中国公共卫生  2019, Vol. 35 Issue (6): 780-785   PDF    
基因、环境及其交互作用在阅读障碍发生中的研究进展
谢新艳, 邵珊珊, 宋然然    
华中科技大学同济医学院公共卫生学院儿少卫生与妇幼保健系,湖北 武汉 430030
摘要:阅读障碍包括发展性阅读障碍和获得性阅读障碍,发展性阅读障碍是指部分儿童虽然拥有正常的智力、情感、平等的教育和社会文化机会,却在阅读和拼写上存在特殊困难的症状,表现为口头交际能力差,常写错字,读书加字、漏字,不理解所读内容的意思等。为了解发展性阅读障碍的研究进展,为今后进行发展性阅读障碍相关研究提供参考,本文对发展性阅读障碍的基因、环境、基因-环境交互作用的研究进展进行综述。
关键词发展性阅读障碍     环境因素     遗传因素     交互作用    
Progress in researches on effects of gene, environment and gene-environment interaction on developmental dyslexia
XIE Xin-yan, SHAO Shan-shan, SONG Ran-ran     
Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
Abstract: Dyslexia includes developmental dyslexia and acquired dyslexia. Developmental dyslexia refers that although some children have normal intelligence, emotion, equal educational and socio-cultural opportunities, they have particular difficulties in reading and spelling, such as poor verbal communication skills, often typo, reading plus words, missing words, not understanding the meaning of the contents of the reading. We reviewed the progress in the researches on effects of gene, environment and gene-environment interaction on developmental dyslexia to provide references for future researches on developmental dyslexia.
Key words: developmental dyslexia     environmental factor     genetic factor     interaction    

发展性阅读障碍(developmental dyslexia)指的是儿童智力、情感正常,拥有平等的社会经济条件和教育水平,但是在阅读、拼写方面存在困难,发展水平明显落后于同龄儿童。这种症状不是因器质性脑病、感知觉障碍或者心理疾病所致。流行病学显示,发展性阅读障碍在学龄期儿童中的发病率为3.9 %~17.5 %,男性高于女性[1],占学习障碍儿童的80 %~90 %[2]。经过数十年的研究,目前普遍认为,发展性阅读障碍是环境和基因共同作用的结果,现已取得一些进展。本文将从基因、环境及其交互作用对发展性阅读障碍(以下简称阅读障碍)影响因素的研究现状进行综述。

1 环境因素

环境因素研究主要集中在孕产期因素、家庭环境因素和学校环境因素三大块。

1.1 孕产期因素

关于儿童阅读相关能力,研究较多的孕产期因素主要包括早产、低出生体重、孕期的不良暴露、疾病、营养素缺乏。有关研究显示,早产、低出生体重会对儿童的言语发育[3]、阅读能力[4]和数学能力[5]造成不利影响。meta分析[6]显示(共纳入了74项研究、共64 061位学龄期儿童),不同程度的早产儿在学龄期及学龄期之后,其工作记忆和加工速度均落后于同龄人,并且早产儿出生体重与智商存在一个梯度关系,出生体重越低,智商下降的越多[7]。另外,不同性别的早产儿学龄期阅读、认知能力也存在差异,男性早产儿学龄期发生阅读困难的风险更大,这也解释了阅读障碍患病人群中男性比例更大的现象[89]

孕期可卡因、尼古丁、酒精暴露、抗抑郁药的使用可能影响儿童语言技能或阅读能力的发育[1014],但是认为产前超声暴露并不是发生阅读障碍的原因[15]。孕期癌症化疗药物的使用不会对儿童学业成绩产生影响,但会增加早产几率[16]

母亲孕期患有系统性红斑狼疮会显著增加男童发生学习障碍(特别是阅读障碍)的风险[17],即使儿童没有出现学习困难,在神经发育的各个时间点也应及时随访以便尽早发现学习、认知障碍[18]。孕期高血压、糖尿病、产前感染等会影响胎儿神经系统的发育[1920]。母亲孕期缺碘(即使是轻度缺碘)的儿童,智商及阅读分值会下降,且缺碘的程度越重,表现得越明显[21]。孕前肥胖或孕期体重增加过多会影响儿童数学、阅读和拼写能力[22],但孕期卡路里摄入过少也会使儿童数学能力降低[23],因此孕期合理均衡的营养摄入使身体质量指数保持在正常范围内对儿童的认知发育至关重要。

在中国人群中,神经精神性疾病家族史、孕期感染性疾病、难产、早产、新生儿窒息增加了阅读障碍的患病风险[24],原因可能在于母亲孕期感染致病菌或炎症刺激暴露使机体免疫系统激活,而这在神经发育性疾病中是一个重要的病因[25];当难产发生时,第二产程延长会使围产期不良结局发生的几率增加[26];早产儿童左侧上纵束(连接额骨和颞骨的语言区域)区域白质减少[27],可能与阅读障碍的发生有关;新生儿窒息所致的缺氧降低皮质活跃性、抑制树突生长、视觉皮质可塑性受损[28],即使有过新生儿窒息史的儿童没有出现神经系统症状,他们发生阅读障碍的风险也会大大增加。

