中国公共卫生  2018, Vol. 34 Issue (11): 1471-1475   PDF    
5岁以下儿童社区获得性肺炎病原谱及疾病负担研究进展
甘小琴1, 苏莉1, 王旭霞2, 张晓田1, 俄倩男1    
1. 兰州大学公共卫生学院,甘肃 兰州 730030;
2. 甘肃省疾病预防控制中心
摘要:儿童社区获得性肺炎(CAP)是指健康儿童在医院外获得的感染性肺炎,也是导致5岁以下儿童死亡的重要原因之一,其在美国、欧洲、拉丁美洲及亚太地区均带来巨大的疾病负担。目前,CAP病原体构成出现了新的变化,但肺炎链球菌和流感嗜血杆菌仍是主要病原体,但不同国家和地区的CAP临床和流行特征均有所差异。本文对CAP的病原谱与耐药性、临床和流行病学特征、疾病负担、预防控制进行了综述,旨在为肺炎的防控提供理论依据。
关键词儿童社区获得性肺炎(CAP)     病原谱     疾病负担    
Progress in researches on incidence, pathogen spectrum and disease burden of community-acquired pneumonia among under five years old children in China
GAN Xiao-qin, SU Li, WANG Xu-xia, et al     
School of Public Health, Lanzhou University, Lanzhou, Gansu Province 730030, China
Abstract: Community-acquired pneumonia (CAP) in children, which is one of important causes of death in children under the age of five years, refers to healthy children suffering from infectious pneumonia out of hospitals. CAP leads to a heavy burden of disease in the United States, Europe, Latin America and the Asia-Pacific Region. Nowadays, CAP-related pathogens present a new spectrum, but Streptococcus pneumoniae and Haemophilus influenzae are still the main pathogens. Clinical and epidemic features of CAP vary among different countries and regions. Aiming to provide evidences to prevention and control of CAP, the study reviews published literatures about researches on spectrum and drug-resistance of isolated CAP-related pathogens, clinical and epidemic characteristics, disease burden, and prevention and control of CAP.
Key words: children with community-acquired pneumonia     pathogen spectrum     disease burden    

儿童社区获得性肺炎(community-acquired pneumonia,CAP)是指健康儿童在医院外获得的感染性肺炎,其是导致5岁以下儿童死亡的重要原因之一[1]。在美国、欧洲、拉丁美洲及亚太地区均带来巨大的疾病负担[24]。由于广泛开展肺炎免疫接种,CAP的经济负担在过去10年间有所下降,但在未进行免疫接种的地区,CAP仍是儿科的主要病种。为了解5岁以下儿童CAP的病原谱和疾病负担,为肺炎防控提供理论依据,本文对CAP的病原与耐药、临床和流行病学特征、疾病负担、预防控制等情况进行综述如下。

1 CAP的病原谱与耐药性

CAP的病原体达100多种,包括细菌、病毒和真菌。细菌性感染占主导地位,且肺炎链球菌(Streptococcus pneumoniae,SP)是主要的病原体[5]。近10年来,CAP病原谱发生了以下变化:发达国家的CAP以细菌为主转变为病毒为主[6],国内CAP病毒感染也逐渐占主导地位[7];细菌感染所占比例有所下降,且革兰阳性菌感染明显减少,而革兰阴性菌感染明显增多[8];非典型病原体尤其是肺炎支原体(Mycoplasma pneumoniae,MP)所占比例不断增加;联合感染越来越常见[9]

