本文研究如下带有奇异位势的矩阵型强奇异偏微分方程
$ \left\{ {\begin{array}{*{20}{l}} { - {\mathop{\rm div}\nolimits} (M(x)\nabla u) = |x{|^{ - \mu }}{u^{ - p}}}&{{\rm{ in }}\ \Omega ,}\\ {u > 0}&{{\rm{ in }}\ \Omega ,}\\ {u = 0}&{{\rm{ on }}\ \ \partial \Omega ,} \end{array}} \right. $ | (1) |
其中,0∈Ω是
上述方程的一般形式是-div(M(x)
众所周知(参见文献[7]),如下问题:
$ \left\{ {\begin{array}{*{20}{l}} { - \Delta u = |x{|^{ - \mu }}{u^q}}&{{\rm{ in }}\ \Omega ,}\\ {u > 0}&{{\rm{ in }}\ \Omega ,}\\ {u = 0}&{{\rm{ on }}\ \partial \Omega ,} \end{array}} \right. $ |
不存在正解,这里0∈Ω是
定理1.1 设Ω是
$ \left\{ {\begin{array}{*{20}{l}} { - {\mathop{\rm div}\nolimits} (\mathit{\boldsymbol{M}}(x)\nabla u) = |x{|^{ - \mu }}{u^{ - p}}}&{{\rm{ in }}\ \Omega ,}\\ {u > 0}&{{\rm{ in }}\ \Omega ,}\\ {u = 0}&{{\rm{ on }}\ \partial \Omega ,} \end{array}} \right. $ |
存在H01(Ω)-解u-p。
定理1.2 设Ω是
定理1.3 设Ω是
$ \left\{ {\begin{array}{*{20}{l}} { - \Delta u = |x{|^{ - \mu }}{u^{ - p}}}&{{\rm{ in }}\ \Omega ,}\\ {u > 0}&{{\rm{ in }}\ \Omega ,}\\ {u = 0}&{{\rm{ on }}\ \partial \Omega ,} \end{array}} \right. $ | (2) |
对∀
$ \mathop {{\rm{limsup}}}\limits_{x \to 0} \frac{{u(x)}}{{|x{|^{ - l}}}} = + \infty . $ |
注:定理1.1的证明可参考文献[12]。在定理1.1研究的一般问题中,参数μ满足-n < -μ < -1-
定义H01(Ω)中范数为
$ \left\| u \right\| = {\left( {\int_\Omega | \nabla u{|^2}{\rm{d}}x} \right)^{\frac{1}{2}}},\forall u \in H_0^1(\Omega ), $ |
称u是方程(1)的H01(Ω)-解, 如果u∈H01(Ω), u>0 a.e. in Ω, 满足∀φ∈H01(Ω),
$ \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla \varphi {\rm{d}}x - \int_\Omega | x{|^{ - \mu }}{u^{ - p}} \cdot \varphi {\rm{d}}x = 0. $ |
用反证法证明。假设u∈L∞(Ω), 即
$ \left| {{D^\beta }{\phi _\delta }} \right| \le \frac{{c(n,|\beta |)}}{{{\delta ^{|\beta |}}}}, $ |
其中β=(β1, β2, …, βn)为多元指标,|β|=β1+…+βn, c(n, |β|)是与n, β有关的正参数,特别地,
$ \left| {\nabla {\phi _\delta }} \right| \le \frac{{c(n)}}{\delta }. $ |
由于u是方程(1)的解,有
$ \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla {\varphi _\delta }{\rm{d}}x = \int_\Omega | x{|^{ - \mu }}{u^{ - p}}{\phi _\delta }{\rm{d}}x. $ | (3) |
由|M(x)ξ·γ|≤
$ \begin{array}{l} \int_\Omega {\boldsymbol{M}} (x)\nabla u \cdot \nabla {\phi _\delta }{\rm{d}}x \le \frac{\beta }{{{\alpha ^{n - 1}}}}\int_\Omega | \nabla u| \cdot \left| {\nabla {\phi _\delta }} \right|{\rm{d}}x\\ \ \ \ \ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \le \frac{\beta }{{{\alpha ^{n - 1}}}} \cdot \frac{{c(n)}}{\delta }\int_{{\Omega _0}} | \nabla u|{\rm{d}}x\\ \ \ \ \ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \le \frac{\beta }{{{\alpha ^{n - 1}}}} \cdot \frac{{c(n)}}{\delta }{\left( {\int_{{\Omega _0}} {{\rm{d}}} x} \right)^{\frac{1}{2}}} \cdot \\ \ \ \ \ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\left( {\int_{{\Omega _0}} | \nabla u{|^2}{\rm{d}}x} \right)^{\frac{1}{2}}}\\ \ \ \ \ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {c_1}{\delta ^{\frac{n}{2} - 1}}{\left( {\int_{{\Omega _0}} | \nabla u{|^2}{\rm{d}}x} \right)^{\frac{1}{2}}}, \end{array} $ |
