中国公共卫生  2019, Vol. 35 Issue (7): 926-928   PDF    
糖尿病与反式脂肪酸研究进展
王淑娥1, 孔正桥2, 姜迎2, 江红梅3    
1. 山东大学公共卫生学院,山东 济南 250012;
2. 山东省疾病预防控制中心;
3. 山东大学校医院
摘要:糖尿病是世界上最常见的慢性代谢性疾病之一,它与遗传、饮食及运动等密切相关。近年来,流行病学与实验室研究发现,反式脂肪酸的摄入可以增加糖尿病的发病风险,但是由于研究设计和方法的不一致性,目前还不能得出确切结论。本篇综述着重讨论反式脂肪酸与糖尿病的关系,以便为人们的饮食策略和未来的研究提供参考信息。
关键词糖尿病     反式脂肪酸     胰岛素抵抗     炎症    
Relationship between trans-fatty acids and diabetes: a review
WANG Shu-e, KONG Zheng-qiao, JIANG Ying, et al     
School of Public Health, Shandong University, Ji'nan, Shandong Province 250012, China
Abstract: Diabetes, as one of the most prevalent chronic metabolic diseases in the world, is a specifically lifestyle-related disease pertaining to diet and exercise. Whether the use and presence of trans-fatty acids in the diet exerting adverse effects on metabolic health has been the hot subject of the recent research. Recently, epidemiological and laboratory studies have found that intake of trans-fatty acids can increase the risk of the diabetes, but due to inconsistencies in the research design and method, it is not yet possible to draw a firm conclusion. The study reviews researches on the association of trans-fatty with diabetes for providing references to developing dietary recommendations and future researches.
Key words: diabetes     trans-fatty acids     insulin resistance     inflammation    

糖尿病是以高血糖为特征的代谢性疾病,其慢性、进行性的发病特征,可导致多器官并发症,尤以眼、肾、心血管及神经等慢性损害为甚,为家庭和社会造成极大的经济负担。据估计,2014年,全球大约有4.22亿人患糖尿病,直接年成本超过8 270亿美元[1],已成为严重的公共卫生问题[2]。我国在一项为期7年的前瞻性研究中发现,糖尿病患病率农村地区为4.1 %,城市为8.1 %,且患病率呈年轻化趋势[3]。糖尿病的危险因素包括遗传、环境、营养等因素[4]。反式脂肪酸(trans-fatty acids,TFA)作为一种食品添加剂,可用于延长食品保质期,具有改善食品风味和保持稳定性等特性,常被用于食品加工行业[5]。研究证实,血清TFA水平与美国成人中的食物安全性成负相关[6]。近年来,TFA与糖尿病之间的关系逐渐引起研究者的关注,但局限于研究设计和方法的不一致性,并未有统一确切的结论。因而本文通过研学国内外相关文献,对TFA与糖尿病之间的关系进行下列综述。

1 TFA与糖尿病的流行病学研究进展

Christiansen等[7]在一项随机交叉研究中证实,膳食中的TFA可引起肥胖患者餐后胰岛素血症的发生。类似研究表明,高TFA消耗导致肥胖患者空腹胰岛素水平提高了20 %~24 %、低密度脂蛋白水平提高了12 %~14 %、稳态模型评估胰岛素抵抗指数增加了25 %~28 %[8]。然而,这2项研究历时短(5~6周)、样本量小(相应地,n = 16和n = 15)、TFA摄入量(分别为20 %和4.2 %)远高于美国官方报道的平均饮食水平[78]。在正常血糖和健康体重个体中进行的2项交叉对照研究发现,在与上述研究相似的样本量和持续时间下,TFA消耗均未显示对胰岛素敏感性的影响[910]。Bendsen等[11]将52名超重的绝经妇女,随机分配到氢化大豆油组(15 g/d TFA)和对照油组(主要是油酸和棕榈酸),发现TFA对胰岛素敏感性没有影响。