细菌型CAP的病因学研究较多,但检测方法不同,检出率亦不同。有研究表明,鼻咽抽出物中SP的检出率(79.1 %)高于葡萄球菌属(9.6 %),而在血培养中金黄色葡萄球菌检出率(30.6 %)高于SP(20.4 %)[7, 10]。不同地区CAP病原体检出率不同,澳大利亚SP(14 %)和MP(9 %)为主要病原体[11],印度5岁以下儿童CAP的主要病原体为SP(50 %)和b型流感嗜血杆菌(Haemophilus influenza type b,Hib)(8.8 %)[12],深圳MP、SP和Hib的检出率依次为52.47 %、9.07 %和6.76 %[13],江苏南京SP和嗜肺军团菌(Legionella pneumophila,LP)检出率依次为40.78 %和0.91 %[14]。鉴于非典型病原体如MP和衣原体(Chlamydia pneu-moniae,CP)较难检测,故用急性期IgM抗体或反转录 – 聚合酶链反应(reverse transcription-polymerase chain reaction,RT-PCR)作为检测MP的金标准,并辅以头痛、哮喘、干啰音等临床特征进行诊断,结果显示MP逐渐成为儿童CAP的主要病原体,检出率高达34.8 % [15]。非典型病原体检出率地区差异较大,江苏南京、意大利和巴西CP的检出率分别为0.33 %、13 %和63.8 %[14, 1617]

无论在发达国家还是发展中国家,病毒感染在学龄前儿童中所占比例较大,< 18月龄幼儿检出率(83 %)高于其他年龄段儿童(67 %)[18]。引起CAP的常见病毒有呼吸道合胞病毒(respiratory syncytial virus,RSV)和鼻病毒(rhinovirus,RV)。RSV检出率为3 %~42 %,且大多数为联合感染,其中以 < 18月龄幼儿最为常见 [1920]。RV是儿童流行性感冒的主要病原体,< 1、1~3和 ≥ 4岁儿童的检出率分别为36 %、27 %和26 %。此外,腺病毒(adenovirus,ADV)、博卡病毒(bocavirus,HBoV)和人类偏肺病毒(human metapneumovirus,hMPV)等逐渐被人们发现[2122]。西班牙、芬兰等地区的研究表明,HBoV和hMPV的检出率分别为2.9 %~18 %和4.9 %~14 %,且多以联合感染为主,常导致重度CAP的发生[21]。Esposito等[22]研究表明,相对于RSV(31.7 %)和RV(24.3 %)而言,ADV、流感病毒和副流感病毒(parainfluenza virus,PIV)引起的CAP发病率较低,约为3 %~10 %。

随着抗生素的不规则用药,细菌的耐药性不断增加,尤其是MP和Hib [2324]。有研究表明,MP对盘尼西林的耐药显著增加[25],有50 %的MP对大环内酯类药物和克林霉素耐药,76.8 %的Hib对甲氧苄氨嘧啶耐药,< 10 %的Hib对氟喹诺酮类药物耐药[26]。MP和金黄色葡萄球菌等主要对阿奇霉素、四环素和复方新诺明等有较高耐药性,耐药率为55.1 %~93.7 %;其中对阿奇霉素的耐药率高达97.50 %,对四环素和复方新诺明的耐药率分别为94.9 %和94.3 %;对氯霉素的耐药率仅为4.6 %[2728]。此外,MP对 β – 内酰胺类药物的耐药率为30 %~60 %,其中对头孢曲松、青霉素G和头孢噻肟的耐药率依次为38.7 %、39.4 %和55.4 % [2930]。Hib和PIV等对氨苄西林和第二、三代头孢的耐药率高达88.1 %,而Hib对阿奇霉素的耐药性较低,约为4.5 %[31];且MP和Hib均对亚胺培南100 %敏感[32]

近年来,MP具有多重耐药且呈上升趋势[3334]。有研究表明,多重耐药与家族转座子Tn916有关,血清型19A肺炎球菌耐青霉素逐年上升,究其原因与耐药基因ST276和ST320克隆有关[35]。在全球范围内,除血清型19A外,西班牙9V、英格拉14和哥伦比亚23F血清型肺炎球菌分别与耐药基因ST156、ST9和T338的克隆有关,因此合理使用抗生素和研制新一代共轭疫苗以减少多重耐药是当前CAP防控的首要任务[36]

