2. 云南省民族特色养生理论与健康产品工程实验室, 云南 昆明 650500;
3. 省部共建生物资源保护与利用国家重点实验室, 云南 昆明 650500
2. Engineering Laboratory for National Health Theory and Product of Yunnan Province, Kunming 650500, China;
3. State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan Province, Kunming 650500, China
白念珠菌又称白假丝酵母菌,为条件致病菌,大部分以共生方式无症状定植在健康人体肠道。当人体内微环境发生改变, 菌群生态失衡, 以及免疫力下降时,白念珠菌会过度繁殖并改变生长方式,突破肠道,进入血液,从而引起侵袭性感染[1],称为肠源性白念珠菌感染。由于广谱抗菌药物、抗肿瘤药物及免疫抑制剂的过度使用,白念珠菌感染发病率在临床上日益增高。尽管医疗技术发展迅速,白念珠菌感染仍然是发病率和病死率均较高的疾病之一[2]。
研究[3]发现,免疫系统被破坏,微生物失衡,以及肠炎引起的肠黏膜损伤是导致白念珠菌定植增加和通过肠道上皮进入血液的原因。患有溃疡性结肠炎、克罗恩病、结肠癌的患者,其机体免疫功能受损,体内微生物群整体多样性降低,但念珠菌属真菌含量升高[4]。
肠道黏膜是白念珠菌易位进入血液的第一道防线[5],当白念珠菌在肠道定植或感染时肠道免疫为宿主提供保护,而肠道微生物群也发挥着不容小觑的保护作用。本综述总结肠道黏膜、肠道宿主免疫和肠道微生物群在肠源性白念珠菌感染中的作用。
1 白念珠菌致病机制一般情况下,白念珠菌为条件致病菌,但当肠道微生物群失衡,肠道黏膜受损,或免疫功能低下时,其毒力因子及其对环境的适应性调节能力可增强其在肠道定植及易位的能力。
1.1 白念珠菌毒力因素白念珠菌形态的多样性可使其适应不同的生长条件。不同环境下,白念珠菌可以在酵母形态、假菌丝形态和菌丝形态之间进行可逆切换。白念珠菌酵母形态被认为是肠道共生的主要形式,可在肠道浅表共生定植;而菌丝形态则是通过肠道屏障侵入组织的主要形式[5-6]。可利用白念珠菌形态转变区分定植和感染,通过免疫和肠道菌群识别并清除白念珠菌菌丝形态,降低其感染程度[7]。
白念珠菌黏附和侵袭是加重其感染的关键。白念珠菌黏附于宿主细胞表面刺激菌丝生长引发生物膜形成。生物膜形成后促进菌丝形态向酵母形态转变,有利于白念珠菌的释放和扩散,且不易被免疫系统识别,从而促进真菌传播[8]。感染肠道黏膜期间,白念珠菌通过诱导内吞和主动渗透两条途径入侵肠上皮细胞。诱导内吞作用由白念珠菌黏附素(Als3)和侵袭素(Ssa1)介导穿透上皮细胞质膜实现入侵。主动渗透则通过白念珠菌菌丝生长到宿主组织中实现入侵[9]。
1.2 白念珠菌适应性调节白念珠菌的适应性调节不是直接通过宿主相互作用,而是通过代谢调节、抗逆性及免疫逃避来增强自身毒力。白色念珠菌表现出高度的代谢灵活性,在葡萄糖限制条件下,白念珠菌可以利用多种碳替代途径,迅速适应不同环境[10]。当白念珠菌暴露后,宿主免疫细胞施加的应激源可诱导白念珠菌通过应激反应快速适应。针对pH值、渗透压、亚硝化应激等应激源,白念珠菌可通过热休克蛋白调节丝裂原活化激酶,活化蛋白激酶或蛋白磷酸酶增强对应激源的抗逆性[11]。而针对免疫细胞的识别和清除,白念珠菌通过掩盖细胞壁成分等方式最大限度逃避免疫识别,还可通过将O2-转化为O2和过氧化氢逃避免疫细胞的氧化杀伤[12]。
2 肠道黏膜 2.1 肠道结构肠道是人体最主要的消化器官和最大的免疫器官,是机体抵御病原体侵犯、维持内环境稳定的重要器官,主要由肠黏液质层、肠黏膜上皮细胞组成的单细胞层和肠道固有层组成[13],其中,黏液层和肠上皮细胞之间的紧密连接对机体抵御有害物质突破肠道起到关键作用。肠道作为白念珠菌存在最多的载体,其黏膜的完整性和内环境对白念珠菌的生长定植影响很大。
2.2 肠道黏膜作用及其意义肠黏液质层主要由肠上皮细胞分泌的黏蛋白-2通过二硫键介导形成特殊分子结构,并与不同浓度的抗菌物质共同构成[14]。白念珠菌对上皮细胞的黏附是定植的先决条件,其对黏蛋白的黏附程度与自身毒力密切相关。白念珠菌的毒力特性包括形态转变、对肠上皮的黏附、生物膜的形成、细胞外酶的分泌和逃避宿主防御的能力[15]。肠源性白念珠菌感染的关键机制之一是白念珠菌通过高强度真菌负荷,促使菌丝分泌念珠菌溶血素与侵入部位上皮细胞结合,引起黏蛋白裂解,导致肠道上皮细胞间的紧密连接受损,屏障通透性增加,上皮完整性被破坏,从而突破肠道上皮细胞屏障[16]。
肠上皮细胞在物质转运中分化出多种上皮细胞亚群:杯状细胞、潘氏细胞、簇状细胞、肠内分泌细胞等,它们通过紧密连接、黏附连接、间隙连接和桥粒连接的方式共同形成一个复杂的上皮层,以此确保肠上皮细胞间的内聚力和结构的稳定,维持肠道的完整性[17]。白念珠菌常通过肠上皮细胞易位及使其坏死的方式穿过肠上皮屏障。一方面,白念珠菌可通过促进自身菌丝生长[18],拉伸和破坏肠上皮细胞的细胞膜;另一方面,宿主修复自身细胞膜损伤[19],两者相互作用,形成“入侵袋”,入侵的菌丝和其他毒力因子被宿主细胞膜包围,从而对宿主造成进一步损伤。此外,“入侵袋”里还包含白念珠菌分泌的水解酶(如磷脂蛋白酶、脂肪酶、天冬氨酸蛋白酶)和念珠菌溶血素[20-21],它们会降解宿主的细胞膜蛋白和释放到细胞外基质的营养物质。其中,白念珠菌分泌的天冬氨酸蛋白酶可选择性表达,分解黏蛋白并促进白念珠菌利用疏水作用与黏蛋白的118 kDa C端糖肽的蛋白质骨架结合[22],使自身更好地黏附上皮层达到穿过肠黏膜屏障的目的,并加速白念珠菌侵袭其他组织细胞。由此可见肠上皮细胞在宿主黏膜抵御白念珠菌和降低宿主对白念珠菌的易感性中发挥重要作用。
除肠黏膜自身能对白念珠菌产生诸多影响外,肠黏膜所营造的内环境的改变也会对白念珠菌的致病性产生影响。不同肠道环境下,白念珠菌在共生性和致病性之间的转化还受白念珠菌代谢状态的影响。如白念珠菌刺激肠道上皮细胞促进Wor1调节因子表达,形成特殊的酵母形态,该调节因子可与白念珠菌菌丝相关毒力因子Efg1一起控制其形态转变[23],并使其适应肠道新陈代谢。其次,葡萄糖是白念珠菌首选的碳源,当肠道中葡萄糖水平较低时,白念珠菌会通过多途径寻找替代碳源[10],如氨基酸或N-乙酰氨基葡萄糖等,且白念珠菌同时对氮代谢、磷酸盐和微量营养素同化具有适应性[24],其中微量营养素对白念珠菌结构的完整性很重要,同时也会随pH值进行调节,通过对多胺和氨基酸的分解主动释放氨气碱化环境[25],以此加强白念珠菌在肠道定植的能力。