其中c1是与α, β, n有关、与δ无关的正数值。估计(3)右边值,有
$ \begin{array}{l} \int_\Omega | x{|^{ - \mu }}{u^{ - p}}{\phi _\delta }{\rm{d}}x \ge \int_{{\Omega _1}} | x{|^{ - \mu }}{u^{ - p}}{\rm{d}}x\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \ge {\left( {\mathop {{\mathop{\rm esssup}\nolimits} u}\limits_\Omega } \right)^{ - p}}\int_{{\Omega _1}} | x{|^{ - \mu }}{\rm{d}}x\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {\left( {\mathop {{\mathop{\rm esssup}\nolimits} u}\limits_\Omega } \right)^{ - p}}{c_2}{\delta ^{n - \mu }}, \end{array} $ |
其中c2是与α, β, n有关、与δ无关的正数值。于是得到
$ {c_1}{\delta ^{\frac{n}{2} - 1}}{\left( {\int_{{\Omega _0}} | \nabla u{|^2}{\rm{d}}x} \right)^{\frac{1}{2}}}{(\mathop {{\mathop{\rm esssup}\nolimits} u}\limits_\Omega )^{ - p}}{c_2}{\delta ^{n - \mu }}, $ |
即
$ \begin{array}{l} {c_1}\left\| u \right\|{(\mathop {{\mathop{\rm esssup}\nolimits} }\limits_\Omega u)^p} \ge {c_2}{\delta ^{n - \mu - \frac{n}{2} + 1}}\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {c_2}{\delta ^{\frac{n}{2} + 1 - \mu }},\quad \forall 0 < \mu < n. \end{array} $ |
当-μ < -
用反证法证明。假设方程(2)的C2(Ω\{0})-解u不满足性质
$ \mathop {{\rm{limsup}}}\limits_{x \to 0} \frac{{u(x)}}{{|x{|^{ - l}}}} = + \infty ,\forall 0 < l < \frac{{\mu - 2}}{{p + 1}}. $ |
则存在
$ - \Delta u \equiv |x{|^{ - \mu }}{u^{ - p}},\forall x \in \Omega \backslash \{ 0\} . $ | (4) |
令R=r2-n, 定义区域
$ {\Omega (t) = \left\{ {x \in {B_r}(0):{t^{\frac{1}{{2 - n}}}} \le |x| \le r} \right\},} $ |
$ {\Gamma (t) = \left\{ {x \in {B_r}(0):|x| = {t^{\frac{1}{{2 - n}}}}} \right\},} $ |
其中t∈(R, +∞).取Ω(t)的外侧为正向, n表示∂Ω(t)的单位外法向量,即在边界Γ(R)中,n是指向背离原点方向的单位法向量,在边界Γ(t)中,n是指向原点方向的单位法向量。令Γ(t)上的点x的参数表达式为
$ {\mathit{\boldsymbol{n}} = \left( { - \cos {\theta _1}, \cdots , - \sin {\theta _1} \cdots \sin {\theta _{n - 1}}} \right) = - \frac{x}{{|x|}},} $ |
$ {x\left( {t,{\theta _1}, \cdots ,{\theta _{n - 1}}} \right) \cdot \mathit{\boldsymbol{n}} = - {t^{\frac{1}{{2 - n}}}} = - |x|.} $ |
考虑函数g(x)=
$ \begin{array}{l} \nabla g(x) = \left( { - {x_1}|x{|^{ - n}}, \cdots , - {x_n}|x{|^{ - n}}} \right)\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = - x|x{|^{ - n}},\forall x \in \Omega (t), \end{array} $ |
$ |\nabla g(x)| = |x{|^{1 - n}},\forall x \in \Omega (t), $ |
$ \begin{array}{l} \frac{{\partial g}}{{\partial \mathit{\boldsymbol{n}}}} = \nabla g \cdot \mathit{\boldsymbol{n}} = |x{|^{ - n}}( - x) \cdot \mathit{\boldsymbol{n}}\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = |x{|^{1 - n}} = |\nabla g|,\forall x \in \Gamma (t), \end{array} $ |