2 CAP临床和流行病学特征

CAP常见的临床特征为发热、捻发音、呼吸加快等,但不同国家和地区,其临床和流行病学特征有所差异。埃及CAP患者的主要表现为呼吸加快(100 %)、捻发音(99 %)、发热(92.2 %)等并伴有中性粒细胞、淋巴细胞增多[37];印度的CAP患者主要以发热伴随着呼吸加快、哮喘等为主,严重者可出现紫绀、呼吸窘迫等[12];中国CAP患者的主要表现为发热、咳嗽、肺部水泡音和浓痰[38]

CAP发病与年龄、地区、季节等有关[39]。< 1岁婴儿为CAP的主要发病群体[13];学龄前儿童SP检出率最高为55.33 %,其次乙型流感病毒(influenza B virus,INFB)检出率为12.41 %;学龄儿童PIV检出率最高为11.43 %,Lp少见[40]。CAP病原体的季节性分布特征存在地区差异性。西班牙冬季CAP频发(34 %),冬、春季SP高发(21 %、17 %),秋、冬季流感病毒高发(6 %、5 %)[41];巴西秋季RSV高发(36.4 %),春季PIV高发(32.5 %)[42]。目前,中国各地区对CAP的流行情况和病原学特点研究较少,主要是针对成年患者的随访研究[43],因此有必要依据CAP的临床和流行病学特征对CAP的病原学特点、耐药性等进行全面了解。

3 CAP的疾病负担

CAP发病率随年龄增长呈U型曲线,其中婴幼儿发病明显高于成年人[44]。2010年全球平均每名5岁以下儿童发生0.19次(95 % CI = 0.10~0.44)肺炎;肺炎发生12 040万例(95 % CI = 6 080~27 700),其中严重肺炎发生1 411万例(95 % CI = 1 030~4 004)[45]。据WHO报道,2015年肺炎估计造成920 136例5岁以下儿童死亡,占5岁以下儿童死亡数的16 %[46]。CAP在美国、拉丁美洲以及亚太地区均可带来巨大疾病负担。MP是拉丁美洲的主要病原体,由于老龄化、联合感染增多以及抗生素抵抗等因素,不仅出现了CAP耐药性,更增加了疾病负担[47]。全球每年1.56亿5岁以下儿童的CAP新发病例中有95 %发生在发展中国家,中国疾病负担仅次于印度,因肺炎住院的患儿占儿科住院患儿的24.5 %~65.2 %[14, 48]。据全球疾病负担评估,1990 — 2013年肺炎相关伤残调整生命年(disability-adjusted life years,DALYs)减少了58 %,从18.6亿降至7.8亿[48]。国内外对5岁以下儿童CAP疾病负担直接指标的相关报道较少,且75 %发生在发展中国家,其中东南亚和撒哈拉以南的疾病负担巨大,占全球肺炎负担的50 %[49]

由于受经济水平、医疗保健条件及医院等级等因素的影响,各地区医院收治患者的住院费用均有所不同[50]。2015年中央、省、市、县级市和县级医院儿童支气管肺炎住院病人的直接医疗费用分别为5 785.8、5 341.0、3 735.1、2 755.0和2 188.9元,住院天数分别为7.0、7.5、7.2、6.6和6.3 d[51]。北京市CAP患者平均总医疗费用为12 147.97元,广东珠江市住院总费用为3 000~181 378元[52]。在美国,每年CAP对成人带来的经济负担 > 17亿美元,儿童为1 467美元/人,住院费用为12 000美元/人,生产力损失为2~4 d [49]

4 CAP的预防控制

除药物治疗外,疫苗是降低儿童CAP发病最有效的方法[53]。目前国际上主要有7价肺炎球菌结合疫苗(7-valent peneumococcal conjugate vaccine,PCV7)、10价肺炎球菌结合疫苗(10-valent peneumococcal conjugate vaccine,PCV10)和13价肺炎球菌结合疫苗(13-valent peneumococcal conjugate vaccine,PCV13),中国上市疫苗主要包括23价肺炎球菌多糖疫苗(23-valent penumococcal polysaccharide vaccine,Pen-V23)、PCV7、PCV13、Hib疫苗等[54]