3 肠道宿主免疫为防止白念珠菌在肠道上皮过度定植和侵入组织,宿主通过固有免疫和适应性免疫相互作用以保护肠道黏膜上皮[26]。其中固有免疫系统是抵御白念珠菌感染的第一道防线,对平衡肠道微生物在宿主体内稳态,防御病原体起重要作用。肠上皮细胞通过特定模式受体识别病原物相关分子达到抗菌作用,同时消化病原体的抗原,激活适应性免疫,促进T细胞活化,改善固有免疫功能,平衡炎症,保护受损肠上皮表面的完整性。
3.1 肠道固有免疫固有免疫系统作为抵御白念珠菌感染的第一道防线,通过肠道上皮细胞与固有免疫细胞结合,并以此识别白念珠菌来启动白念珠菌免疫。其中巨噬细胞和中性粒细胞是固有免疫反应的主要细胞[27-28]。白念珠菌感染肠道促进巨噬细胞大量聚集并分化,使白念珠菌被吞噬,并消除炎症,维持肠道稳态[29]。虽然白念珠菌菌丝形态对吞噬具有抗性,但巨噬细胞仍可以吞噬部分菌丝态白念珠菌,并释放出IL-1β等炎性因子,抑制菌丝形成[30]。白念珠菌毒力因子的表达和形态转变可诱导中性粒细胞形成中性粒细胞胞外陷阱(NET),胞外陷阱中的染色质将白念珠菌包围并捕获,通过颗粒蛋白、抗菌肽等杀灭真菌,达到抗感染作用。研究[31]发现白念珠菌毒力因子—分泌型天冬氨酸蛋白酶和磷脂酶,通过Syk-PKC-ROS途径对中性粒细胞产生趋化作用。除此之外,白念珠菌形态转变对NET的形成具有很大影响,酵母形态和菌丝形态在诱导NET数量及动力学机制上也有所不同。研究[32]发现,酵母态白念珠菌与中性粒细胞共培养,15 min内白念珠菌可以通过自噬和ROS途径诱导NET形成,15 min后则无法诱导NET形成;而菌丝态白念珠菌与中性粒细胞共培养,在15 min内则主要通过自噬快速诱导NET形成,15 min后则以自噬和ROS途径诱导NET形成。
骨髓细胞使用特殊的模式识别受体来识别病原体相关分子模式, 这些受体主要有Toll样受体、C型凝集素受体、核苷酸结合寡聚结构域样受体和维甲酸酸诱导基因Ⅰ样受体,其中C型凝集素受体[33]中的树突细胞相关凝集素1(dectin-1)、树突细胞相关凝集素2(dectin-2)、巨噬细胞诱导型C型凝集素(mincle)、树突细胞特异性丙型凝集素(DC-sign)和甘露糖受体可以识别白念珠菌β-葡聚糖和α-甘露聚糖,激活炎症小体和诱导细胞吞噬。Toll样受体中的TLR4和TLR2识别甘露糖蛋白,核苷酸结合寡聚结构域样受体中的NOD2和TLR9识别白念珠菌细胞壁成分,并且降低炎症反应[34-35]。肠道上皮细胞对白念珠菌β-葡聚糖的识别感知主要通过EphA2激活丝裂原活化蛋白激酶(MAPK)和转录激活因子3(STAT3)信号通路[36],以此诱导上皮细胞分泌炎性细胞因子和抗菌肽。念珠菌溶血素则与白念珠菌从共生到致病状态的转变相关。念珠菌溶血素在菌丝生长过程中产生,可破坏上皮细胞,损伤上皮屏障;同时,上皮生长因子受体被激活,并激活p38/cFos和ERK/MKP1信号传导[37],是上皮细胞对白念珠菌菌丝形成的特殊反应。上皮细胞还可以分泌抗菌肽、IL-37、组氨酸和β-防御素[38],通过与白念珠菌细胞壁结合或使白念珠菌质膜透化发挥抗菌作用。
3.2 肠道适应性免疫适应性免疫是通过免疫记忆对机体建立的长期保护机制[39],主要涉及B细胞和T细胞。病原微生物抗原可以刺激B细胞产生抗体。白念珠菌生物膜的补体受体3相关蛋白可诱导机体生成和分泌浆细胞,并与白念珠菌结合,减少其数量并降低其黏附能力,使其在肠腔中被清除[40]。T细胞则是宿主黏膜防御的关键,其中Th17细胞对抵御白念珠菌在肠道黏膜定植至关重要。白念珠菌中的甘露聚糖和葡聚糖-β会诱导T细胞分化为Th17细胞[41],Th17细胞通过释放IL-17A/F、IL-22等炎性因子促进对白念珠菌的清除。
在肠道黏膜对白念珠菌的作用下,Th17细胞产生IL-17效应细胞因子家族IL-17A、IL-17F和IL-22,可诱导上皮细胞表达抗菌和修复组织相关基因,如生成β-防御素,抑制白念珠菌定植,减少其对肠道的损伤[42]。在体内,CD4+T细胞是Th17细胞的主要来源,但缺乏CD4+T细胞时,CD8+T细胞也可以代偿性分泌IL-17,抑制白念珠菌菌丝生长,达到保护机体的作用[43]。IL-17还可以促进中性粒细胞向白念珠菌感染位置聚集[44-45]。IL-17A与IL-17F作用相似[46-47],IL-22则主要通过调节上皮细胞对IL-17A进行反应[48]。Th17细胞也可以产生Th1细胞相关的细胞因子IFN-γ,从而影响白念珠菌菌丝及生物膜形成。白念珠菌细胞壁成分甘露聚糖和β-1, 3-葡聚糖等,会促进IL-23、IL-6、IL-1β等表达[49],其中IL-6和IL-1β与TGF-β一起驱动Th17细胞分化,而IL-23通过STAT3和RORγt通路来促进Th17细胞分化。目前已知Th17细胞免疫对白念珠菌长期定植在肠道黏膜,对肠道组织具有重要意义,但其对机体的抗菌防御功能及维持宿主肠道与白念珠菌之间的稳态机制还不清楚。
4 肠道微生物群肠道微生物群主要由细菌、真菌、病毒等组成,目前被认为是宿主体内最大的虚拟免疫代谢器官[50],对宿主免疫的激活和维持,以及保护宿主免受白念珠菌的侵害发挥着重要作用。
4.1 肠道微生物群的构成肠道中的主要细菌门类为拟杆菌门、厚壁菌门、放线菌门、变形菌门和疣微菌门。不同肠道部位孕育着不同的微生物群落[51]。小肠由于受氧气、pH梯度、胆汁酸及抗菌物质的影响,主要以兼性厌氧菌为主,乳酸杆菌科和肠杆菌科占优势地位,其中小肠内的胆汁酸可以显著降低白念珠菌对唑类抗真菌药物的耐药性,有利于抗菌药物药效的发挥。盲肠利于厌氧菌的生长,其中以厚壁菌门和拟杆菌门为主。结肠的结构具有两层,其内部黏液层几乎无菌,外层则定植了高载量细菌,主要为类杆菌科、普氏菌科、理肯氏菌科、毛螺菌科和瘤胃球菌科。
真菌仅占肠道微生物群的0.1%[52]。健康肠道中的优势真菌门类是子囊菌门和担子菌门,最常见的菌属则是念珠菌属、酵母菌属、半乳糖菌属。肠道中真菌的多样性和数量不如细菌丰富。白念珠菌可以在小肠、盲肠、结肠中定植。