一项14年的前瞻性研究显示,TFA的能量增加2 %,RR为1.39(1.15~1.67;P = 0.000 6);用多不饱和脂肪等量替代2 %TFA的能量时,可使Ⅱ型糖尿病的风险降低40 %。上述实验说明TFA是糖尿病的危险因素[12]。亚洲的2项横断面研究发现:日本自由生活的年轻女性中,TFA摄入量与糖化血红蛋白水平成正相关[13];然而,爱荷华州妇女健康研究(11年)[14]和卫生专业人员随访研究(12年)[15]并未发现TFA与糖尿病的关联。在中国,针对北京和上海地区的中老年人膳食摄入研究(n = 3 710)不能确定TFA是糖尿病的危险因素[16]

以前关于TFA与糖尿病的流行病学研究,主要是基于自我报告的饮食摄入。而美国综合考察了两个营养调查周期的数据发现,成年人的总TFAs的血浆浓度,尤其是反油酸,与糖尿病和葡萄糖代谢生物标志物有着显著的关联[17]。流行病学研究初步证实了TFA与糖尿病之间的关联,但没有提供足够的数据以区分Ⅰ型糖尿病和Ⅱ型糖尿病与TFA的关系。

2 TFA与糖尿病的实验性研究进展

体外细胞实验多以脂肪细胞或胰岛细胞为研究对象,探究了不同程度的TFA暴露对葡萄糖摄取、胰岛素分泌及敏感性的影响。相对于顺式脂肪酸,TFA孵育2 h的大鼠脂肪细胞显著降低了葡萄糖转化为细胞内脂质及二氧化碳的量[18]。而Alstrup[19]证实急性暴露的TFA可比顺式脂肪酸引起更高水平的胰岛素分泌。

体内动物实验多以啮齿动物为研究对象,探究了不同程度TFA含量的饮食模式对胰岛素分泌量及敏感性的影响。文献报道,0~3 %TFA可显著增加大鼠的胰岛素分泌水平[20]。研究显示,TFA使脂肪细胞抵抗素mRNA表达上调,而过氧化物酶体增殖物激活受体-γ 和脂蛋白脂肪酶下调[2122]。在使用定量胰岛素敏感性检查指数评估TFA消耗对雄性AKR/J小鼠影响的研究中[23],喂养20 %TFA饲料4周和8周后,小鼠的胰岛素水平明显升高,而胰岛素敏感性检测指数明显降低,炎症细胞因子白细胞介素 – 1β(interleukini-1β,IL-1β)表达升高。然而,一项以Wistar大鼠为研究对象的研究却发现,等能量饮食的4.5 %TFA(来源于人造黄油)与对照组(无TFA)相比,并没有导致空腹血糖、胰岛素水平或胰岛素敏感性指数的差异 [24];但TFA组的总胆固醇和高密度脂蛋白胆固醇水平明显低于对照组。高密度脂蛋白胆固醇水平的降低可能表明TFA摄入对脂质谱存在有害影响。一项为期6年、以雄性非洲绿猴为研究对象的实验研究表明;在控制膳食总热量摄入的前提下,TFA的长期摄入较顺式脂肪酸更能引起明显的体重增加,尤其表现在腹部白色脂肪的堆积上;同时,该实验证实,TFA的长期摄入可导致腹型肥胖及胰岛素抵抗[25]。Gulati等[26]证明,TFA过多摄入导致亚洲和印度人腹部脂肪沉积、异位脂肪沉淀(肝脏,胰腺)、早发性胰岛素抵抗、代谢障碍状态和糖尿病。