2015年,肺炎结合疫苗全球覆盖率达35 %,但CAP病原血清型种类较多,因此导致1种疫苗不能完全覆盖[55]。有研究表明,2005 — 2013年中国 ≤ 18岁人群的肺炎球菌分离株中,PCV7血清型覆盖率为60.2 %(54.2 %~67.1 %),PCV13为86.9 %(82.1 %~91.9 %)[56]。在美国,PCV7疫苗使 < 2岁儿童年均住院率降低43.2 %,2~4岁儿童年均住院率降低12.5 % [57];在澳大利亚,< 2和2~4岁儿童年均住院率分别降低了38 %和29 %[58]。在中国,≤ 2岁儿童主要接种PCV7和PCV13疫苗,可覆盖主要致病血清型(19A、19F、14、3和23F)[34],对MP血清型的潜在保护率达53 %,但PCV7疫苗对血清型1、3、5、6A和7F缺乏保护作用,PCV13疫苗则可有效覆盖且其较PCV7疫苗对婴幼儿更为安全[59]。2005 — 2011年全国监测数据显示,5岁以下儿童PCV13疫苗的覆盖范围高于PCV7和PCV10疫苗[30]。Hib疫苗可预防由Hib引起的肺炎、脑膜炎等侵袭性感染,且安全性较好[60]。经Hib疫苗基础免疫后,机体产生保护性抗体,如在冈比亚,> 99 %的婴儿接种后产生抗体[61]。2015年Hib疫苗全球平均覆盖率为63 %,其中美国覆盖率高达90 %,西太平洋仅为25 %[48]。2000 — 2001年肯尼亚儿童接种Hib疫苗后,侵袭性Hib疾病发病率从62.6/10万下降至4.5/10万,疫苗效果估计为93 %(95 % CI = 87 %~96 %),类似的情况也发生在澳大利亚[6263]。中国儿童Hib疫苗接种率为55.9 %(95 % CI = 52.3 %~59.4 %),东部地区接种率(62.9 %)高于中西部地区(48.1 %),城市地区(53.9 %)高于农村地区(41.9 %),本地儿童(60.0 %)高于流动儿童(54.3 %),总体上我国Hib疫苗接种率偏低,且存在地区差异[64]

5 小 结

CAP是导致5岁以下儿童死亡的主要疾病之一,SP和Hib是CAP的主要病原体,但不同国家地区的病原谱存在差异。当前病原谱出现新的变化,CP、RV、hMPV等病原体亦受到关注。虽然抗生素使用和疫苗接种有效降低了CAP的发病率和死亡率,但耐药性和病原谱的改变增大了治疗难度,因此有必要进一步研究病原的演变趋势、完善监测系统、基本实现疫苗全覆盖、研制有效的抗病毒药物、合理使用抗菌药物以及调节机体免疫反应,最终降低CAP的疾病负担。