1.2 家庭环境因素

家庭阅读环境(home literacy environment, HLE)和家庭社会经济地位(socioeconomic status, SES)是家庭环境因素中影响儿童阅读能力最显著的两个因素[2931]。家庭阅读环境包括阅读相关行为(包括家庭阅读氛围、藏书数量、儿童自主学习习惯等)、每周使用电子设备的时间以及儿童在家使用电子设备的规定。家庭阅读环境越好,学龄期儿童汉语阅读障碍的检出率越低[1, 32]。较好的家庭阅读环境能促进儿童的阅读行为,从而提高儿童的阅读相关能力,如语音意识、韵律意识、拼写能力[3334]

家庭经济地位不仅包括经济收入、职业地位,也包括非物质因素如教育机会、社会关系网络[35]。低SES的儿童控制语言相关活动的外侧裂周区活跃性降低[36]、灰质减少[3738],阅读障碍儿童的大脑结构变化也表现出了相似的特点[3940]。SES较高的人群中,阅读障碍的检出率较低,提示SES可能是阅读障碍发生的影响因素[4142],这可能与低SES放大了导致阅读障碍的遗传等其他因素有关[43]

在中国人群中,父母文化程度低[1]、低家庭收入[44]、电子设备(电脑、电视)使用时间长是阅读障碍的危险因素(可能与阅读障碍儿童的回避型行为有关[45],通过玩电子游戏及看电视回避较高的学习压力及阅读困难问题)。较好的阅读相关行为(家庭阅读资源、阅读动力、阅读参与)是阅读障碍的保护因素,家庭阅读资源能培养儿童阅读兴趣,并且父母的阅读模范作用也能激发儿童的阅读动力[46]

1.3 学校环境因素

学校教育在儿童阅读能力的培养过程中有着举足轻重的地位。使人愉悦的学校建筑设施能改善学业表现[47]。权威的教学方式(高要求、高响应)注重始终如一的课堂管理、学生的学习自主性和个人兴趣,在这种教学方式下成长起来的学生在学习能力和社交方面都更胜一筹[48],另外,对于本身没有阅读困难症状而阅读能力较差的儿童,权威的教学方式能促进其阅读能力的发展,并在一定程度上弥补因父母非权威的育儿方式所造成的负面影响[49]。同伴拒绝、同伴欺辱与课堂参与率降低、辍学率升高相关[50]。老师提供的支持性班级氛围、较短的教学年龄、较小的课堂规模对于因同伴拒绝而造成的社交和学习困难风险有保护作用[51]

从总体上来说,目前环境影响因素的研究主要针对的是阅读相关能力,直接针对发展性阅读障碍的研究还不多。但是,这些研究结果可以为我们进一步研究发展性阅读障碍的环境影响因素提供线索和思路。

2 遗传因素

阅读障碍在人群中的发病不表现为随机分布。基因遗传因素在阅读障碍的形成中占据了重要地位,能够解释40 %~80 %阅读障碍的产生[52]。家系研究及双生子研究发现阅读障碍具有家庭聚集性,阅读障碍患者的同胞再发率(43 %~60 %)远高于阅读障碍的人群患病率(2 %~17.5 %)[5354],遗传度为0.18~0.72[55]

已有9个基因座被确定与阅读障碍发病相关,人类基因命名委员会将其连续命名为DYX1到DYX9,它们在染色体上的位置分别为15q21.3、6p22、2p16-p15、6q13-16.2、3p12-q13、18p11.2、11p15.5、1p36-p34和Xq27.3[52, 56]。这些基因座中已报道与阅读障碍病因有关的基因包括位于DYX1上的DYX1C1基因[57],位于DYX2上的DCDC2[58]KIAA0319[59]THEM2TTRAP[60]NRSN1[61]基因,位于DYX3上的C2ORF3MRPL19[62]基因,位于DYX5上的ROBO1基因[63],位于DYX7上的DRD4基因[64],位于DYX8上的KIAA0319L基因[65],位于DYX9上的FMR1基因[66],然而在DYX4、DYX6基因座位上,至今还没有阅读障碍候选基因被提出。其中,TTRAP rs4504469、THEM2 rs2038137、KIAA0319rs2143340已被确定为阅读障碍发生的危险单倍体,能够降低上述三个基因在表达、剪切或者转录过程中40 %的稳定性[67]

也有不位于这些基因座上或与其他疾病有关的基因被发现与阅读能力有关,包括2号染色体上的FAM176A基因[67],3号染色体上的CEP63基因[68],5号染色体上的CTNND2基因[69],7号染色体上的FOXP2[61, 70]CNTNAP2[71]DOCK4[72]GTF2I基因[73],12号染色体上的GRIN2B[74]SLC2A3[73]GNPTAB基因[75],13号染色体上的COL4A2基因[61],14号染色体的NOP9基因[76],15号染色体上的CYP19A1基因[77],16号染色体上的ATP2C2CMIP基因[78]NAGPA基因[75],19号染色体上的NCAN[79]基因,21号染色体上的PCNTPRMT2[67]DIP2A[80]S100B[81]基因。

以上众多阅读障碍候选基因中,DYX1C1DCDC2KIAA0319ROBO1是目前被研究最多的4个基因,它们与阅读障碍发病风险之间的相关性已被广泛报道[59, 63, 8283]。研究学者们通过对这些基因的功能学探讨发现,它们在早期脑发育过程中都发挥了轴突导向、信号传导功能或者参与了神经元的迁移过程,因此目前普遍认为阅读障碍是一种神经迁移性疾病[8488]。但是,在不同的研究中,上述基因与阅读障碍发病风险之间的相关性呈现出不一样的结果 [73, 8990]。Lin,Vance,Pericak-Vance和Martin[91]认为,当所研究基因位点和实际致病位点之间存在交互作用或者连锁不平衡时,就会出现这种“反转现象”。