4.2 肠道微生物群稳态的作用及重要性肠道菌群的稳态会降低白念珠菌在肠道的定植,不同菌群发挥不同的作用来调节白念珠菌在肠道定植程度[53]。肠道微生物群主要依靠分泌抑菌物质杀灭真菌,如乳酸杆菌在肠道内通过产生过氧化氢、有机酸和短链脂肪酸等物质使局部酸化,抑制白念珠菌形态改变,减少白念珠菌侵入[54-55]。其次,含有色氨酸的菌群可以促进细菌基因的局部转录,通过刺激IL-22表达发挥抗菌作用[56-57],沙门氏菌通过SopB转位酶效应物诱导清除白念珠菌菌丝[50],粪肠球菌可产生细菌素抑制剂阻断菌丝和生物膜形成[58],链球菌通过扩散因子抑制白念珠菌菌丝形成[59]。再者,部分菌群与白念珠菌争抢黏附位点,吲哚及其衍生物作为细菌信号分子可抑制NRG1基因,从而抑制白念珠菌菌丝转化和生物膜形成[60],减少其在肠道上皮细胞的黏附。此外,鼠李糖杆菌也被发现可以诱导白念珠菌定植的上皮屏障脱落以减少其侵入组织[61]。
目前造成菌群失衡的原因有很多:环境因素,如污染的大气[62]、水源[63]以及装修房屋时产生的甲醛和苯[64]均会降低肠道微生物的多样性;饮食因素,如高膳食纤维饮食的人肠道内含有更多厚壁菌门[65],而高蛋白高油脂饮食则会促进嗜胆菌属和拟杆菌属生长[66];精神因素,长期高强度高压力或抑郁也会降低肠道微生物的多样性[67],可导致肠道内部分益生菌如乳酸杆菌数量大幅减少;药物的过度使用,如长期使用抗菌药物会破坏肠道内细菌的多样性[68];肠道疾病也会影响菌群变化,疾病状态下大部分微生物群多样性降低[69]。肠道菌群稳态的失衡会促进白念珠菌在肠道的定植,是目前已知导致白念珠菌毒力增强,突破肠道屏障,易位侵袭组织的主要因素,最终导致肠源性白念珠菌感染向侵袭性白念珠菌感染转变[70]。
5 未来展望肠道是侵袭性白念珠菌感染的重要病原菌来源和关键因素。肠黏膜屏障损伤、免疫损伤、肠道菌群失衡是白念珠菌突破肠道进入血液发展成侵袭性感染的必要条件[1]。肠道在肠源性白念珠菌感染中的作用机制逐渐明晰,有利于临床开发新型预防和治疗肠源性白念珠菌感染的药物,并可为临床研究肠道定植引发的侵袭性白念珠菌感染提供新思路,如近年来流行的包括治疗性抗体、重组细胞因子和重建免疫细胞[71]在内的辅助免疫疗法,以及粪菌移植。通过以上治疗方法,增强机体免疫力,调节菌群平衡,刺激肠道运动,以减少白念珠菌定植及感染[72-73]。上述方法都是未来临床治疗的重要方向。
肠源性白念珠菌感染仍然威胁着人类健康,是一个全球性的挑战,临床仍需对其进行深入研究,具体了解肠道微环境、肠道免疫与病原微生物的相互关系,以攻克肠源性白念珠菌感染治疗的难题。
利益冲突:所有作者均声明不存在利益冲突。
[1] |
Kumamoto CA, Gresnigt MS, Hube B. The gut, the bad and the harmless: Candida albicans as a commensal and opportu-nistic pathogen in the intestine[J]. Curr Opin Microbiol, 2020, 56: 7-15. DOI:10.1016/j.mib.2020.05.006 |
[2] |
Xiao M, Chen SCA, Kong FR, et al. Distribution and antifungal susceptibility of Candida species causing candidemia in China: an update from the CHIF-NET study[J]. J Infect Dis, 2020, 221(Suppl 2): S139-S147. |
[3] |
Sprague JL, Kasper L, Hube B. From intestinal colonization to systemic infections: Candida albicans translocation and dissemination[J]. Gut Microbes, 2022, 14(1): 2154548. DOI:10.1080/19490976.2022.2154548 |
[4] |
Rashed R, Valcheva R, Dieleman LA. Manipulation of gut microbiota as a key target for Crohn's disease[J]. Front Med (Lausanne), 2022, 9: 887044. |
[5] |
Böhm L, Torsin S, Tint SH, et al. The yeast form of the fungus Candida albicans promotes persistence in the gut of gnotobiotic mice[J]. PLoS Pathog, 2017, 13(10): e1006699. DOI:10.1371/journal.ppat.1006699 |
[6] |
Desai JV. Candida albicans hyphae: from growth initiation to invasion[J]. J Fungi (Basel), 2018, 4(1): 10. DOI:10.3390/jof4010010 |
[7] |
Roselletti E, Perito S, Sabbatini S, et al. Vaginal epithelial cells discriminate between yeast and hyphae of Candida albicans in women who are colonized or have vaginal candidiasis[J]. J Infect Dis, 2019, 220(10): 1645-1654. DOI:10.1093/infdis/jiz365 |
[8] |