参考文献
[1] Ceveymacherel M, Galettolacour A, Gervaix A, et al. Etiology of community-acquired pneumonia in hospitalized children based on WHO clinical guidelines[J]. European Journal of Pediatrics, 2009, 168(12): 1429–1436. DOI:10.1007/s00431-009-0943-y
[2] Welte T. Risk factors and severity scores in hospitalized patients with community-acquired pneumonia: prediction of severity and mortality[J]. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31(1): 33–47. DOI:10.1007/s10096-011-1272-4
[3] Isturiz RE, Luna CM, Ramirez J. Clinical and economic burden of pneumonia among adults in Latin America[J]. International Journal of Infectious Diseases, 2010, 14(10): e852. DOI:10.1016/j.ijid.2010.02.2262
[4] Song JH, Thamlikitkul V, Hsueh PR. Clinical and economic burden of community-acquired pneumonia amongst adults in the Asia-Pacific region[J]. International Journal of Antimicrobial Agents, 2011, 38(2): 108–117.
[5] Capelastegui A, España PP, Bilbao A, et al. Etiology of community-acquired pneumonia in a population-based study: link between etiology and patients characteristics, process-of-care, clinical evolution and outcomes[J]. BMC Infectious Diseases, 2012, 12(1): 134. DOI:10.1186/1471-2334-12-134
[6] Jain S, Williams DJ, Arnold SR, et al. Community-acquired pneumonia requiring hospitalization among U.S. children[J]. New England Journal of Medicine, 2015, 372(9): 835. DOI:10.1056/NEJMoa1405870
[7] 蒋露晰, 任红宇, 周海健, 等. 社区获得性肺炎病原体检测方法研究进展[J]. 中华流行病学杂志, 2016, 37(7): 1051–1054. DOI:10.3760/cma.j.issn.0254-6450.2016.07.029
[8] 郑申健. 孝感地区5岁以下儿童社区获得性肺炎细菌病原学分布及耐药性分析[J]. 实用临床医药杂志, 2015, 19(11): 70–73.
[9] Montull B, Menendez R, Mendez R, et al. The impact of mixed etiology in community acquired pneumonia (CAP)[J]. European Respiratory Journal, 2014, 44(Suppl 58): 4649.
[10] Mathew JL, Sunit S, Pallab R, et al. Etiology of community acquired pneumonia among children in India: prospective, cohort study[J]. Journal of Global Health, 2015, 5(2): 050418. DOI:10.7189/jogh.05.020418
[11] Charles PG, Whitby M, Fuller AJ, et al. The etiology of community-acquired pneumonia in Australia: why penicillin plus doxycycline or a macrolide is the most appropriate therapy[J]. Clinical Infectious Diseases An Official Publication of the Infectious Diseases Society of America, 2008, 46(10): 1513. DOI:10.1086/589465
[12] Yadav KK, Awasthi S. The current status of community-acquired pneumonia management and prevention in children under 5 years of age in India: a review[J]. Therapeutic Advances in Infectious Disease, 2016, 3(3 – 4): 83.
[13] 靳淑雁, 刘世新, 郑静, 等. 2012 — 2014年深圳市5岁以下儿童肺炎流行特征与病原学分析[J]. 实用预防医学, 2016, 23(6): 701–704. DOI:10.3969/j.issn.1006-3110.2016.06.017
[14] Chen K, Jia R, Li L, et al. The aetiology of community associated pneumonia in children in Nanjing, China and aetiological patterns associated with age and season[J]. BMC Public Health, 2015, 15(1): 113.
[15] Medjo B, Atanaskovicmarkovic M, Radic S, et al. Mycoplasma pneumoniae as a causative agent of community-acquired pneu-monia in children: clinical features and laboratory diagnosis [J]. Italian Journal of Pediatrics, 2014, 40(1): 104. DOI:10.1186/s13052-014-0104-4
[16] Blasi F, Cosentini R, Legnani D, et al. Incidence of community-acquired pneumonia caused by Chlamydia pneumoniae in Italian patients [J]. European Journal of Clinical Microbiology and Infectious Diseases, 1993, 12(9): 696. DOI:10.1007/BF02009382