在中国人群中的研究发现,DIP2A rs2255526位点的遗传突变能增加阅读障碍患病风险[92]。神经元迁移调控网络上的KIAA0319 rs4504469、DOCK4 rs2074130、KIAA0319L rs28366021变异与阅读障碍发病风险呈现显著相关性 [93]DYX1C1 rs3743205[94]ROBO1 rs6803202[95]对阅读障碍的影响在中国儿童中也得到了重复性研究。另外,KIAA0319 rs4504469在亚洲人群中是危险因素,而rs9461045是保护因素[96]。中国语言系统与西方国家的不同导致中国儿童在阅读障碍的表现上与西方国家存在一定差异,因此西方国家的研究结果不一定完全适用于我国,对阅读障碍易感基因的进一步探索和验证性研究是很有必要的。

3 基因 – 基因、基因 – 环境的交互作用

无论是表现复杂的疾病或者是普通病症,确定遗传基因是非常困难的,因此才出现了遗传性缺失现象。阅读障碍中只有小于5 %的表型变异能够被目前所发现的易感基因位点所解释[97]。造成这一现象的原因有许多,其中两个原因便是基因 – 基因之间的交互作用和基因 – 环境之间的交互作用 [98]

阅读障碍是多基因复杂性疾病,其发病过程存在基因 – 基因之间的交互作用和累积效应。迄今为止只有几项研究同时探讨了多个基因变异对阅读障碍发生的交互效应 [73, 98102]。主要发现有:Harold[99]等发现DCDC2rs793862和KIAA0319 rs761100在阅读障碍的发生上存在显著的交互作用。Poelmans[73]等发现ROBO1KIAA0319KIAA0319LS100B、DOCK4FMR1DIP2AGTF2IDYX1C1DCDC2基因符合神经发育和理论分子框架,并且这些基因所编码的蛋白均直接或间接地调控神经迁移或轴突定向生长过程。Powers[100]等发现,个体如果同时具有DCDC2KIAA0319危险单倍体,其阅读、语言、认知能力的测试得分要比正常值低0.4个标准差,而且下降得分要高于仅携带DCDC2危险单倍体下降得分与仅携带KIAA0319危险单倍体下降得分之和,提示这两个危险单倍体之间存在协同交互作用。该团队的另一项研究进一步提示DCDC2READ1与KIAA0319KIAHap相互依赖,READ1通过KIAHap与KIAA0319的上游序列发生交互作用,调节KIAA0319基因的表达,共同作用于语言和阅读能力的发育[101]。Mascheretti和Bureau等[98]的研究结果提示DYX1C1KIAA0319/TTRAP与短时记忆能力的相关性均受GRIN2B基因的调控。最新的一项基于中国人群神经元迁移调控蛋白网络的研究也提示DOCK4KIAA0319KIAA0319LDCDC2四个基因在阅读障碍的发生上存在高阶交互作用和累积效应[102]

基因和环境对阅读障碍的共同作用是探讨阅读障碍发病机制重要内容之一,但是目前关于二者交互作用的研究很少 [43, 74, 103105]。研究学者们发现,父母文化程度越高,阅读障碍的遗传度越高[43, 104]DCDC2中的SNP-rs1091047与HLE相互影响,使儿童N170(反应正字法水平的神经因子指标)的水平发生变化[105]。Mascheretti等[103]在168个意大利阅读障碍核心家系中分析了七个环境因素(包括出生体重、孕期吸烟、母乳喂养、父母的生育年龄、流产、家庭社会经济地位和父母文化程度)与DYX1C1DCDC2KIAA0319ROBO1四个基因上的十个变异位点在记忆能力、阅读能力、拼写能力上的交互作用,发现DYX1C1-1259C/G位点与家庭社会经济地位、孕期吸烟情况、出生体重三个环境因素变量之间在记忆和阅读能力上具有交互作用。

中国人群中的研究初步证实DIP2Ars2255526与家庭月收入高低存在交互作用,低家庭收入人群中,该位点突变是阅读障碍发生的危险因素[92]KIAA0319L rs28366021位点的基因型与父母文化程度、父母阅读书籍的频率存在显著的交互作用,当父母文化程度较高或者父母每天阅读书籍时,KIAA0319L rs28366021位点的变异在汉语阅读障碍的发病风险上表现为保护作用[93]

此外,某些针对非阅读障碍的基因与环境交互作用的研究结果也可以作为我们今后研究方向的参考意见。DCDC2 READ1与SES在个体行为表现、注意力问题上存在交互作用,携带READ1并且低SES的个体注意力缺陷最严重的[106]。另外,HLE与6p22、15q21区域在个体发生功能性构音障碍的危险性上存在交互作用[107],而6p22、15q21区域刚好是阅读障碍的候选基因DCDC2(6p22.1)、KIAA0319(6p22.3 – 6p22.2)和 DYX1C1(15q21.3)所处的位置。