Uppuluri P, Acosta Zaldívar M, Anderson MZ, et al. Candida albicans dispersed cells are developmentally distinct from biofilm and planktonic cells[J]. mBio, 2018, 9(4): e01338-18. |
[9] |
Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans[J]. Virulence, 2022, 13(1): 89-121. DOI:10.1080/21505594.2021.2019950 |
[10] |
Williams RB, Lorenz MC. Multiple alternative carbon pathways combine to promote Candida albicans stress resistance, immune interactions, and virulence[J]. mBio, 2020, 11(1): e03070-19. |
[11] |
Veri AO, Miao ZQ, Shapiro RS, et al. Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space[J]. PLoS Genet, 2018, 14(3): e1007270. DOI:10.1371/journal.pgen.1007270 |
[12] |
Frohner IE, Bourgeois C, Yatsyk K, et al. Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance[J]. Mol Microbiol, 2009, 71(1): 240-252. DOI:10.1111/j.1365-2958.2008.06528.x |
[13] |
褚宇瑶, 戴岳. 肠黏膜屏障及其与多种疾病相关性的研究进展[J]. 中国现代医药杂志, 2020, 22(7): 102-105. Chu YY, Dai Y. Research progress on intestinal mucosal barrier and its association with various diseases[J]. Modern Me-dicine Journal of China, 2020, 22(7): 102-105. |
[14] |
Zhang MM, Wu CC. The relationship between intestinal goblet cells and the immune response[J]. Biosci Rep, 2020, 40(10): BSR20201471. DOI:10.1042/BSR20201471 |
[15] |
d'Enfert C, Kaune AK, Alaban LR, et al. The impact of the fungus-host-microbiota interplay upon Candida albicans infections: current knowledge and new perspectives[J]. FEMS Microbiol Rev, 2021, 45(3): fuaa060. DOI:10.1093/femsre/fuaa060 |
[16] |
Allert S, Förster TM, Svensson CM, et al. Candida albicans-induced epithelial damage mediates translocation through intestinal barriers[J]. mBio, 2018, 9(3): e00915-18. |
[17] |
Capdevila C, Trifas M, Miller J, et al. Cellular origins and lineage relationships of the intestinal epithelium[J]. Am J Physiol Gastrointest Liver Physiol, 2021, 321(4): G413-G425. DOI:10.1152/ajpgi.00188.2021 |
[18] |
Basmaciyan L, Bon F, Paradis T, et al. "Candida albicans interactions with the host: crossing the intestinal epithelial ba-rrier"[J]. Tissue Barriers, 2019, 7(2): 1612661. |
[19] |
Westman J, Hube B, Fairn GD. Integrity under stress: host membrane remodelling and damage by fungal pathogens[J]. Cell Microbiol, 2019, 21(4): e13016. |
[20] |
Hube B. Candida albicans secreted aspartyl proteinases[J]. Curr Top Med Mycol, 1996, 7(1): 55-69. |
[21] |
Moyes DL, Wilson D, Richardson JP, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection[J]. Nature, 2016, 532(7597): 64-68. DOI:10.1038/nature17625 |
[22] |
Dhanasekaran S, Selvadoss PP, Manoharan SS. Anti-fungal potential of structurally diverse FDA-Approved therapeutics targeting secreted aspartyl proteinase (SAP) of Candida albicans: an in silico drug repurposing approach[J]. Appl Biochem Biotechnol, 2023, 195(3): 1983-1998. DOI:10.1007/s12010-022-04207-w |