[17] Chedid MB, Chedid MF, Ilha DO, et al. Community-acquired pneumonia by Chlamydophila pneumoniae: a clinical and incidence study in Brazil [J]. Brazilian Journal of Infectious Diseases, 2007, 11(1): 75–82. DOI:10.1590/S1413-86702007000100018
[18] Garcíagarcía ML, Calvo C, Pozo F, et al. Spectrum of respiratory viruses in children with community-acquired pneumonia[J]. Pediatric Infectious Disease Journal, 2012, 31(8): 808–813. DOI:10.1097/INF.0b013e3182568c67
[19] Burbano RR, Ramos FL, Mello WA, et al. Prevalence and clinical features of respiratory syncytial virus in children hospitalized for community-acquired pneumonia in northern Brazil[J]. BMC Infectious Diseases, 2012, 12(1): 119. DOI:10.1186/1471-2334-12-119
[20] Pavia AT. What is the role of respiratory viruses in community-acquired pneumonia?: What is the best therapy for influenza and other viral causes of CAP?[J]. Infectious Disease Clinics of North America, 2013, 27(1): 157–175. DOI:10.1016/j.idc.2012.11.007
[21] Honkinen M, Lahti E, Österback R, et al. Viruses and bacteria in sputum samples of children with community-acquired pneumonia[J]. Clinical Microbiology and Infection, 2012, 18(3): 300–307. DOI:10.1111/j.1469-0691.2011.03603.x
[22] Esposito S, Daleno C, Prunotto G, et al. Impact of viral infections in children with community-acquired pneumonia: results of a study of 17 respiratory viruses[J]. Influenza and Other Respiratory Viruses, 2013, 7(1): 18–26. DOI:10.1111/irv.2012.7.issue-1
[23] Huang HH, Zhang YY, Xiu QY, et al. Community-acquired pneumonia in Shanghai, China: microbial etiology and implications for empirical therapy in a prospective study of 389 patients[J]. European Journal of Clinical Microbiology and Infectious Diseases Official Publication of the European Society of Clinical Microbi-ology, 2006, 25(6): 369–374. DOI:10.1007/s10096-006-0146-7
[24] Jones RN, Jacobs MR, Sader HS. Evolving trends in Streptococcus pneumoniae resistance: implications for therapy of community-acquired bacterial pneumonia [J]. International Journal of Antimi-crobial Agents, 2010, 36(3): 197–204. DOI:10.1016/j.ijantimicag.2010.04.013
[25] Ho PL, Que TL, Ng TK, et al. Clinical outcomes of bacteremic pneumococcal infections in an area with high resistance[J]. European Journal of Clinical Microbiology and Infectious Diseases, 2006, 25(5): 323–327. DOI:10.1007/s10096-006-0139-6
[26] Goyet S, Vlieghe E, Kumar V, et al. Etiologies and resistance profiles of bacterial community-acquired pneumonia in Cambodian and neighboring countries’ health care settings: a systematic review (1995 to 2012)[J]. PLoS One, 2014, 9(3): e89637. DOI:10.1371/journal.pone.0089637
[27] 蒋圣灿. 儿童社区获得性肺炎(CAP)病原构成及肺炎链球菌的耐药性分析[J]. 中国医药指南, 2012, 10(20): 487–488. DOI:10.3969/j.issn.1671-8194.2012.20.370
[28] 夏厚才, 罗小兵, 马瑞红, 等. 儿童社区获得性肺炎病原体分布及细菌耐药性分析[J]. 国际检验医学杂志, 2017, 38(5): 687–689. DOI:10.3969/j.issn.1673-4130.2017.05.047
[29] Chen Y, Deng W, Wang SM, et al. Burden of pneumonia and meningitis caused by Streptococcus pneumoniae in China among children under 5 years of age: a systematic literature review [J]. PLoS One, 2011, 6(11): e27333. DOI:10.1371/journal.pone.0027333