4 今后的研究方向

虽然我们在阅读障碍的病因学研究中取得了许多进展,但是至今为止,阅读障碍的确切病因仍不明确。今后的研究可以从以下几个方面探索:第一,在现有基础上继续开展阅读障碍的基因-基因及基因-环境交互作用的研究。第二,开展阅读障碍的全基因组关联研究,并探讨新生遗传机制(拷贝数变异、表观遗传等)在阅读障碍发生上的作用。第三,进一步探索环境的作用。比如,开展专门针对阅读障碍的环境影响因素研究,大样本的队列研究设计能更好的探索基因与环境对阅读障碍表型的共同影响等。第四,阅读障碍的共病现象比较常见,尤其是注意缺陷多动障碍、语音障碍等神经发育类疾病[56],因此,探索阅读障碍和共病症的共同病因也是日后研究可以深入探索的方向。

参考文献
[1] Sun Z, Zou L, Zhang J, et al. Prevalence and associated risk factors of dyslexic children in a middle-sized city of China: a cross-sectional study[J]. PLoS One, 2013, 8(2): e56688–56697. DOI:10.1371/journal.pone.0056688
[2] Altarac M, Saroha E. Lifetime prevalence of learning disability among US children[J]. Pediatrics, 2007, 119(Suppl): S77–83.
[3] Guarini A, Sansavini A, Fabbri C, et al. Long-term effects of preterm birth on language and literacy at eight years[J]. J Child Lang, 2010, 37(4): 865–885. DOI:10.1017/S0305000909990109
[4] Andrews JS, Ben-shachar M, Yeatman JD, et al. Reading performance correlates with white-matter properties in preterm and term children[J]. Dev Med Child Neurol, 2010, 52(6): e94–100. DOI:10.1111/j.1469-8749.2009.03456.x
[5] Litt JS, Taylor HG, Margevicius S, et al. Academic achievement of adolescents born with extremely low birth weight[J]. Acta Paediatrica,, 2012, 101(12): 1240–1245. DOI:10.1111/j.1651-2227.2012.02790.x
[6] Allotey J, Zamora J, Cheong-See F, et al. Cognitive, motor, behavioural and academic performances of children born preterm: a meta-analysis and systematic review involving 64061 children[J]. BJOG, 2017, 1(125): 16–25.
[7] Gu H, Wang L, Liu L, et al. A gradient relationship between low birth weight and IQ: a meta-analysis[J]. Sci Rep, 2017, 7(1): 18035–18046. DOI:10.1038/s41598-017-18234-9
[8] Hintz SR, Kendrick DE, Vohr BR, et al. Gender differences in neurodevelopmental outcomes among extremely preterm, extremely-low-birth weight infants[J]. Acta Pã|diatrica, 2010, 95(10): 1239–1248.
[9] Streimish IG, Ehrenkranz RA, Allred EN, et al. Birth weight- and fetal weight-growth restriction: impact on neurodevelopment[J]. Early Hum Dev, 2012, 88(9): 765–771. DOI:10.1016/j.earlhumdev.2012.04.004
[10] Cho K, Frijters JC, Zhang H, et al. Prenatal exposure to nicotine and impaired reading performance[J]. J Pediatr, 2013, 162(4): 713–718. DOI:10.1016/j.jpeds.2012.09.041
[11] Coffin JM, Baroody S, Schneider K, et al. Impaired cerebellar learning in children with prenatal alcohol exposure: a comparative study of eyeblink conditioning in children with ADHD and dyslexia[J]. Cortex, 2005, 41(3): 389–398.
[12] Glass L, Moore EM, Akshoomoff N, et al. Academic difficulties in children with prenatal alcohol exposure: presence, profile, and neural correlates[J]. Alcohol Clin Exp Res, 2017, 41(5): 1024–1034. DOI:10.1111/acer.2017.41.issue-5
[13] Lewis BA, Minnes S, Short EJ, et al. Language outcomes at 12 years for children exposed prenatally to cocaine[J]. J Speech Hear Res, 2013, 56(5): 1662–1676. DOI:10.1044/1092-4388(2013/12-0119)
[14] Mezzacappa A, Lasica P, Gianfagna F, et al. Risk for autism spectrum disorders according to period of prenatal antidepressant exposure[J]. JAMA Pediatr, 2017, 171(6): 555–563. DOI:10.1001/jamapediatrics.2017.0124
[15] Stålberg K, Axelsson O, Haglund B, et al. Prenatal ultrasound exposure and children's school performance at age 15 – 16: follow-up of a randomized controlled trial[J]. Ultrasound Obst Gyn, 2009, 34(3): 297–303. DOI:10.1002/uog.v34:3
[16] Cardonick EH, Gringlas MB, Hunter K, et al. Development of children born to mothers with cancer during pregnancy: comparing in utero chemotherapy-exposed children with nonexposed controls[J]. Am J Obstet Gynecol, 2015, 212(5): 651–658.
[17] Ross G, Sammaritano L, Nass R, et al. Effects of mothers' autoimmune disease during pregnancy on learning disabilities and hand preference in their children[J]. Arch Pediatr Adolesc Med, 2003, 157(4): 397–402. DOI:10.1001/archpedi.157.4.397
[18] Nalli C, Iodice A, Andreoli L, et al. Long-term neurodevelopmental outcome of children born to prospectively followed pregnancies of women with systemic lupus erythematosus and/or antiphospholipid syndrome[J]. Lupus, 2017, 26(5): 552–558. DOI:10.1177/0961203317694960
[19] Faa G, Marcialis MA, Ravarino A, et al. Fetal programming of the human brain: is there a link with insurgence of neurodegenerative disorders in adulthood?[J]. Curr Med Chem, 2014, 33(21): 3854–3876.