3 TFA与糖尿病的机制研究

肥胖是糖尿病的重要危险因素,肥胖导致的机体慢性炎症状态与胰岛素抵抗密切相关[27]。实验研究表明,高TFA饮食(氢化大豆油)诱发Wistar大鼠胰岛素抵抗,改变脂肪分布并造成脂肪肝,同时检测到脑脊液及血液中炎症参数升高[28]。人群横断面研究报道也证实TFA增加了外周血循环中炎症相关标志物的含量,如可溶性肿瘤坏死因子受体 – 1和2(soluble tumor necrosis factor receptor 1 and 2,sTNFR1 and 2)、可溶性细胞间黏附分子 – 1(soluble intercellular adhesion molecule-1,sICAM1)、人可溶性血管细胞粘附因子1(human soluble vascular cell adhesion factor 1,sVCAM1)、C – 反应蛋白(C-reactive protein,CRP)和白细胞介素 – 6(interleukinin-6,IL-6)等 [2931]。胰岛素抵抗是指胰岛素维持正常血糖的能力下降,或外周组织对胰岛素作用的反应降低,是Ⅱ型糖尿病的首发症状。肥胖状态下,脂肪细胞可分泌更高水平的肿瘤坏死因子 – α(tumor necrosis factor-α,TNF-α),引发IL-6和单核细胞趋化因子的释放,从而诱导巨噬细胞与内皮细胞协同增效形成促炎状态 [32]。大多数的糖尿病患者伴随着肥胖及脂肪细胞TNF-α 高水平表达[33]。而抑制小鼠TNF-α 的功能,可减轻肥胖导致的胰岛素抵抗[34]。是否可以认为炎症是联系TFA与糖尿病的中间环节?

此外,一项以成年雄性C56BL/6小鼠为研究对象、为期20周的动物实验表明,TFA可能是通过抑制胰岛素受体底物1(insulin receptor substrate 1,IRS1)依赖通路导致小鼠体重增加、葡萄糖耐量受损、肝脂肪变性[35]。肥胖状态下,脂肪组织过度膨胀导致“脂溢出”,局部炎症加速了甘油三酯的转换,提高了血浆游离脂肪酸水平。高游离脂肪酸血症导致细胞功能紊乱(脂毒性)甚至导致程序性细胞死亡,并通过胰岛素抵抗和胰岛 β 细胞损伤将肥胖与糖尿病联系起来[36]。肝脏在葡萄糖稳态控制中起着核心作用,控制着胰岛素的分泌和清除[37]。大量游离脂肪酸通过外周血循环聚集在肝脏形成肝脂肪变性,促使了TFA诱发的胰岛素抵抗。

4 小 结

综上所述,膳食中TFA含量的增加,是胰岛素抵抗、糖尿病及肝脂肪变性的危险因素。TFA引起的肥胖和炎症可能是诱发糖尿病的中间环节。因而,应加强食品中TFA含量监管,在健康教育、食品标签、政策和立法等方面采取必要措施,以减少工业TFA摄入。