$ \Delta g(x) = 0,\forall x \in \Omega (t). $ |
由格林恒等式,有
$ \int_{\Omega (t)} \nabla u \cdot \nabla g{\rm{d}}x + \int_{\Omega (t)} u \Delta g{\rm{d}}x = \int_{\partial \Omega (t)} u \frac{{\partial g}}{{\partial \mathit{\boldsymbol{n}}}}{\rm{d}}\sigma , $ |
即
$ \begin{array}{l} \int_{\Omega (t)} \nabla u \cdot \nabla g{\rm{d}}x = \int_{\partial \Omega (t)} u \frac{{\partial g}}{{\partial \mathit{\boldsymbol{n}}}}{\rm{d}}\sigma \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \int_{\Gamma (R)} u \frac{{\partial g}}{{\partial \mathit{\boldsymbol{n}}}}{\rm{d}}\sigma + \int_{\Gamma (t)} u |\nabla g|{\rm{d}}\sigma . \end{array} $ |
其中dσ表示∂Ω(t)中的n-1维单位面积元。令A(t)=∫Γ(t)u|
$ A(t) = \int_{\Omega (t)} \nabla u \cdot \nabla g{\rm{d}}x - \int_{\Gamma (R)} u \frac{{\partial g}}{{\partial \mathit{\boldsymbol{n}}}}{\rm{d}}\sigma . $ |
计算A(t)的一阶导数,
$ \begin{array}{l} {A^\prime }(t) = \frac{{{\rm{d}}A(t)}}{{{\rm{d}}t}} = \frac{{\rm{d}}}{{{\rm{d}}t}}\int_{\Omega (t)} \nabla u \cdot \nabla g{\rm{d}}x\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \int_{\partial \Omega (t)} {(\nabla u \cdot \nabla g)} \left( {\frac{{\partial x\left( {t,{\theta _1}, \cdots ,{\theta _{n - 1}}} \right)}}{{\partial t}} \cdot \mathit{\boldsymbol{n}}} \right){\rm{d}}\sigma \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \int_{\Gamma (t)} {(\nabla u \cdot \nabla g)} \left( {\frac{{\partial x\left( {t,{\theta _1}, \cdots ,{\theta _{n - 1}}} \right)}}{{\partial t}} \cdot \mathit{\boldsymbol{n}}} \right){\rm{d}}\sigma , \end{array} $ |
在Γ(t)中,有
$ \begin{array}{l} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{\partial x\left( {t,{\theta _1}, \cdots ,{\theta _{n - 1}}} \right)}}{{\partial t}}\\ = \left( {\frac{1}{{2 - n}}{t^{\frac{{n - 1}}{{2 - n}}}}\cos {\theta _1}, \cdots ,\frac{1}{{2 - n}}{t^{\frac{{n - 1}}{{2 - n}}}}\sin {\theta _1} \cdots \sin {\theta _{n - 1}}} \right), \end{array} $ |
$ \mathit{\boldsymbol{n}} \cdot \frac{{\partial x\left( {t,{\theta _1}, \cdots ,{\theta _{n - 1}}} \right)}}{{\partial t}} = \frac{1}{{n - 2}}{t^{\frac{{n - 1}}{{2 - n}}}}. $ |
则
$ \begin{array}{l} {A^\prime }(t) = \frac{1}{{n - 2}}{t^{\frac{{n - 1}}{{2 - n}}}}\int_{\Gamma (t)} {(\nabla u \cdot \nabla g)} {\rm{d}}\sigma \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} { = \frac{1}{{n - 2}}{t^{\frac{{n - 1}}{{2 - n}}}}\int_{\Gamma (t)} - |x{|^{ - n}}x \cdot \nabla u{\rm{d}}\sigma }\\ { = \frac{1}{{n - 2}}\int_{\Gamma (t)} - \frac{x}{{|x|}} \cdot \nabla u{\rm{d}}\sigma }\\ { = \frac{1}{{n - 2}}\int_{\Gamma (t)} \mathit{\boldsymbol{n}} \cdot \nabla u{\rm{d}}\sigma }\\ { = \frac{1}{{n - 2}}\int_{\Gamma (t)} {\frac{{\partial u}}{{\partial \mathit{\boldsymbol{n}}}}} {\rm{d}}\sigma }\\ { = \frac{1}{{n - 2}}\left( {\int_{\Omega (t)} \Delta u{\rm{d}}x - \int_{\Gamma (R)} {\frac{{\partial u}}{{\partial \mathit{\boldsymbol{n}}}}} {\rm{d}}\sigma } \right)} \end{array} \end{array} $ |
