum\limits_{n=1}^{\infty} \int_{x_{n+1}}^{x_n} \alpha^{q-1} d_f(\alpha)^{\frac{q}{p}} \mathrm{~d} \alpha \\ & \geqslant p \sum\limits_{n=1}^{\infty} \int_{x_{n+1}}^{x_n} \alpha^{q-1} d_f\left(x_n\right)^{\frac{q}{p}} \mathrm{~d} \alpha \\ & =\frac{p}{q} \sum\limits_{n=1}^{\infty}\left(x_n^q-x_{n+1}^q\right) d_f\left(x_n\right)^{\frac{q}{p}} \\ & \geqslant \frac{p C^{\frac{q}{p}}}{q} \sum\limits_{n=1}^{\infty}\left(1-\left(\frac{x_{n+1}}{x_n}\right)^q\right) . \end{aligned} $ | (4) |
Setting λn=(xn+1/xn)q∈(0, 1), the basic principle of mathematics analysis tells us that the infinite product ∏λn converges to a nonzero number if and only if ∑(1-λn) converges. However we deduce that
$ \begin{aligned} \prod\limits_{n=1}^{\infty} \lambda_n & =\lim _{N \rightarrow \infty} \prod\limits_{n=1}^N \lambda_n=\lim _{N \rightarrow \infty} \prod\limits_{n=1}^N\left(\frac{x_{n+1}}{x_n}\right)^q \\ & =\lim _{N \rightarrow \infty}\left(\frac{x_{N+1}}{x_1}\right)^q=0 . \end{aligned} $ |
It implies from (4) that
$ \|f\|_{L^{p, q}}=\infty . $ |
This leads to contradiction.
Next, we prove
$ \limsup\limits _{\alpha \rightarrow \infty} \alpha^p d_f(\alpha)=0. $ |
Similarly, if the upper limit is a positive number or ∞, there exist a positive number C and a strictly increasing sequence {xn}n=1∞
such that
$ \lim\limits _{n \rightarrow \infty} x_n=\infty $ |
and
$ x_n^p d_f\left(x_n\right) \geqslant C. $ |
Therefore, we conclude that
$ \begin{aligned} \|f\|_{L^{p, q}}^q & =p \int_0^{\infty}\left(\alpha d_f(\alpha)^{\frac{1}{p}}\right)^q \frac{\mathrm{d} \alpha}{\alpha} \\ & =p \int_0^{\infty} \alpha^{q-1} d_f(\alpha)^{\frac{q}{p}} \mathrm{~d} \alpha \\ & =p \int_0^{x_1} \alpha^{q-1} d_f(\alpha)^{\frac{q}{p}} \mathrm{~d} \alpha+p \int_{x_1}^{\infty} \alpha^{q-1} d_f(\alpha)^{\frac{q}{p}} \mathrm{~d} \alpha \\ & \geqslant p \sum\limits_{n=1}^{\infty} \int_{x_n}^{x_{n+1}} \alpha^{q-1} d_f(\alpha)^{\frac{q}{p}} \mathrm{~d} \alpha \\ & \geqslant p \sum\limits_{n=1}^{\infty} \int_{x_n}^{x_{n+1}} \alpha^{q-1} d_f\left(x_{n+1}\right)^{\frac{q}{p}} \mathrm{~d} \alpha \\ & =\frac{p}{q} \sum\limits_{n=1}^{\infty}\left(x_{n+1}^q-x_n^q\right) d_f\left(x_{n+1}\right)^{\frac{q}{p}} \\ & \geqslant \frac{p C^{q / p}}{q} \sum\limits_{n=1}^{\infty}\left(1-\left(\frac{x_n}{x_{n+1}}\right)^q\right) .\end{aligned} $ | (5) |
Note that the infinite product ∏(xn/xn+1)q diverges to 0. For α>0, αpdf(α)≥0 implies
$ \liminf\limits _{\alpha \rightarrow \infty} \alpha^p d_f(\alpha) \geqslant 0. $ |
That leads to (3).
Now, we begin to prove that the function αp in (2) can not be improved. For this purpose, we first give the following lemma which characterize the special property of some function.
Lemma 1.1 Let g: (0, +∞)→[0, +∞) be a right-continuous non-increasing function. Then there exists a function f:
Proof Let
$ f(x)=\int_0^{\infty} \chi{ }_{B\left(0, \left(\frac{g(u)}{v_n}\right)^{\frac{1}{n}}\right)}(x) \mathrm{d} u, $ | (6) |
where vn=m(B(0, 1)) and B(x, r) denotes a ball with the center at x and the radius r.
Then we merely need to prove that
$ \{x: f(x)>\alpha\}=\left\{x:|x|<\left(\frac{g(\alpha)}{v_n}\right)^{\frac{1}{n}}\right\} $ | (7) |
holds, for any α∈(0, +∞).