参考文献
[1] Cecchini M, Sassi F, Lauer JA, et al. Tackling of unhealthy diets, physical inactivity, and obesity: health effects and cost-effectiveness[J]. Lancet, 2010, 376(9754): 1775–1784. DOI:10.1016/S0140-6736(10)61514-0
[2] World Health Organization. Global report on diabetes[R]. Working Papers, 2016.
[3] Bragg F, Holmes MV, Iona A, et al. Association between diabetes and cause-specific mortality in rural and urban areas of China[J]. JAMA, 2017, 317(3): 280–289. DOI:10.1001/jama.2016.19720
[4] Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic[J]. Nature, 2001, 414(6865): 782–787. DOI:10.1038/414782a
[5] 孔正桥, 刘萍, 胡金宇, 等. 反式脂肪酸对小鼠大脑抗氧化系统及ATP酶的影响[J]. 环境与健康杂志, 2017, 34(1): 25–27.
[6] Mazidi M, Vatanparast H. Serum trans-fatty acids level are positively associated with lower food security among american adults[J]. Nutr Diabetes, 2018, 8(1): 17.
[7] Christiansen E, Schnider S, Palmvig B, et al. Intake of a diet high in trans monounsaturated fatty acids or saturated fatty acids. Effects on postprandial insulinemia and glycemia in obese patients with NIDDM[J]. Diabetes Care, 1997, 20(5): 881–887. DOI:10.2337/diacare.20.5.881
[8] Vega-López S, Ausman LM, Jalbert SM, et al. Palm and partially hydrogenated soybean oils adversely alter lipoprotein profiles compared with soybean and canola oils in moderately hyperlipidemic subjects[J]. Am J Clin Nutr, 2006, 84(1): 54–62. DOI:10.1093/ajcn/84.1.54
[9] Lovejoy JC, Smith SR, Champagne CM, et al. Effects of diets enriched in saturated (palmitic), monounsaturated (oleic), or trans (elaidic) fatty acids on insulin sensitivity and substrate oxidation in healthy adults[J]. Diabetes Care, 2002, 25(8): 1283–1288. DOI:10.2337/diacare.25.8.1283
[10] Louheranta AM, Turpeinen AK, Vidgren HM, et al. A high-trans fatty acid diet and insulin sensitivity in young healthy women[J]. Metabolism, 1999, 48(7): 870–875. DOI:10.1016/S0026-0495(99)90221-4
[11] Bendsen NT, Haugaard SB, Larsen TM, et al. Effect of trans-fatty acid intake on insulin sensitivity and intramuscular lipids–a ran-domized trial in overweight postmenopausal women[J]. Metabolism, 2011, 60(7): 906–913. DOI:10.1016/j.metabol.2011.01.009
[12] Salmerón J, Hu FB, Manson JE, et al. Dietary fat intake and risk of type 2 diabetes in women[J]. Am J Clin Nutr, 2001, 73(6): 1019–1026. DOI:10.1093/ajcn/73.6.1019
[13] Yamada M, Sasaki S, Murakami K, et al. Association of trans fatty acid intake with metabolic risk factors among free-living young Japanese women[J]. Asia Pac J Clin Nutr, 2009, 18(3): 359–371.
[14] Meyer KA, Kushi LH, Jacobs DR Jr, et al. Dietary fat and incidence of type 2 diabetes in older Iowa women[J]. Diabetes Care, 2001, 24(9): 1528–1535. DOI:10.2337/diacare.24.9.1528
[15] Van Dam RM, Willett WC, Rimm EB, et al. Dietary fat and meat intake in relation to risk of type 2 diabetes in men[J]. Diabetes Care, 2002, 25(3): 417–424. DOI:10.2337/diacare.25.3.417
[16] Yu DX, Sun Q, Ye XW, et al. Erythrocyte trans-fatty acids, type 2 diabetes and cardiovascular risk factors in middle-aged and older Chinese individuals[J]. Diabetologia, 2012, 55(11): 2954–2962. DOI:10.1007/s00125-012-2674-2
[17] Liu B, Sun Y, Snetselaar LG, et al. Association between plasma trans-fatty acid concentrations and diabetes in a nationally representative sample of US adults[J]. J Diabetes, 2018. DOI:10.1111/1753-0407.12652
[18] Cromer KD, Jenkins TC, Thies EJ. Replacing cis octadecenoic acid with trans isomers in media containing rat adipocytes stimulates lipolysis and inhibits glucose utilization[J]. J Nutr, 1995, 125(9): 2394–2399. DOI:10.1093/jn/125.9.2394
[19] Alstrup KK, Gregersen S, Jensen HM, et al. Differential effects of cis and trans fatty acids on insulin release from isolated mouse islets[J]. Metabolism, 1999, 48(1): 22–29. DOI:10.1016/S0026-0495(99)90005-7