上述等式最后一步根据散度定理而来。计算A(t)的二阶导数,有
$ \begin{array}{l} {A^{\prime \prime }}(t) = \frac{1}{{n - 2}}\int_{\partial \Omega (t)} \Delta u \cdot \left( {\frac{{\partial x\left( {t,{\theta _1}, \cdots ,{\theta _{n - 1}}} \right)}}{{\partial t}} \cdot \mathit{\boldsymbol{n}}} \right){\rm{d}}x\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} { = \frac{1}{{n - 2}}\int_{\Gamma (t)} \Delta u \cdot \frac{1}{{n - 2}}{t^{\frac{{n - 1}}{{2 - n}}}}{\rm{d}}x}\\ { = {{\left( {\frac{1}{{n - 2}}} \right)}^2}{t^{\frac{{n - 1}}{{2 - n}}}}\int_{\Gamma (t)} \Delta u{\rm{d}}\sigma .} \end{array} \end{array} $ |
再根据对解u的假设,u(x)≤c|x|-l, ∀x∈BR(0),
$ \begin{array}{l} |\Gamma (t)| = \int_{\Gamma (t)} {\rm{d}} \sigma \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} { \le {{\left( {\int_{\Gamma (t)} {{u^{\frac{p}{{1 + p}}\frac{{1 + p}}{p}}}} {\rm{d}}\sigma } \right)}^{\frac{p}{{p + 1}}}}{{\left( {\int_{\Gamma (t)} {{u^{\frac{{ - p}}{{1 + p}} \cdot (1 + p)}}} {\rm{d}}\sigma } \right)}^{\frac{1}{{p + 1}}}}}\\ { = {{\left( {\int_{\Gamma (t)} u {\rm{d}}\sigma } \right)}^{\frac{p}{{1 + p}}}}{{\left( {\int_{\Gamma (t)} {{u^{ - p}}} {\rm{d}}\sigma } \right)}^{\frac{1}{{1 + p}}}},}\\ { \Rightarrow \int_{\Gamma (t)} {{u^{ - p}}} {\rm{d}}\sigma \ge |\Gamma (t){|^{1 + p}}{{\left( {\int_{\Gamma (t)} u {\rm{d}}\sigma } \right)}^{ - p}},} \end{array} \end{array} $ |
我们来估算A(t), A″(t)。
$ \begin{array}{l} A(t) = \int_{\Gamma (t)} u |\nabla g|{\rm{d}}\sigma = \int_{\Gamma (t)} u |x{|^{1 - n}}{\rm{d}}\sigma \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \le c\int_{\Gamma (t)} | x{|^{1 - n - l}}{\rm{d}}\sigma \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = c \cdot {t^{\frac{{1 - n - l}}{{2 - n}}}}|\Gamma (t)| = {d_1}{t^{\frac{{ - l}}{{2 - n}}}}, \end{array} $ |
$ \begin{array}{l} {A^{\prime \prime }}(t) = {\left( {\frac{1}{{n - 2}}} \right)^2}{t^{\frac{{n - 1}}{{2 - n}}}}\int_{\Gamma (t)} \Delta u{\rm{d}}\sigma \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} { = - {{\left( {\frac{1}{{n - 2}}} \right)}^2}{t^{\frac{{n - 1}}{{2 - n}}}}\int_{\Gamma (t)} | x{|^{ - \mu }}{u^{ - p}}{\rm{d}}\sigma }\\ { = - {{\left( {\frac{1}{{n - 2}}} \right)}^2}{t^{\frac{{n - 1 - \mu }}{{2 - n}}}}\int_{\Gamma (t)} {{u^{ - p}}} {\rm{d}}\sigma }\\ { \le - {{\left( {\frac{1}{{n - 2}}} \right)}^2}{t^{\frac{{n - 1 - \mu }}{{2 - n}}}}|\Gamma (t){|^{1 + p}}{{\left( {\int_{\Gamma (t)} u {\rm{d}}\sigma } \right)}^{ - p}}}\\ { = - {d_2} \cdot {t^{\frac{{n - 1 - \mu + (n - 1)(1 + p)}}{{2 - n}}}}{{\left( {\int_{\Gamma (t)} u {\rm{d}}\sigma } \right)}^{ - p}}}\\ { = - {d_2} \cdot {t^{\frac{{n - 1 - \mu + (n - 1)(1 + p) + (1 - n)p}}{{2 - n}}}} \cdot } \end{array}\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\left( {\int_{\Gamma (t)} u |x{|^{1 - n}}{\rm{d}}\sigma } \right)^{ - p}}\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = - {d_2} \cdot {t^{\frac{{2(n - 1) - \mu }}{{2 - n}}}}A{(t)^{ - p}} \le - {d_3} \cdot {t^{\frac{{2(n - 1) - \mu + lp}}{{2 - n}}}}, \end{array} $ |
其中d1, d2, d3是与n, μ, p有关、与t无关的正数值。从而,得到关系式
$ {A(t) \le {d_1}{t^{\frac{{ - l}}{{2 - n}}}},} $ | (5) |
$ {{A^\prime }(t) = \frac{1}{{n - 2}}\int_{\Gamma (t)} {\frac{{\partial u}}{{\partial \mathit{\boldsymbol{n}}}}} {\rm{d}}\sigma ,} $ | (6) |
$ {A^{\prime \prime }}(t) \le - {d_2} \cdot {t^{\frac{{2(n - 1) - \mu }}{{2 - n}}}}A{(t)^{ - p}} \le - {d_3} \cdot {t^{\frac{{2(n - 1) - \mu + lp}}{{2 - n}}}}. $ | (7) |
下面分析当t→∞, A(t), A′(t), A″(t)可能出现的情况。由A″(t) < 0, 可知A′(t)单减:
(Ⅰ)若存在t1>0, 使得当t>t1时,A′(t)≤A′(t1) < 0, 则A(t)单减,又A(t)>0, 则在区间[t1, +∞), 函数A(t)存在最大值M2, 0 < M1 < +∞。对∀t>0,
(Ⅱ)若∀t>0, 有A′(t)≥0, 则A(t)单增,
定义函数F(t)
$ F(t) = \int_{A(R)}^{A(t)} {{s^{ - \gamma }}} {\rm{d}}s = \frac{1}{{\gamma - 1}}\left[ {A{{(R)}^{1 - \gamma }} - A{{(t)}^{1 - \gamma }}} \right], $ |
其中t∈[R, +∞), γ=
$ {{F^\prime }(t) = A{{(t)}^{ - \gamma }} \cdot {A^\prime }(t),} $ |
$ {{F^{\prime \prime }}(t) = A{{(t)}^{ - \gamma }}{A^{\prime \prime }}(t) - \gamma A{{(t)}^{ - \gamma - 1}}{A^\prime }(t).} $ |
已知A′(t)≥0, 且由式(5),有
$ {A{{(t)}^{ - p - \gamma }} \ge {{\left( {{d_1}{t^{\frac{{ - l}}{{2 - n}}}}} \right)}^{ - p - \gamma }} = d_1^{ - p - \gamma }{t^{\frac{{l(p + \gamma )}}{{2 - n}}}},} $ |
$ { - A{{(t)}^{ - p - \gamma }} \le - d_1^{ - p - \gamma }{t^{\frac{{l(p + \gamma )}}{{2 - n}}}}.} $ |
再结合式(7)和γ=
$ \begin{array}{l} {F^{\prime \prime }}(t) \le A{(t)^{ - \gamma }}{A^{\prime \prime }}(t)\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \le - {d_2} \cdot {t^{\frac{{2(n - 1) - \mu }}{{2 - n}}}}A{(t)^{ - p - \gamma }}\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \le - {d_4}{t^{\frac{{2(n - 1) - \mu + (\chi + p)}}{{2 - n}}}} = - {d_4}{t^{ - 2}}, \end{array} $ |
其中d4是与n, μ, p有关、与t无关的正数值。从对A(t), A′(t), A″(t)的分析,可知F′(t)≥0, ∀t>0, 且单减,则
考虑函数sF″(s), s∈[R, t], 它的积分满足
$ \begin{array}{l} \int_R^t s {F^{\prime \prime }}(s){\rm{d}}s = t{F^\prime }(t) - R{F^\prime }(R) - F(t) + F(R)\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \le \int_R^t - {d_4}{s^{ - 1}}{\rm{d}}s = - {d_4}(\ln t - \ln R), \end{array} $ |