Assume
$ |x| \geqslant\left(\frac{g(\alpha)}{v_n}\right)^{\frac{1}{n}}. $ |
Note that g is a non-increasing function. We conclude from definition of f in (6) that
$ \begin{aligned} & f(x)=\int_0^\alpha \chi{ }_{B\left(0, \left(\frac{g(u)}{v_n}\right)^{\frac{1}{n}}\right)}(x) \mathrm{d} u+\int_\alpha^{\infty} \chi{ }_{B\left(0, \left(\frac{g(u)}{v_n}\right)^{\frac{1}{n}}\right)}(x) \mathrm{d} u \\ & \;\;\;\;=\int_0^\alpha \chi{ }_{B\left(0, \left(\frac{g(u)}{v_n}\right)^{\frac{1}{n}}\right)}(x) \mathrm{d} u \\ & \;\;\;\;\leqslant \alpha .\\ \end{aligned} $ | (8) |
Thus the inequality (8) implies that the set of the left hand of (7) is contained in the right hand.
Assume
$ |x|<\left(\frac{g(\alpha)}{v_n}\right)^{\frac{1}{n}}. $ |
Note that g is a right-continuous function. Then there exists α′>α such that
$ |x|<\left(\frac{g\left(\alpha^{\prime}\right)}{v_n}\right)^{\frac{1}{n}}. $ |
Then we conclude that
$ \begin{aligned} f(x) & =\int_0^{\alpha^{\prime}} \chi{ }_{B\left(0, \left(\frac{g(u)}{v_n}\right)^{\frac{1}{n}}\right)}(x) \mathrm{d} u+\int_{\alpha^{\prime}}^{\infty} \chi{ }_{B\left(0, \left(\frac{g(u)}{v_n}\right)^{\frac{1}{n}}\right)}(x) \mathrm{d} u \\ & \geqslant \int_0^{\alpha^{\prime}} \chi{ }_{B\left(0, \left(\frac{g(u)}{v_n}\right)^{\frac{1}{n}}\right)}(x) \mathrm{d} u \\ & =\alpha^{\prime}>\alpha . \end{aligned} $ |
This means that
$ \{x: f(x)>\alpha\} \supseteqq\left\{x:|x|<\left(\frac{g(\alpha)}{v_n}\right)^{\frac{1}{n}}\right\} . $ |
In a word, (7) holds.
As an application of Lemma 1.2, we prove that the function αp can not be improved for some sense.
Theorem 1.2 Suppose 0 < p, q < ∞. For any nonnegative function h satisfying
$ \lim\limits _{\alpha \rightarrow 0^{+}} h(\alpha)=\infty, $ | (9) |
there exists a function f∈Lp, q(
$ \limsup\limits _{\alpha \rightarrow 0^{+}} \alpha^p h(\alpha) d_f(\alpha)=\infty. $ |
Proof If xk>0 and xk→0, by (9), then there exists a strictly decreasing positive subsequence, still denoted by {xk}k=1∞, such that
$ h\left(\alpha_k\right) \geqslant 4^k $ |
and
$ x_{k+1}<\min \left\{2^{-1 / p}, 2^{-1}\right\} x_k, $ |
for
Define a function g: (0, +∞)→[0, +∞) as
$ g(\alpha)= \begin{cases}\frac{1}{2^k x_k^p}, & \text { if } x_{k+1} \leqslant \alpha <x_k, \\ 0, & \text { if } \alpha \geqslant x_1.\end{cases} $ | (10) |
By Lemma 1.1, there exists a function f:
$ \begin{aligned} \|f\|_{L^{p, q}}^q & =p \int_0^{\infty} \alpha^{q-1} d_f(\alpha)^{q / p} \mathrm{~d} \alpha \\ & =p \sum\limits_{k=1}^{\infty} \int_{x_{k+1}}^{x_k} \alpha^{q-1} d_f(\alpha)^{q / p} \mathrm{~d} \alpha \\ & =\frac{p}{q} \sum\limits_{k=1}^{\infty}\left(1-\left(\frac{x_{k+1}}{x_k}\right)^q\right) 2^{-\frac{q k}{p}} \\ & \leqslant \frac{p}{q} \sum\limits_{k=1}^{\infty} 2^{-\frac{q k}{p}}<\infty . \end{aligned} $ |
This implies f∈Lp, q(
On the other hand, it follows that
$ \alpha_k^p h\left(\alpha_k\right) d_f\left(\alpha_k\right) \geqslant\left(\frac{x_k}{2}\right)^p 4^k \frac{1}{2^k x_k^p}=2^{k-p} . $ |
Consequently, we obtain
$ \limsup\limits _{\alpha \rightarrow 0^{+}} \alpha^p h(\alpha) d_f(\alpha)=\infty. $ |
Remark In the fact, we can also prove that, for any h satisfying
$ \lim\limits _{\alpha \rightarrow \infty} h(\alpha)=\infty, $ |
there exists a function f∈Lp, q(
$ \limsup\limits _{\alpha \rightarrow \infty} \alpha^p h(\alpha) d_f(\alpha)=\infty \text {, } $ |
where 0 < p, q < ∞. The case can be proved similarly so we omit the details.