[23] |
Park YN, Pujol C, Wessels DJ, et al. Candida albicans double mutants lacking both EFG1 and WOR1 can still switch to opaque[J]. mSphere, 2020, 5(5): e00918-20. |
[24] |
Miramón P, Pountain AW, van Hoof A, et al. The paralogous transcription factors Stp1 and Stp2 of Candida albicans have distinct functions in nutrient acquisition and host interaction[J]. Infect Immun, 2020, 88(5): e00763-19. |
[25] |
Vylkova S. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host[J]. PLoS Pathog, 2017, 13(2): e1006149. DOI:10.1371/journal.ppat.1006149 |
[26] |
Richardson JP, Moyes DL, Ho J, et al. Candida innate immunity at the mucosa[J]. Semin Cell Dev Biol, 2019, 89: 58-70. DOI:10.1016/j.semcdb.2018.02.026 |
[27] |
Xie YX, Zhou X, Zhang JP, et al. Immunomodulatory responses of differentially polarized macrophages to fungal infections[J]. Int Immunopharmacol, 2022, 111: 109089. DOI:10.1016/j.intimp.2022.109089 |
[28] |
He YF, Liu J, Chen YT, et al. Neutrophil extracellular traps in Candida albicans infection[J]. Front Immunol, 2022, 13: 913028. DOI:10.3389/fimmu.2022.913028 |
[29] |
Pan XH, Zhu Q, Pan LL, et al. Macrophage immunometabolism in inflammatory bowel diseases: from pathogenesis to therapy[J]. Pharmacol Ther, 2022, 238: 108176. DOI:10.1016/j.pharmthera.2022.108176 |
[30] |
Olivier FAB, Hilsenstein V, Weerasinghe H, et al. The escape of Candida albicans from macrophages is enabled by the fungal toxin candidalysin and two host cell death pathways[J]. Cell Rep, 2022, 40(12): 111374. DOI:10.1016/j.celrep.2022.111374 |
[31] |
Gabrielli E, Sabbatini S, Roselletti E, et al. In vivo induction of neutrophil chemotaxis by secretory aspartyl proteinases of Candida albicans[J]. Virulence, 2016, 7(7): 819-825. DOI:10.1080/21505594.2016.1184385 |
[32] |
Kenno S, Perito S, Mosci P, et al. Autophagy and reactive oxygen species are involved in neutrophil extracellular traps release induced by C. albicans morphotypes[J]. Front Micro-biol, 2016, 7: 879. |
[33] |
Guo YH, Chang Q, Cheng LQ, et al. C-type lectin receptor CD23 is required for host defense against Candida albicans and Aspergillus fumigatus infection[J]. J Immunol, 2018, 201(8): 2427-2440. DOI:10.4049/jimmunol.1800620 |
[34] |
Wagener J, MacCallum DM, Brown GD, et al. Candida albicans chitin increases arginase-1 activity in human macrophages, with an impact on macrophage antimicrobial functions[J]. mBio, 2017, 8(1): e01820-16. |
[35] |
Wagener J, Malireddi RKS, Lenardon MD, et al. Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation[J]. PLoS Pathog, 2014, 10(4): e1004050. DOI:10.1371/journal.ppat.1004050 |