[30] Zhao C, Zhang F, Chu Y, et al. Phenotypic and genotypic characteristic of invasive pneumococcal isolates from both children and adult patients from a multicenter surveillance in China 2005 – 2011[J]. PLoS One, 2013, 8(12): e82361. DOI:10.1371/journal.pone.0082361
[31] 郭磊, 丁效国. 儿童社区获得性肺炎病原学调查及耐药性分析[J]. 儿科药学杂志, 2014, 20(7): 42–45.
[32] 邓香. 儿童社区获得性肺炎病原菌及其耐药性分析[J]. 当代医学, 2016, 22(16): 141–142. DOI:10.3969/j.issn.1009-4393.2016.16.098
[33] Lanspa MJ, Jones BE, Brown SM, et al. Mortality, morbidity, and disease severity of patients with aspiration pneumonia[J]. Journal of Hospital Medicine, 2013, 8(2): 83. DOI:10.1002/jhm.v8.2
[34] Geng Q, Zhang T, Ding Y, et al. Molecular characterization and antimicrobial susceptibility of Streptococcus pneumoniae isolated from children hospitalized with respiratory infections in Suzhou, China [J]. PLoS One, 2014, 9(4): e93752. DOI:10.1371/journal.pone.0093752
[35] Syrogiannopoulos GA, Bogaert D, Grivea IN, et al. Molecular epidemiology of penicillin-susceptible, multidrug-resistant serotype 6B Pneumococci isolated from children in Greece [J]. J Clin Microbiol, 2001, 39(2): 581–585. DOI:10.1128/JCM.39.2.581-585.2001
[36] Liñares J, Ardanuy C, Pallares R, et al. Changes in antimicrobial resistance, serotypes and genotypes in Streptococcus pneumoniae over a 30-year period [J]. Clinical Microbiology and Infection, 2010, 16(5): 402–410. DOI:10.1111/j.1469-0691.2010.03182.x
[37] El Seify MY, Fouda EM, Lbrahim HM, et al. Microbial etiology of community-acquired pneumonia among infants and children admitted to the pediatric hospital, Ain Shams University[J]. European Journal of Microbiology and Immunology, 2016, 6(3): 206–214. DOI:10.1556/1886.2016.00022
[38] Wang XF, Liu JP, Shen KL, et al. A cross-sectional study of the clinical characteristics of hospitalized children with community-acquired pneumonia in eight eastern cities in China[J]. BMC Complementary and Alternative Medicine, 2013, 13(1): 367. DOI:10.1186/1472-6882-13-367
[39] Raeven VM, Spoorenberg SM, Boersma WG, et al. Atypical aetiology in patients hospitalised with community-acquired pneu-monia is associated with age, gender and season; a data-analysis on four Dutch cohorts[J]. BMC Infectious Diseases, 2016, 16(1): 1–9.
[40] Cillóniz C, Torres A, Niederman M, et al. Community-acquired pneumonia related to intracellular pathogens[J]. Intensive Care Med, 2016, 42(9): 1374–1386. DOI:10.1007/s00134-016-4394-4
[41] Cilloniz C, Ewig S, Gabarrus A, et al. Seasonality of pathogens causing community-acquired pneumonia[J]. Respirology, 2017, 22(4): 778–785. DOI:10.1111/resp.2017.22.issue-4
[42] Nascimentocarvalho CM, Cardoso MR, Barral A, et al. Seasonal patterns of viral and bacterial infections among children hospi-talized with community-acquired pneumonia in a tropical region[J]. Scandinavian Journal of Infectious Diseases, 2010, 42(11 – 12): 839.
[43] Holter JC, Ueland T, Jenum PA, et al. Risk factors for long-term mortality after hospitalization for community-acquired pneumonia: a 5-year prospective follow-up study[J]. PLoS One, 2016, 11(2): e0148741. DOI:10.1371/journal.pone.0148741
[44] Jansen AG, Rodenburg GD, de Greeff SC, et al. Invasive pneu-mococcal disease in the Netherlands: syndromes, outcome and potential vaccine benefits[J]. Vaccine, 2009, 27(17): 2394. DOI:10.1016/j.vaccine.2009.01.127
[45] Walker CL, Rudan I, Liu L, et al. Global burden of childhood pneumonia and diarrhoea[J]. Lancet, 2013, 381(9875): 1405–1416. DOI:10.1016/S0140-6736(13)60222-6