[20] Ibrahim A, Natrajan S, Ghafoorunissa R. Dietary trans-fatty acids alter adipocyte plasma membrane fatty acid composition and insulin sensitivity in rats[J]. Metabolism, 2005, 54(2): 240–246. DOI:10.1016/j.metabol.2004.08.019
[21] Saravanan N, Haseeb A, Ehtesham NZ, et al. Differential effects of dietary saturated and trans-fatty acids on expression of genes associated with insulin sensitivity in rat adipose tissue[J]. Eur J Endocrinol, 2005, 153(1): 159–165.
[22] Ibrahim A, Natarajan S, Ghafoorunissa R. Dietary trans fatty acids alter diaphragm phospholipid fatty acid composition, triacylglycerol content and glucose transport in rats[J]. Br J Nutr, 2005, 93(6): 829–833. DOI:10.1079/BJN20051442
[23] Koppe SW, Elias M, Moseley RH, et al. Trans fat feeding results in higher serum alanine aminotransferase and increased insulin resistance compared with a standard murine high-fat diet[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 297(2): G378–384. DOI:10.1152/ajpgi.90543.2008
[24] Huang Z, Wang B, Pace RD, et al. Trans fat intake lowers total cholesterol and high-density lipoprotein cholesterol levels without changing insulin sensitivity index in Wistar rats[J]. Nutr Res, 2009, 29(3): 206–212. DOI:10.1016/j.nutres.2009.01.008
[25] Kavanagh K, Jones KL, Sawyer J, et al. Trans fat diet induces abdominal obesity and changes in insulin sensitivity in monkeys[J]. Obesity, 2007, 15(7): 1675–1684. DOI:10.1038/oby.2007.200
[26] Gulati S, Misra A. Abdominal obesity and type 2 diabetes in Asian Indians: dietary strategies including edible oils, cooking practices and sugar intake[J]. Eur J Clin Nutr, 2017, 71(7): 850–857. DOI:10.1038/ejcn.2017.92
[27] Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance[J]. J Clin Invest, 2003, 112(12): 1821–1830. DOI:10.1172/JCI200319451
[28] Longhi R, Almeida RF, Machado L, et al. Effect of a trans fatty acid-enriched diet on biochemical and inflammatory parameters in Wistar rats[J]. Eur J Nutr, 2017, 56(3): 1003–1116. DOI:10.1007/s00394-015-1148-y
[29] Mozaffarian D, Pischon T, Hankinson SE, et al. Dietary intake of trans fatty acids and systemic inflammation in women[J]. Am J Clin Nutr, 2004, 79(4): 606–612. DOI:10.1093/ajcn/79.4.606
[30] Lopez GE, Schulze MB, Meigs JB, et al. Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction[J]. J Nutr, 2005, 135(3): 562–566. DOI:10.1093/jn/135.3.562
[31] Baer DJ, Judd JT, Clevidence BA, et al. Dietary fatty acids affect plasma markers of inflammation in healthy men fed controlled diets: a randomized crossover study[J]. Am J Clin Nutr, 2004, 79(6): 969–973. DOI:10.1093/ajcn/79.6.969
[32] Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue[J]. J Clin Invest, 2003, 112(12): 1785–1788. DOI:10.1172/JCI20514
[33] Weisberg SP, Mccann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue[J]. J Clin Invest, 2003, 112(12): 1796–1808. DOI:10.1172/JCI200319246
[34] Teruel T, Hernandez R, Lorenzo M. Ceramide mediates insulin resistance by tumor necrosis factor-α in brown adipocytes by maintaining Akt in an inactive dephosphorylated state[J]. Diabetes, 2001, 50(11): 2563–2571. DOI:10.2337/diabetes.50.11.2563
[35] Zhao X, Shen C, Zhu H, et al. Trans-fatty acids aggravate obesity, insulin resistance and hepatic steatosis in C57BL/6 mice, possibly by suppressing the IRS1 dependent pathway[J]. Molecules, 2016, 21(6): E705. DOI:10.3390/molecules21060705
[36] Csala M. Hyper-free fatty acidemia-insulin resistance and β-cell death[J]. Orv Hetil, 2016, 157(19): 733–739. DOI:10.1556/650.2016.30439
[37] Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction[J]. Mol Cell, 2000, 6(1): 87–97. DOI:10.1016/S1097-2765(05)00015-8