[20] Bytoft B, Knorr S, Vlachova Z, et al. Long-term cognitive implications of intrauterine hyperglycemia in adolescent offspring of women with type 1 diabetes (the EPICOM study)[J]. Diabetes Care, 2016, 39(8): 1356–1363. DOI:10.2337/dc16-0168
[21] Bath SC, Steer CD, Golding J, et al. Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: results from the Avon Longitudinal Study of Parents and Children (ALSPAC)[J]. Lancet, 2013, 9889(382): 331–337.
[22] Pugh SJ, Hutcheon JA, Richardson GA, et al. Child academic achievement in association with pre-pregnancy obesity and gestational weight gain[J]. J Epidemiol Commun H, 2016, 70(6): 534–540. DOI:10.1136/jech-2015-206800
[23] Connolly EJ, Beaver KM. Prenatal caloric intake and the development of academic achievement among U.S. children from ages 5 to 14[J]. Child Dev, 2015, 86(6): 1738–1758. DOI:10.1111/cdev.2015.86.issue-6
[24] Liu LF, Wang J, Shao SS, et al. Descriptive epidemiology of prenatal and perinatal risk factors in a Chinese population with reading disorder[J]. Sci Rep, 2016, 6: 36697–36703. DOI:10.1038/srep36697
[25] Patrich E, Piontkewitz Y, Peretz A, et al. Maternal immune activation produces neonatal excitability defects in offspring hippocampal neurons from pregnant rats treated with poly I:C[J]. Sci Rep, 2016, 6(1): 19106–19117. DOI:10.1038/srep19106
[26] Allen VM, Baskett TF, O’Connell CM, et al. Maternal and perinatal outcomes with increasing duration of the second stage of labor[J]. Obstet Gynecol, 2009, 113(6): 1248–1258. DOI:10.1097/AOG.0b013e3181a722d6
[27] Vandermosten M, Boets B, Poelmans H, et al. A tractography study in dyslexia: neuroanatomic correlates of orthographic, phonological and speech processing[J]. Brain, 2012, 135(Pt3): 935–948.
[28] Ranasinghe S, Or G, Wang EY, et al. Reduced cortical activity impairs development and plasticity after neonatal hypoxia ischemia[J]. J Neurosci, 2015, 35(34): 11946–11959. DOI:10.1523/JNEUROSCI.2682-14.2015
[29] Korat O, Arafat SH, Aram D, et al. Book reading mediation, SES, home literacy environment, and children’s literacy: evidence from Arabic-speaking families[J]. First Lang, 2013, 33(2): 132–154. DOI:10.1177/0142723712455283
[30] Fernald A, Marchman VA, Weisleder A. SES differences in language processing skill and vocabulary are evident at 18 months[J]. Dev Sci, 2013, 16(2): 234–248.
[31] Aram D, Korat O, Hassunah-Arafat S. The contribution of early home literacy activities to first grade reading and writing achievements in Arabic[J]. Reading and Writing, 2013, 26(9): 1517–1536. DOI:10.1007/s11145-013-9430-y
[32] Fluss J, Ziegler JC, Warszawski J, et al. Poor reading in French elementary school: the interplay of cognitive, behavioral, and socioeconomic factors[J]. J Dev Behav Pediatr, 2009, 30(3): 206–216. DOI:10.1097/DBP.0b013e3181a7ed6c
[33] Foy JG, Mann V. Home literacy environment and phonological awareness in preschool children: differential effects for rhyme and phoneme awareness[J]. Appl Psycholinguist, 2003, 24(01): 59–88.
[34] Larson K, Russ SA, Nelson BB, et al. Cognitive ability at kindergarten entry and socioeconomic status[J]. Pediatrics, 2015, 135(2): e440–448. DOI:10.1542/peds.2014-0434
[35] Chow BW, Ho CS, Wong SWL, et al. Home environmental influences on children's language and reading skills in a genetically sensitive design: are socioeconomic status and home literacy environment environmental mediators and moderators?[J]. Scand J Psychol, 2017, 58(6): 519–529. DOI:10.1111/sjop.2017.58.issue-6
[36] Raizada RD, Richards TL, Meltzoff A, et al. Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children[J]. Neuroimage, 2008, 40(3): 1392–1401. DOI:10.1016/j.neuroimage.2008.01.021
[37] Noble KG, Houston SM, Kan E, et al. Neural correlates of socioeconomic status in the developing human brain[J]. Dev Sci, 2012, 15(4): 516–527. DOI:10.1111/desc.2012.15.issue-4
[38] Noble KG, Houston SM, Brito NH, et al. Family income, parental education and brain structure in children and adolescents[J]. Nat Neurosci, 2015, 18(5): 773–778. DOI:10.1038/nn.3983
[39] Hoeft F, Meyler A, Hernandez A, et al. Functional and morphometric brain dissociation between dyslexia and reading ability[J]. Proc Natl Acad Sci USA, 2007, 104(10): 4234–4239. DOI:10.1073/pnas.0609399104
[40] Romeo RR, Christodoulou JA, Halverson KK, et al. Socioeconomic status and reading disability: neuroanatomy and plasticity in response to intervention[J]. Cereb Cortex, 2017, 7: 1–16.