[46] World Health Organization. Pneumonia, WHO data show [EB/OL]. (2016 – 11 – 07)[2018 – 07 – 03]. http://www.who.int/zh/news-room/fact-sheets/detail/pneumonia.
[47] Peto L, Nadjm B, Horby P, et al. The bacterial aetiology of adult community-acquired pneumonia in Asia: a systematic review[J]. Trans R Soc Trop Med Hyg, 2014, 108(6): 326–337. DOI:10.1093/trstmh/tru058
[48] Le Roux DM, Zar HJ. Community-acquired pneumonia in children – a changing spectrum of disease[J]. Pediatric Radiology, 2017, 47(11): 1392–1398. DOI:10.1007/s00247-017-3827-8
[49] Mameli C, Zuccotti GV. The impact of viral infections in children with community-acquired pneumonia[J]. Current Infectious Disease Reports, 2013, 15(3): 197–202. DOI:10.1007/s11908-013-0339-z
[50] 谭星宇, 何权瀛, 王月珠, 等. 362例社区获得性肺炎患者住院费用调查[J]. 中华医院管理杂志, 2002, 18(7): 413–416. DOI:10.3760/j.issn:1000-6672.2002.07.015
[51] 国家卫生和计划生育委员会. 2016中国卫生和计划生育统计年鉴[M].北京: 国家卫生和计划生育委员会, 2016.
[52] 周勇, 陈泽玲, 王缃赟. 珠海市社区获得性肺炎疾病负担研究[J]. 深圳中西医结合杂志, 2016, 26(20): 81–82.
[53] Pletz MW, Welte T, Ott SR. Advances in the prevention, manage-ment, and treatment of community-acquired pneumonia[J]. F1000 Medicine Reports, 2010, 2(1): 53.
[54] 王颖童, 王茜, 张文超, 等. 肺炎链球菌疫苗在不同年龄组儿童中应用价值分析[J]. 实用预防医学, 2016, 23(5): 545–547. DOI:10.3969/j.issn.1006-3110.2016.05.010
[55] Garciavidal C, Ardanuy C, Tubau F, et al. Pneumococcal pneu-monia presenting with septic shock: host- and pathogen-related factors and outcomes[J]. Thorax, 2010, 65(1): 77–81. DOI:10.1136/thx.2009.123612
[56] 韦宁安, 王华庆. 中国≤18岁人群肺炎球菌相关病例中肺炎球菌血清型分布的系统评价[J]. 中国疫苗和免疫, 2014, 20(6): 547–555.
[57] Griffin MR, Zhu Y, Moore MR, et al. US pneumonia hospi-talizations, a decade of pneumococcal conjugate vaccine use[J]. The New England Journal of Medicine, 2013, 369(2): 155–163. DOI:10.1056/NEJMoa1209165
[58] Jardine A, Menzies RI, Mcintyre PB. Reduction in hospitalizations for pneumonia associated with the introduction of a pneumococcal conjugate vaccination schedule without a booster dose in Australia[J]. Pediatric Infectious Disease Journal, 2010, 29(7): 607–612. DOI:10.1097/INF.0b013e3181d7d09c
[59] Dinleyici EC, Yargic ZA. Current knowledge regarding the investi-gational 13-valent pneumococcal conjugate vaccine[J]. Expert Review of Vaccines, 2009, 8(8): 977. DOI:10.1586/erv.09.68
[60] 胡昱, 李倩, 张兵, 等. 5岁以下儿童接种b型流感嗜血杆菌疫苗流行病学效果的Meta分析[J]. 浙江预防医学, 2016, 28(12): 1208–1213.
[61] Howie SR, Oluwalana C, Secka O, et al. The effectiveness of conjugate Haemophilus influenzae type B vaccine in the Gambia 14 years after introduction [J]. Clinical Infectious Diseases, 2013, 57(11): 1527–1534. DOI:10.1093/cid/cit598
[62] Hammitt LL, Crane RJ, Karani A, et al. Effect of Haemophilus influenzae type b vaccination without a booster dose on invasive H influenzae type b disease, nasopharyngeal carriage, and population immunity in Kilifi, Kenya: a 15-year regional surveillance study [J]. Lancet Global Health, 2016, 4(3): e185–194. DOI:10.1016/S2214-109X(15)00316-2
[63] Hanna JN. Impact of Haemophilus influenzae type b (Hib) vacci-nation on Hib meningitis in children in Far North Queensland, 1989 to 2003 [J]. Communicable Diseases Intelligence Quarterly Report, 2004, 28(2): 255.
[64] 李文敏, 尹刚, 孔玉梅, 等. 我国儿童b型流感嗜血杆菌(Hib)疫苗接种率的meta分析[J]. 中国卫生统计, 2017, 34(1): 69–73.