则有
$ - R{F^\prime }(R) - F(t) \le - {d_4}(\ln t - \ln R). $ |
当t→+∞, 不等式左边极限为有限数, 而右边趋于-∞, 产生矛盾,从而定理成立,即对
$ \mathop {{\rm{limsup}}}\limits_{x \to 0} \frac{{u(x)}}{{|x{|^{ - l}}}} = + \infty . $ |
[1] |
Callegari A, Nachman A. Some singular nonlinear differential equations arising in boundary layer theory[J]. J Math Anal Appl, 1978, 64(1): 96-105. Doi:10.1016/0022-247X(78)90022-7 |
[2] |
Callegari A, Nachman A. A nonlinear singular boundary value problem in the thoery of pseudoplastic fluids[J]. SIAM J Appl Math, 1980, 38(2): 275-281. Doi:10.1137/0138024 |
[3] |
Lazer A C, McKenna P J. On a singular nonlinear elliptic boundary value problem[J]. Proc Am Math Soc, 1991, 111(3): 721-730. Doi:10.1090/S0002-9939-1991-1037213-9 |
[4] |
Boccardo L, Orsina L. Semilinear elliptic equations with singular nonlinearities[J]. Calc Var, 2010, 37(3): 363-380. Doi:10.1007/s00526-009-0266-x |
[5] |
Bae S, Pahk D H. Elliptic boundary value problems with singular coefficients in nonlinear terms[J]. Nonlinear Funct Anal Appl, 1998, 3: 59-75. |
[6] |
Brezis H, Nirenberg L. Positive solutions of nonlinear equations involving critical Sobolev exponents[J]. Comm Pure Appl Math, 1983, 36(4): 437-477. Doi:10.1002/cpa.3160360405 |
[7] |
Caldiroli P, Musina R. On a class of two-dimensional singular elliptic problems[J]. Proc Roy Soc Edinburgh, 2001, 131(3): 479-497. Doi:10.1017/S0308210501000221 |
[8] |
Caldiroli P, Musina R. Stationary states for a two-dimensional singular Schrödinger equation[J]. Boll Unione Mat Ital, 2001, 4(3): 609-633. |
[9] |
Ruiz D, Willem M. Elliptic problems with critical exponents and Hardy potentials[J]. J Differential Equations, 2003, 190(2): 524-538. Doi:10.1016/S0022-0396(02)00178-X |
[10] |
Palais R S. The principle of symmetric criticality[J]. Comm Math Phys, 1979, 69(1): 19-30. |
[11] |
Sun Y J, Tan Y X. Kirchhoff type equations with strong singularities[J]. Comm Pure Appl Anal, 2019, 18(1): 181-193. Doi:10.3934/cpaa.2019010 |
[12] |
双震, 孙义静. 一类具有强奇性的矩阵型偏微分方程的正解的存在性[J]. 中国科学院大学学报, 2019, 36(3): 311-319. |
[13] |
Caldiroli P, Malchiodi A. Singular elliptic problems with critical growth[J]. Comm Partial Differential Equations, 2002, 27(5/6): 847-876. |
[14] |
Kristály A, Varga C. Multiple solutions for elliptic problems with singular and sublinear potentials[J]. Proc Amer Math Soc, 2007, 135(7): 2121-2126. Doi:10.1090/S0002-9939-07-08715-1 |
[15] |
Sun Y J. Compatibility phenomena in singular problems[J]. Proc Roy Soc Edinburgh, 2013, 143(6): 1321-1330. Doi:10.1017/S030821051100117X |