[36] |
Swidergall M, Solis NV, Lionakis MS, et al. Author correction: EphA2 is an epithelial cell pattern recognition receptor for fungal β-glucans[J]. Nat Microbiol, 2018, 3(9): 1074. DOI:10.1038/s41564-018-0188-5 |
[37] |
Ho V, Herman-Bausier P, Shaw C, et al. An amyloid core sequence in the major Candida albicans adhesin Als1p mediates cell-cell adhesion[J]. mBio, 2019, 10(5): e01766-19. |
[38] |
Swidergall M, Ernst JF. Interplay between Candida albicans and the antimicrobial peptide armory[J]. Eukaryot Cell, 2014, 13(8): 950-957. DOI:10.1128/EC.00093-14 |
[39] |
Gutierrez MW, van Tilburg Bernardes E, Changirwa D, et al. "Molding" immunity-modulation of mucosal and systemic immunity by the intestinal mycobiome in health and disease[J]. Mucosal Immunol, 2022, 15(4): 573-583. DOI:10.1038/s41385-022-00515-w |
[40] |
Chupácová J, Borghi E, Morace G, et al. Anti-biofilm activity of antibody directed against surface antigen complement receptor 3-related protein-comparison of Candida albicans and Candida dubliniensis[J]. Pathog Dis, 2018, 76(1): ftx127. |
[41] |
Wang FP, Yang YH, Li ZX, et al. Mannan-binding lectin regulates the Th17/Treg axis through JAK/STAT and TGF-β/SMAD signaling against Candida albicans infection[J]. J Inflamm Res, 2022, 15: 1797-1810. DOI:10.2147/JIR.S344489 |
[42] |
Hernández-Santos N, Huppler AR, Peterson AC, et al. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections[J]. Mucosal Immunol, 2013, 6(5): 900-910. DOI:10.1038/mi.2012.128 |
[43] |
Huppler AR, Conti HR, Hernández-Santos N, et al. Role of neutrophils in IL-17-dependent immunity to mucosal candidiasis[J]. J Immunol, 2014, 192(4): 1745-1752. DOI:10.4049/jimmunol.1302265 |
[44] |
Trautwein-Weidner K, Gladiator A, Nur S, et al. IL-17-media-ted antifungal defense in the oral mucosa is independent of neutrophils[J]. Mucosal Immunol, 2015, 8(2): 221-231. DOI:10.1038/mi.2014.57 |
[45] |
Zhou CS, Monin L, Gordon R, et al. An IL-17F.S65L knock-in mouse reveals similarities and differences in IL-17F function in oral candidiasis: a new tool to understand IL-17F[J]. J Immunol, 2020, 205(3): 720-730. DOI:10.4049/jimmunol.2000394 |
[46] |
Whibley N, Tritto E, Traggiai E, et al. Antibody blockade of IL-17 family cytokines in immunity to acute murine oral mucosal candidiasis[J]. J Leukoc Biol, 2016, 99(6): 1153-1164. DOI:10.1189/jlb.4A0915-428R |
[47] |
Aggor FEY, Break TJ, Trevejo-Nuñez G, et al. Oral epithe-lial IL-22/STAT3 signaling licenses IL-17-mediated immunity to oral mucosal candidiasis[J]. Sci Immunol, 2020, 5(48): eaba0570. DOI:10.1126/sciimmunol.aba0570 |
[48] |
Zielinski CE, Mele F, Aschenbrenner D, et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β[J]. Nature, 2012, 484(7395): 514-518. DOI:10.1038/nature10957 |