[41] Francks C, Paracchini S, Smith SD, et al. A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States[J]. Am J Hum Genet, 2004, 75(6): 1046–1058. DOI:10.1086/426404
[42] Morris RD, Lovett MW, Wolf M, et al. Multiple-component remediation for developmental reading disabilities: IQ, socioeconomic status, and race as factors in remedial outcome[J]. J Learn Disabil, 2012, 45(2): 99–127. DOI:10.1177/0022219409355472
[43] Friend A, Defries JC, Olson RK. Parental education moderates genetic influences on reading disability[J]. Psychol Sci, 2008, 19(11): 1124–1130. DOI:10.1111/j.1467-9280.2008.02213.x
[44] Zhao H, Zhang BP, Chen Y, et al. Environmental risk factors in Han and Uyghur children with dyslexia: a comparative study[J]. PLoS One, 2016, 11(7): e159042–159056.
[45] Eklund KM, Torppa M, Lyytinen H. Predicting reading disability: early cognitive risk and protective factors[J]. Dyslexia, 2013, 19(1): 1–10. DOI:10.1002/dys.1447
[46] He Z, Shao SS, Zhou J, et al. Does long time spending on the electronic devices affect the reading abilities? a cross-sectional study among Chinese school-aged children[J]. Res Dev Disabil, 2014, 35(12): 3645–3654. DOI:10.1016/j.ridd.2014.08.037
[47] Lumpkin RB. School buildings, socioeconomic status, race, and student achievement[J]. J Intercult Discip, 2016, 15: 170–185.
[48] Walker JMT. Looking at teacher practices through the lens of parenting style[J]. J Exp Educ, 2008, 76(2): 218–240. DOI:10.3200/JEXE.76.2.218-240
[49] Kiuru N, Aunola K, Torppa M, et al. The role of parenting styles and teacher interactional styles in children's reading and spelling development[J]. J School Psychol, 2012, 50(6): 799–823. DOI:10.1016/j.jsp.2012.07.001
[50] Buhs ES, Ladd GW, Herald SL. Peer exclusion and victimization: processes that mediate the relation between peer group rejection and children's classroom engagement and achievement?[J]. J Educ Psychol, 2006, 98(1): 1–13.
[51] Kiuru N, Poikkeus AM, Lerkkanen MK, et al. Teacher-perceived supportive classroom climate protects against detrimental impact of reading disability risk on peer rejection[J]. Learn Instr, 2012, 22(5): 331–339. DOI:10.1016/j.learninstruc.2011.12.003
[52] Carrion-Castillo A, Franke B, Fisher SE. Molecular genetics of dyslexia: an overview[J]. Dyslexia, 2013, 19(4): 214–240. DOI:10.1002/dys.v19.4
[53] Vogler GP, Defries JC, Decker SN. Family history as an indicator of risk for reading disability[J]. J Learn Disabil, 1985, 18(7): 419–421. DOI:10.1177/002221948501800711
[54] Ziegler A, König IR, Deimel W, et al. Developmental dyslexia – recurrence risk estimates from a german bi-center study using the single proband sib pair design[J]. Hum Hered, 2005, 59(3): 136–143. DOI:10.1159/000085572
[55] Plomin R, Kovas Y. Generalist genes and learning disabilities[J]. Psychol Bull, 2005, 131(4): 592–617. DOI:10.1037/0033-2909.131.4.592
[56] Scerri TS, Schulte-Körne G. Genetics of developmental dyslexia[J]. Eur Child Adoles Psy, 2010, 19(3): 179–197. DOI:10.1007/s00787-009-0081-0
[57] Venkatesh SK, Siddaiah A, Padakannaya P, et al. Association of SNPs of DYX1C1 with developmental dyslexia in an Indian population[J]. Psychiat Genet, 2014, 24(1): 10–20.
[58] Cicchini GM, Marino C, Mascheretti S, et al. Strong motion deficits in dyslexia associated with DCDC2 gene alteration[J]. J Neurosci, 2015, 35(21): 8059–8064. DOI:10.1523/JNEUROSCI.5077-14.2015
[59] Kere J. The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype[J]. Biochem Biophys Res Commun, 2014, 452(2): 236–243. DOI:10.1016/j.bbrc.2014.07.102
[60] Pinel P, Fauchereau F, Moreno A, et al. Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered brain activation in distinct language-related regions[J]. J Neurosci, 2012, 32(3): 817–825. DOI:10.1523/JNEUROSCI.5996-10.2012
[61] Skeide MA, Kraft I, Müller B, et al. NRSN1 associated grey matter volume of the visual word form area reveals dyslexia before school[J]. Brain, 2016, 139(10): 2792–2803. DOI:10.1093/brain/aww153
[62] Anthoni H, Zucchelli MH, Muller-Myhsok B, et al. A locus on 2p12 containing the co-regulated MRPL19 and C2ORF3 genes is associated to dyslexia[J]. Hum Mol Genet, 2007, 16(6): 667–677. DOI:10.1093/hmg/ddm009
[63] Tran C, Wigg KG, Zhang K, et al. Association of the ROBO1 gene with reading disabilities in a family-based analysis[J]. Genes Brain Behav, 2014, 13(4): 430–438. DOI:10.1111/gbb.2014.13.issue-4