Theorem 1.2 tells us that the function αp in (3) can not be improved. For h(α)=| logα|s where s>0, we have some more explicit conclusions.
Corollary 1.1 Suppose s is a positive constant and 0 < p, q < ∞. If s>p/q, then there exists a function f∈Lp, q(
$ \lim\limits _{\alpha \rightarrow 0^{+}} \alpha^p|\log \alpha|^s d_f(\alpha)=\infty ; $ |
if 0 < s≤p/q, then for any f∈Lp, q(
$ \liminf\limits _{\alpha \rightarrow 0^{+}} \alpha^p|\log \alpha|^s d_f(\alpha)=0 $ | (11) |
Proof First, we assume that s>p/q. Let g: (0, +∞)→[0, +∞) be defined by
$ g(\alpha)=\chi_{(0, a)}(\alpha) \frac{1}{\alpha^p|\log \alpha|^{\frac{1}{2}(s+p / q)}}, $ |
where a is a sufficiently small positive constant such that g(α) is non-increasing.
By Lemma 1.1, there exists a function f:
In fact, we can choose the function f as in (6). It implies from simple calculation that
$ f \in L^{p, q}\left(\mathbb{R}^n\right) $ |
and
$ \lim\limits _{\alpha \rightarrow 0^{+}} \alpha^p|\log \alpha|^s d_f(\alpha)=\infty . $ |
Next, we assume that 0 < s≤p/q. If the limit in (11) does not hold, then there exists a function f∈Lp, q(
$ \liminf\limits _{\alpha \rightarrow 0^{+}} \alpha^p|\log \alpha|^s d_f(\alpha)=C_0>0, $ |
or
$ \liminf\limits _{\alpha \rightarrow 0^{+}} \alpha^p|\log \alpha|^s d_f(\alpha)=\infty. $ |
Thus there exists constants C>0 and 0 < a < 1, such that for α < a,
$ \alpha^p|\log \alpha|^s d_f(\alpha) \geqslant C \text {. } $ |
Observe that 0 < s≤p/q. We have that
$ \begin{aligned} \|f\|_{L^{p, q}}^q & =p \int_0^{\infty}\left(\alpha d_f(\alpha)^{\frac{1}{p}}\right)^q \frac{\mathrm{d} \alpha}{\alpha} \\ & \geqslant p \int_0^a\left(\alpha d_f(\alpha)^{\frac{1}{p}}\right)^q \frac{\mathrm{d} \alpha}{\alpha} \\ & \geqslant p \int_0^a\left(\alpha\left(\frac{C}{\alpha^p|\log \alpha|^s}\right)^{\frac{1}{p}}\right)^q \frac{\mathrm{d} \alpha}{\alpha} \\ & =p C^{q / p} \int_0^a \frac{1}{\alpha|\log \alpha|^{s q / p}} \mathrm{~d} \alpha \\ & =\infty . \end{aligned} $ |
This leads to a contradiction with f∈Lp, q(
Remark By Corollary 1.1, we know that upper limit can not be replaced into limit in Theorem 1.2.
The following corollary tells us the limiting property does not hold for Lp, ∞ function.
Corollary 1.2 Let 0 < p < ∞. For a fixed constant C>0, there exists a function f∈Lp, ∞(
$ \lim\limits _{\alpha \rightarrow 0^{+}} \alpha^p d_f(\alpha)=\lim\limits _{\alpha \rightarrow \infty} \alpha^p d_f(\alpha)=C . $ |
Proof Let g: (0, +∞)→[0, +∞) be defined by
$ g(\alpha)=\frac{C}{\alpha^p}. $ |
By Lemma 1.1, there exists a function f:
We can easily obtain that
$ f \in L^{p, \infty}\left(\mathbb{R}^n\right) $ |
and
$ \lim\limits _{\alpha \rightarrow 0^{+}} \alpha^p d_f(\alpha)=\lim\limits _{\alpha \rightarrow \infty} \alpha^p d_f(\alpha)=C . $ |
[1] |
Grafakos L. Classical and modern Fourier analysis[M]. Upper Saddle River, NJ: Pearson/Prentice Hall, 2004.
|
[2] |
Lu S Z, Ding Y, Yan D Y. Singular integral and related topics[M]. Singapore: World Scientific, 2007.
|
[3] |
Wiener N. The ergodic theorem[J]. Duke Mathematical Journal, 1939, 5(1): 1-18. DOI:10.1215/S0012-7094-39-00501-6 |
[4] |
Wheeden R L, Zygmund A. Measure and integral[M]. 2nd ed. Boca Raton, Florida: CRC Press, 2015.
|
[5] |
Xu S Z, Yan D Y. Limiting property of the distribution function of Lp function at endpoints[J]. Journal of Mathematical Research with Applications, 2016, 36(2): 177-182. |
[6] |
Janakiraman P. Limiting weak-type behavior for singular integral and maximal operators[J]. Transactions of the American Mathematical Society, 2006, 358(5): 1937-1952. DOI:10.1090/s0002-9947-05-04097-3 |