[49] |
Lin L, Zhang JQ. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases[J]. BMC Immunol, 2017, 18(1): 2. DOI:10.1186/s12865-016-0187-3 |
[50] |
Jiao L, Kourkoumpetis T, Hutchinson D, et al. Spatial cha-racteristics of colonic mucosa-associated gut microbiota in humans[J]. Microb Ecol, 2022, 83(3): 811-821. DOI:10.1007/s00248-021-01789-6 |
[51] |
Wang ZK, Yang YS, Stefka AT, et al. Review article: fungal microbiota and digestive diseases[J]. Aliment Pharmacol Ther, 2014, 39(8): 751-766. DOI:10.1111/apt.12665 |
[52] |
Dubik M, Pilecki B, Moeller JB. Commensal intestinal protozoa-underestimated members of the gut microbial community[J]. Biology (Basel), 2022, 11(12): 1742. |
[53] |
García C, Tebbji F, Daigneault M, et al. The human gut microbial metabolome modulates fungal growth via the TOR signaling pathway[J]. mSphere, 2017, 2(6): e00555-17. |
[54] |
Graf K, Last A, Gratz R, et al. Keeping Candida commensal: how Lactobacilli antagonize pathogenicity of Candida albicans in an in vitro gut model[J]. Dis Model Mech, 2019, 12(9): dmm039719. |
[55] |
Zelante T, Iannitti RG, Cunha C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22[J]. Immunity, 2013, 39(2): 372-385. DOI:10.1016/j.immuni.2013.08.003 |
[56] |
De Luca A, Zelante T, D'Angelo C, et al. IL-22 defines a novel immune pathway of antifungal resistance[J]. Mucosal Immunol, 2010, 3(4): 361-373. DOI:10.1038/mi.2010.22 |
[57] |
Kim Y, Mylonakis E. Killing of Candida albicans filaments by Salmonella enterica serovar typhimurium is mediated by sopB effectors, parts of a type Ⅲ secretion system[J]. Eukaryot Cell, 2011, 10(6): 782-790. DOI:10.1128/EC.00014-11 |
[58] |
Graham CE, Cruz MR, Garsin DA, et al. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans[J]. Proc Natl Acad Sci U S A, 2017, 114(17): 4507-4512. DOI:10.1073/pnas.1620432114 |
[59] |
Vílchez R, Lemme A, Ballhausen B, et al. Streptococcus mutans inhibits Candida albicans hyphal formation by the fatty acid signaling molecule trans-2-decenoic acid (SDSF)[J]. Chembiochem, 2010, 11(11): 1552-1562. DOI:10.1002/cbic.201000086 |
[60] |
Oh S, Go GW, Mylonakis E, et al. The bacterial signalling molecule indole attenuates the virulence of the fungal pathogen Candida albicans[J]. J Appl Microbiol, 2012, 113(3): 622-628. DOI:10.1111/j.1365-2672.2012.05372.x |
[61] |
Alonso-Roman R, Last A, Mirhakkak MH, et al. Lactobaci-llus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptations that compromise pathogenicity[J]. Nat Commun, 2022, 13(1): 3192. DOI:10.1038/s41467-022-30661-5 |
[62] |