[64] Hsiung GY, Kaplan BJ, Petryshen TL, et al. A dyslexia susceptibility locus (DYX7) linked to dopamine D4 receptor (DRD4) region on chromosome 11p15.5[J]. Am J Med Genet B Neuropsychiatr Genet, 2004, 125B(1): 112–119. DOI:10.1002/(ISSN)1096-8628
[65] Couto JM, Gomez L, Wigg K, et al. The KIAA0319-like (KIAA0319L) gene on chromosome 1p34 as a candidate for reading disabilities[J]. J Neurogenet, 2008, 22(4): 295–313. DOI:10.1080/01677060802354328
[66] Huc-Chabrolle M, Charon C, Guilmatre A, et al. Xq27 FRAXA locus is a strong candidate for dyslexia: evidence from a genome-wide scan in French families[J]. Behav Genet, 2013, 43(2): 132–140. DOI:10.1007/s10519-012-9575-5
[67] Mascheretti S, De LA, Trezzi V, et al. Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms[J]. Transl Psychiat, 2017, 7(1): e987–1001.
[68] Einarsdottir E, Svensson I, Darki F, et al. Mutation in CEP63 co-segregating with developmental dyslexia in a Swedish family[J]. Hum Genet, 2015, 134(11-12): 1239–1248. DOI:10.1007/s00439-015-1602-1
[69] Hofmeister W, Nilsson D, Topa A, et al. CTNND2 – a candidate gene for reading problems and mild intellectual disability[J]. J Med Genet, 2015, 52(2): 111–123. DOI:10.1136/jmedgenet-2014-102757
[70] Mozzi A, Riva V, Forni D, et al. A common genetic variant in FOXP2 is associated with language-based learning (dis)abilities: evidence from two Italian independent samples[J]. Am J Med Genet B, 2017, 174(5): 578–586. DOI:10.1002/ajmg.b.v174.5
[71] Peter B, Raskind WH, Matsushita M, et al. Replication of CNTNAP2 association with nonword repetition and support for FOXP2 association with timed reading and motor activities in a dyslexia family sample[J]. J Neurodev Disord, 2011, 3(1): 39–49.
[72] Pagnamenta AT, Bacchelli E, de Jonge MV, et al. Characterization of a family with rare deletions in CNTNAP5 and DOCK4 suggests novel risk loci for autism and dyslexia[J]. Biol Psychiatry, 2010, 68(4): 320–328. DOI:10.1016/j.biopsych.2010.02.002
[73] Poelmans G, Buitelaar JK, Pauls DL, et al. A theoretical molecular network for dyslexia: integrating available genetic findings[J]. Mol Psychiatry, 2011, 16(4): 365–382.
[74] Mascheretti S, Facoetti A, Giorda R, et al. GRIN2B mediates susceptibility to intelligence quotient and cognitive impairments in developmental dyslexia[J]. Psychiat Genet, 2015, 25(1): 9–20.
[75] Chen H, Xu JQ, Zhou YX, et al. Association study of stuttering candidate genes GNPTAB, GNPTG and NAGPA with dyslexia in Chinese population[J]. BMC Genet, 2015, 16(1): 7–13. DOI:10.1186/s12863-015-0172-5
[76] Pettigrew KA, Emily F, Ron N, et al. Further evidence for a parent-of-origin effect at the NOP9 locus on language-related phenotypes[J]. J Neurodev Disord, 2016, 8(1): 24–31.
[77] Anthoni H, Sucheston LE, Lewis BA, et al. The aromatase gene CYP19A1: several genetic and functional lines of evidence supporting a role in reading, speech and language[J]. Behav Genet, 2012, 42(4): 509–527. DOI:10.1007/s10519-012-9532-3
[78] Wang GQ, Zhou YX, Gao Y, et al. Association of specific language impairment candidate genes CMIP and ATP2C2 with developmental dyslexia in Chinese population[J]. J Neurolinguist, 2015, 33: 163–171. DOI:10.1016/j.jneuroling.2014.06.005
[79] Einarsdottir E, Peyrardjanvid M, Darki F, et al. Identification of NCAN as a candidate gene for developmental dyslexia[J]. Sci Rep, 2017, 7(1): 1–11. DOI:10.1038/s41598-016-0028-x
[80] Kong R, Shao SS, Wang J, et al. Genetic variant in DIP2A gene is associated with developmental dyslexia in Chinese population[J]. Am J Med Genet B, 2016, 171(2): 203–208. DOI:10.1002/ajmg.b.32392
[81] Matsson H, Huss M, Persson H, et al. Polymorphisms in DCDC2 and S100B associate with developmental dyslexia[J]. J Hum Genet, 2015, 60(7): 399–401. DOI:10.1038/jhg.2015.37
[82] Mascheretti S, Riva V, Giorda R, et al. KIAA0319 and ROBO1: evidence on association with reading and pleiotropic effects on language and mathematics abilities in developmental dyslexia[J]. J Hum Genet, 2014, 59(4): 189–197. DOI:10.1038/jhg.2013.141
[83] Scerri TS, Morris AP, Buckingham LL, et al. DCDC2, KIAA0319 and CMIP are associated with reading-related traits[J]. Biol Psychiat, 2011, 19(3): 179–197.
[84] Currier TA, Etchegaray MA, Haight JL, et al. The effects of embryonic knockdown of the candidate dyslexia susceptibility gene homologue DYX1C1 on the distribution of GABAergic neurons in the cerebral cortex[J]. Neuroscience, 2011, 172: 535–546. DOI:10.1016/j.neuroscience.2010.11.002