刘颖. 肺部菌群参与的细颗粒物(PM2.5)肺损伤及促癌效应研究[D]. 合肥: 中国科学技术大学, 2021. Liu Y. Lung injury and cancer promotion of fine particulate matter depended on lung microbiota[D]. Hefei: University of Science and Technology of China, 2021. |
[63] |
徐梦. 广西部分农村地区人群华支睾吸虫感染风险因素及其肠道菌群研究[D]. 北京: 中国疾病预防控制中心, 2019. Xu M. The risk factors and gut microbiota of Clonorchis sinensis infected individuals in some rural areas of Guangxi[D]. Beijing: Chinese Center for Disease Control and Prevention, 2019. |
[64] |
卫兰兰. 外界因素导致人体氧化应激和肠道菌群代谢物变化的研究[D]. 南京: 东南大学, 2019. Wei LL. Study on changes of metabolites of human oxidative stress and intestinal flora caused by external factors[D]. Nanjing: Southeast University, 2019. |
[65] |
De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome[J]. Gut, 2016, 65(11): 1812-1821. DOI:10.1136/gutjnl-2015-309957 |
[66] |
Pareek S, Kurakawa T, Das B, et al. Comparison of Japanese and Indian intestinal microbiota shows diet-dependent interaction between bacteria and fungi[J]. NPJ Biofilms Micro-biomes, 2019, 5(1): 37. DOI:10.1038/s41522-019-0110-9 |
[67] |
王凯新, 董晓梦, 苏毅鹏, 等. 肠道菌群与抑郁症关系的研究进展[J]. 吉林大学学报(医学版), 2022, 48(4): 1094-1100. Wang KX, Dong XM, Su YP, et al. Research progress in relationship between gut microbiota and depression[J]. Journal of Jilin University(Medicine Edition), 2022, 48(4): 1094-1100. |
[68] |
Gutierrez D, Weinstock A, Antharam VC, et al. Antibiotic-induced gut metabolome and microbiome alterations increase the susceptibility to Candida albicans colonization in the gastrointestinal tract[J]. FEMS Microbiol Ecol, 2020, 96(1): fiz187. DOI:10.1093/femsec/fiz187 |
[69] |
冉艳, 肖莫凡, 陈思玮, 等. 肠道菌群与炎症性肠病的研究进展[J]. 胃肠病学和肝病学杂志, 2021, 30(1): 6-9. Ran Y, Xiao MF, Chen SW, et al. Research progress of gut microbiota and inflammatory bowel disease[J]. Chinese Journal of Gastroenterology and Hepatology, 2021, 30(1): 6-9. |
[70] |
Schroeder M, Weber T, Denker T, et al. Epidemiology, clinical characteristics, and outcome of candidemia in critically ill patients in Germany: a single-center retrospective 10-year analysis[J]. Ann Intensive Care, 2020, 10(1): 142. DOI:10.1186/s13613-020-00755-8 |
[71] |
童潇, 廖国建. 免疫疗法治疗真菌疾病的研究进展[J]. 国外医药(抗生素分册), 2018, 39(5): 380-385. Tong X, Liao GJ. Research progress of immunotherapy in the treatment of fungal diseases[J]. World Notes on Antibiotics, 2018, 39(5): 380-385. DOI:10.3969/j.issn.1001-8751.2018.05.005 |
[72] |
Markey L, Shaban L, Green ER, et al. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection[J]. Gut Microbes, 2018, 9(6): 497-509. |
[73] |
Hameed S, Hans S, Monasky R, et al. Understanding human microbiota offers novel and promising therapeutic options against Candida infections[J]. Pathogens, 2021, 10(2): 183. DOI:10.3390/pathogens10020183 |