[85] Massinen S, Hokkanen ME, Matsson H, et al. Increased expression of the dyslexia candidate gene DCDC2 affects length and signaling of primary cilia in neurons[J]. PLoS One, 2011, 6(6): e20580–20589. DOI:10.1371/journal.pone.0020580
[86] Velayos-Baeza A, Levecque C, Kobayashi K, et al. The dyslexia-associated KIAA0319 protein undergoes proteolytic processing with γ-secretase-independent intramembrane cleavage[J]. J Biol Chem, 2010, 285(51): 40148–40162. DOI:10.1074/jbc.M110.145961
[87] Massinen S, Wang J, Laivuori K, et al. Genomic sequencing of a dyslexia susceptibility haplotype encompassing ROBO1[J]. J Neurodev Disord, 2016(8): 4–15.
[88] Szalkowski CE, Fiondella CF, Truong DT, et al. The effects of KIAA0319 knockdown on cortical and subcortical anatomy in male rats[J]. Int J Dev Neurosci, 2013, 31(2): 116–122.
[89] Zhong R, Yang BF, Tang H, et al. Meta-analysis of the association between DCDC2 polymorphisms and risk of dyslexia[J]. Mol Neurobiol, 2013, 47(1): 435–442. DOI:10.1007/s12035-012-8381-7
[90] Zou L, Chen W, Shao SS, et al. Genetic variant in KIAA0319, but not in DYX1C1, is associated with risk of dyslexia: an integrated meta-analysis[J]. Am J Med Genet B, 2012, 159 B(8): 970–976.
[91] Lin P, Vance JM, Pericak-Vance MA, et al. No gene is an island: the flip-flop phenomenon[J]. Am J Hum Genet, 2007, 80(3): 531–538.
[92] 孔锐. DIP2A基因多态性与儿童汉语阅读障碍易感性的关联研究[D]. 华中科技大学, 2016.
[93] 邵珊珊. 神经元迁移调控基因网络与汉语阅读障碍的相关研究[D]. 华中科技大学, 2016.
[94] Lim CK, Ho CH, Chou CH, et al. Association of the rs3743205 variant of DYX1C1 with dyslexia in Chinese children[J]. Behav Brain Funct, 2011, 7(1): 16–24. DOI:10.1186/1744-9081-7-16
[95] Rao S, Lee YN, Lim CKP, et al. Association of ROBO1 polymorphism rs6803202 with developmental dyslexia in southern Chinese children[J]. J Biochem Mol Biol, 2016, 3(1): 31–38.
[96] Shao SS, Niu YF, Zhang XH, et al. Opposite associations between individual KIAA0319 polymorphisms and developmental dyslexia risk across populations: a stratified meta-analysis by the study population[J]. Sci Rep, 2016, 6(1): 30454–30462. DOI:10.1038/srep30454
[97] Plomin R. Child development and molecular genetics: 14 years later[J]. Child Dev, 2013, 84(1): 104–120. DOI:10.1111/j.1467-8624.2012.01757.x
[98] Mascheretti S, Bureau A, Trezzi V, et al. An assessment of gene-by-gene interactions as a tool to unfold missing heritability in dyslexia[J]. Hum Genet, 2015, 134(7): 749–760. DOI:10.1007/s00439-015-1555-4
[99] Harold D, Paracchini S, Scerri T, et al. Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia[J]. Mol Psychiatry, 2006, 11(12): 1085–1091. DOI:10.1038/sj.mp.4001904
[100] Powers NR, Eicher JD, Butter F, et al. Alleles of a polymorphic ETV6 binding site in DCDC2 confer risk of reading and language impairment[J]. Am J Hum Genet, 2013, 93(1): 19–28.
[101] Powers NR, Eicher JD, Miller LL, et al. The regulatory element READ1 epistatically influences reading and language, with both deleterious and protective alleles[J]. J Med Genet, 2016, 53(3): 163–171. DOI:10.1136/jmedgenet-2015-103418
[102] Shao SS, Kong R, Zou L, et al. The roles of genes in the neuronal migration and neurite outgrowth network in developmental dyslexia: single- and multiple-risk genetic variants[J]. Mol Neurobiol, 2016, 53(6): 3967–3975. DOI:10.1007/s12035-015-9334-8
[103] Mascheretti S, Bureau A, Battaglia M, et al. An assessment of gene-by-environment interactions in developmental dyslexia-related phenotypes[J]. Genes Brain Behav, 2013, 12(1): 47–55. DOI:10.1111/gbb.2013.12.issue-1
[104] Rosenberg J, Pennington BF, Willcutt EG, et al. Gene by environment interactions influencing reading disability and the inattentive symptom dimension of attention deficit/hyperactivity disorder[J]. J Child Psychol Psyc, 2012, 53(3): 243–251. DOI:10.1111/j.1469-7610.2011.02452.x
[105] Su M, Wang J, Maurer U, et al. Gene-environment interaction on neural mechanisms of orthographic processing in Chinese children[J]. J Neurolinguist, 2015, 33: 172–186. DOI:10.1016/j.jneuroling.2014.09.007
[106] Riva V, Marino C, Giorda R, et al. The role of DCDC2 genetic variants and low socioeconomic status in vulnerability to attention problems[J]. Eur Child Adoles Psy, 2015, 24(3): 309–318. DOI:10.1007/s00787-014-0580-5
[107] McGrath LM, Pennington BF, Willcutt EG, et al. Gene×environment interactions in speech sound disorder predict language and preliteracy outcomes[J]. Dev Psychopathol, 2007, 19(4): 1047–1072. DOI:10.1017/S0954579407000533